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Abstract In this paper, we study a Targeted En-

ergy Transfer (TET) problem between a p degrees-

of-freedom (dof) linear master structure and several

coupled parallel slave Nonlinear Energy Sink (NES)

systems. In detail, each lth dof l = 1,2, . . . , p con-

tains nl parallel NES; so the linear structure has

(n1 +n2 +· · ·+nl +· · ·+np) NES. We are interested

to study analytically the TET phenomenon during the

first mode of the compound system. To this end, com-

plexification, averaging, and multiple scales methods

are used.

The system is studied under 1:1 resonance for the

transient regime and under harmonic excitation. The

influence of the system parameters is observed through

dimensionless variables. An analytical criterion is de-

fined to tune NES parameters which lead to an efficient

TET for the transient and the forced regimes. It will be

demonstrated that analytical results are in good agree-

ment with numerical ones.

This paper will be followed by a companion paper

which mainly deals with the governing equations for

compound nonlinear systems with trees of NES de-

vices at each dof; then experimental results of a four

storey structure with two parallel NES at the top floor
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which are tuned by the mentioned technique in the cur-

rent paper will be demonstrated and commented upon.
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Nomenclature

cn,j damping of NES j attached to the dof n

kn,j stiffness of NES j attached to the dof n

q1 first mode generalized displacement of the

linear system

xn,j displacement of NES j attached to the dof n

C∗
1 first mode modal damping of the linear system

Fn(t) external forcing on dof n

K∗
1 first mode modal stiffness of the linear system

M∗
1 first mode modal mass of the linear system

φn,1 first mode modal shape of the linear system at

dof n

1 Introduction

A numerous number of seismic mitigation devices has

been developed during the past decades [1]. Novel de-

signs of structures commonly seek to reduce the to-

tal structural mass. Thus, it is important to develop

new absorption devices that reduce both stationary and

transient responses as much as possible while adding

as less as possible extra mass to the structure; more-

over these devices should be able to absorb seismic ef-

fects for a broadband of frequencies. To this end, NES
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systems have been developed that the imposed energy

to a linear single dof system is transferred to a strongly

nonlinear light attachment in an irreversible manner;

the mechanism is mainly based on a 1:1 resonance

capture and involves the Nonlinear Normal Modes

geometry. Theoretical background of these systems is

quite well developed [2–13]. The overall system be-

havior during the energy absorption by nonlinear ab-

sorbers is based on complete detection of nonlinear

normal modes (NNM) of the system. The reader can

refer to [14] for detailed information about NNM and

localization. Manevitch et al. [11, 15] presented new

analytical approach to the problem of energy pumping

in strongly nonhomogeneous nonlinear two dof sys-

tems with single anchor spring under impulse load due

to initial conditions. Their approach was based on ap-

plication of the equations of motion in complex form

and using the power expansion of the solution in terms

of time. Schmidt and Lamarque [16] studied the en-

ergy transfer from initial single dof system including

nonsmooth term of friction to a NES under free tran-

sient or periodic external excitations. They illustrated

that under free excitation, a NES tuned for underlying

linear elastic oscillator is still efficient for the elasto-

plastic case and leads to reduce oscillations in com-

parison with the behavior without coupled NES. They

showed that under periodic excitation and the same de-

sign, efficiency of energy pumping can be reduced or

destroyed in the whole system, but it is possible to im-

prove the design by a numerical parametric study to

get correct results. Manevitch and Manevitch [17] pre-

sented an analytical and numerical study of the energy

exchange and transfer in a strongly nonlinear two dof

system subject to resonance 1:1 based on the concept

of the Limiting Phase Trajectories (LPTs). Their ap-

proach allowed constructing an approximate analytic

solution describing the energy exchange and beating

with complete energy transfer in the system. Pham

et al. [18] analyzed combination resonance for a two

degrees-of-freedom system that consists of one master

system involving the main basic quadratic nonlinear-

ity and one NES with purely cubic nonlinear term. The

idea of the relative mode was endowed for proving the

efficiency of the NES in controlling the system.

McFarland et al. [19] and Gourdon et al. [20,

21] experimentally verified theoretical effects of en-

ergy pumping with a single NES coupled with sin-

gle and four dof systems, respectively. They experi-

mentally proved the efficiency of energy pumping sys-

tems with respect to classical tuned mass dampers.

All of above mentioned analytical and experimental

researches were carried out on structures with single

NES devices. In the current and companion papers, we

will present analytical and experimental studies about

compound nonlinear systems with parallel NES de-

vices, respectively.

The outline of the paper is as follows. Section 2

presents the reduced equations of the compound sys-

tem. In Sect. 3, analytical and numerical studies are

presented for the transient behavior of the system and

an analytical triggering criterion for TET is defined. In

Sect. 4, these investigations are extended to the forced

case under harmonic excitation. Finally, conclusions

are given in Sect. 5.

2 Dynamics of the system

We investigate the case of a p dof linear master struc-

ture which is coupled to (n1 + n2 + · · · + np) cubic

NES. The NESn,j is the j th NES that is coupled to

degree of freedom n. All of NESn,j are parallel with

each other. This nonlinear coupling aims at control-

ling the first mode of this p dof structure by deter-

mining efficient physical parameters for the different

NES. We will shift from physical domain to the modal

domain by appropriate change of variables. To de-

sign different NES, we first reduce the linear system

to its first mode (the one to be controlled), and then

we observe the coupling between this mode and the

(n1 + n2 + · · · + np) NES. These assumptions lead to

the following system of equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M∗
1 q̈1 + C∗

1 q̇1 + K∗
1 q1 +

p
∑

l=1

nl
∑

j=1

φl,1μl,j ẍl,j

=
p

∑

l=1

φl,1Fl(t)

∀n = 1..p, ∀j = 1..nn

μn,j ẍn,j + cn,j (ẋn,j − φn,1q̇1)

+ kn,j (xn,j − φn,1q1)
3 = 0.

(1)

where nn is the number of attached parallel NES to

the dof n. The different parameters and variables are

defined in the nomenclature.
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3 Transient behavior under impulse load

In this section, we study the transient behavior of the

coupled system which is reduced to a single mode in

the vicinity of 1:1 resonance. Analytical approxima-

tion of the response using dimensionless variables are

obtained and a tuning procedure for the NES is estab-

lished. Numerical simulations are performed for the

case of two NES in parallel which are attached to the

same dof.

Under this assumption, (1) can be rewritten as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M∗
1 q̈1 + C∗

1 q̇1 + K∗
1 q1 +

p
∑

l=1

nl
∑

j=1

φl,1μl,j ẍl,j = 0

∀n = 1..p, ∀j = 1..nn

μn,j ẍn,j + cn,j (ẋn,j − φn,1q̇1)

+ kn,j (xn,j − φn,1q1)
3 = 0

(2)

Let us consider the system without external forcing

with the following initial conditions:

{

q1(0) = 0, q̇1(0) �= 0

xn,j (0) = 0, ∀n = 1..p, ∀j = 1..nn

(3)

Now, let us introduce following change of variables:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

μn,j

M∗
1

= εαn,j ,

p
∑

n=1

nl
∑

j=1

αn,j = 1

cn,j

M∗
1

= εαn,jλn,j ,
kn,j

M∗
1

= εαn,jΩn,jω
∗
0

4

C∗
1

M∗
1

= ελ∗,
K∗

1

M∗
1

= ω∗
0

2

(4)

Then (2) will read as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

q̈1 + ελ∗q̇1 + ω∗
0

2q1 + ε

p
∑

l=1

nl
∑

j=1

φl,1αl,j ẍl,j = 0

∀n = 1..p, ∀j = 1..nn

εαn,j ẍn,j + εαn,jλn,j (ẋn,j − φn,1q̇1)

+ εαn,jΩn,jω
∗
0

4(xn,j − φn,1q1)
3 = 0

(5)

New variables are introduced, which are in fact center

of mass u and internal displacements vn,j :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u = q1 + ε

p
∑

l=1

nl
∑

j=1

φl,1αl,jxl,j

vn,j = xn,j − φn,1q1, ∀n = 1..p,∀j = 1..nn

(6)

which reduce (5) to the following form:

ü + ελ∗ u̇ + ε
∑p

l=1

∑nl

j=1 αn,jφl,1v̇n,j

1 + εY

+ ω∗
0

2
u + ε

∑p

l=1

∑nl

j=1 αn,jφn,jvn,j

1 + εY
= 0 (7)

εv̈n,j + εφn,j

ü + ε
∑p

l=1

∑nl

j=1 αn,jφn,j v̈n,j

1 + εY

+ ελn,jvn,j + ε�n,jω
∗
0

4
v3
n,j = 0,

∀n = 1..p, ∀j = 1..nn (8)

with Y =
∑p

l=1

∑nl

j=1 φ2
l,1αn,j .

We are investigating the first order approximation

of the solution in the vicinity of 1:1 resonance. We

introduce this 1:1 resonance in (8). Then we conserve

only terms until order ε1 in (7), and (8):

(

ü + ω∗
0

2
u
)

+ ε

[

λ∗u̇ + ω∗
0

2
p

∑

l=1

nl
∑

j=1

αn,jφn,jvn,j

]

− ε

[

ω∗
0

2
p

∑

l=1

nl
∑

j=1

αn,jφ
2
n,ju

]

+ o(ε2) = 0 (9)

ε
(

v̈n,j + ω∗
0

2
vn,j

)

+ εφn,jω
∗
0

2
u + ελn,j v̇n,j

+ ε�n,jω
∗
0

4
v3
n,j

− εω∗
0

2
vn,j + o

(

ε2
)

= 0,

∀n = 1..p, ∀j = 1..nn (10)

Complex variables of Manevitch [22] and multiple

scales expansions [23] are introduced in (9) and (10)

according to the following relations:

ϕ0e
iω∗

0 t = u̇ + iω∗
0u

ϕn,j e
iω∗

0 t = v̇n,j + iω∗
0vn,j

∀n = 1..p, ∀j = 1..nn,

ϕ0 = ϕ00 + ǫϕ01 + ǫ2ϕ02 + · · ·
(11)

∀n = 1..p, ∀j = 1..nn,

ϕn,j = ϕnj0 + ǫϕnj1 + ǫ2ϕnj2 + · · ·

for l = 0,1,2, . . . Tl = εl t,

d

dt
=

∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ · · · .
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By considering secular terms relevant to eiω∗
0 t in the

resulting equation we obtain:

• Order ε0 of (9):

∂ϕ00

∂T0
= 0 (12)

• Order ε1 of (9):

1

ω∗
0

∂ϕ00

∂T1
=

−ζ ∗

2
ϕ00 −

i

2

p
∑

l=1

nl
∑

j=1

αn,jφ
2
n,jϕ00

+
i

2

p
∑

l=1

nl
∑

j=1

αn,jφn,jϕnj0 (13)

• Order ε1 of (10):

1

ω∗
0

∂ϕnj0

∂T0
=

i

2
φnjϕ00 −

(i + ζn,j )

2
ϕnj0

+
3i�n,j

8
|ϕnj0|2ϕnj0 ∀n = 1..p, ∀j = 1..nn

(14)

where ζ ∗ = λ∗

ω∗
0

and ζn,j = λn,j

ω∗
0

.

It can be demonstrated that variables ϕnj0 evolve

toward an equilibrium state [6] such as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∀n = 1..p, ∀j = 1..nn,

i

2
φn,jϕ00 −

(i + ζn,j )

2

nj0 +

3i�n,j

8
|
nj0|2
nj0

= 0,


nj0(T1, . . .) = lim
T0→∞

ϕnj0(T0, T1, . . .)

(15)

By rewriting complex variables in polar form:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ00 = R0(T1)e
iδ0(T1)


nj0 = Rnj (T1)e
iδn,j (T1)

∀n = 1..p, ∀j = 1..nn

(16)

Now, (13) and (15) can be rewritten as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

ω∗
0

∂R2
0

∂T1
= −ζ ∗R2

0 −
p

∑

l=1

nl
∑

j=1

αn,j ζn,jR
2
nj

φ2
n,jR

2
0 =

[

ζ 2
n,j +

(

1 −
3�n,j

4
R2

nj

)2]

R2
nj

∀n = 1..p, ∀j = 1..nn

(17)

Let us assume that Enj = �n,jR
2
nj and E0 = �n,jR

2
0 ,

then (17) read as

∂E0

∂T1
= −λ∗E0 −

p
∑

l=1

nl
∑

j=1

αn,jλn,jEnj (18)

φ2
n,jE0 =

[

ζ 2
n,j +

(

1 −
3

4
Enj

)2
]

Enj

∀n = 1..p, ∀j = 1..nn (19)

where E0 and Enj are dimensionless variables which

depend on initial conditions and the nonlinearity of the

system.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

E0 = �n,j |ϕ00|2 = �n,j

(

u̇2
0 + ω∗

0
2u2

0

)

∀n = 1..p, ∀j = 1..nn,

Enj = �n,j |
nj0|2

= �n,j

(

lim
T0→∞

[

v̇2
nj0 + ω∗

0
2
v2
nj0

]

)

(20)

Variables E0 and Enj are dimensionless variables

which represent the behavior of the main linear mode

(E0) and internal nonlinear modes (Enj ,∀n = 1..p,

∀j = 1..nn) at each attachment for T0 → ∞. Equa-

tion (19) represents the asymptotic relation between

E0 and Enj at the slow time scale T1 after suppressing

fast oscillations of time scale T0.

Equation (18) illustrates the mechanism of decreas-

ing oscillation in the main system (E0). We see that

this decrease is controlled by the damping of the mas-

ter system (λ∗) and additional damping which are gen-

erated by NES (λn,j ).

We can observe that NES in parallel contribute to

the energetic decrease proportionally to their damp-

ing factor multiplied by their own mass. It is also im-

portant to denote that these different and independent

NES dissipation factors act additionally. Actually (18)

underlines the linear additivity of damping factors of

NES in parallel.

Equation (19) shows that the energy of each inter-

nal mode only depends on the energy of the main lin-

ear mode, i.e., each internal mode acts independently.

There is no energy transfer between the different ab-

sorbers in the first order approximation. Each NES has

its own behavior which depends only on the energy of

the main linear system, so that in first order approx-

imation adding an additional NES will not affect the

efficiency of other NES systems.
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Fig. 1 Multiplicity of solution between dimensionless variables

E0 and Enj0, with ζnj = 0.25 and φnj = 1

3.1 Tuning of the NES

The two principles of linear additivity and separated

activity of NES in parallel underline that the efficiency

of each NES, in the first order approximation, is en-

tirely governed by its own physical parameters, i.e.,

mnj , cnj , and knj . This leads us to be able to study the

energy activation level for the TET by considering the

energy of the master structure sent to each single NES.

Figure 1 shows the multiplicity of solution com-

puted from (19). It has been demonstrated in previous

researches [24] that this multiplicity is responsible for

the TET. In fact, this bifurcation defines an area where

the energy can suddenly jump from high to low levels.

This area of bifurcation can be analytically studied

from the derivative of (19):

dE0

dEnj0
=

1

φ2
n,j

[

27

16
E2

nj0 − 3Enj0 +
(

1 + ζ 2
n,j

)

]

(21)

If ζn,j ∈ [0, 1√
3
], then we may obtain multiple solu-

tions for (21). This is a known result in TET. The bi-

furcation which leads to the energy pumping, due to

multiplicity of solutions, only occurs for small values

of damping of absorbers [6].

There are two extreme limits in the curve of Fig. 1:

E+
0 and E−

0 , respectively. These coordinates are given

by the nullity of derivative of (21).

For the sake of simplicity, we define following

functions:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�(ζ) = 9 −
27

4
(1 + ζ 2)

γ +(ζ ) =
24 + 8

√
�(ζ)

27
;

γ −(ζ ) =
24 − 8

√
�(ζ)

27

(22)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(E−
nj0;E

+
0 )

=
[

γ −(ζn,j );
1

φ2
n,j

(

ζ 2
n,j

+
(

1 −
3

4
γ −(ζn,j )

)2)

γ −(ζn,j )

]

(E+
nj0;E

−
0 )

=
[

γ +(ζn,j );
1

φ2
n,j

(

ζ 2
n,j

+
(

1 −
3

4
γ +(ζn,j )

)2)

γ +(ζn,j )

]

(23)

Different behaviors can be observed along this curve,

depending on the initial value of E0, i.e., the initial

energy of the master structure which is activated by its

initial conditions. There are several cases as it follows:

E0 ∈ [E−
0 ,E+

0 ], E0 < E−
0 and E0 > E+

0 . Nguyen [25]

demonstrated that the most efficient case which leads

quickly to a stable and an efficient TET is when E0 >

E+
0 .

In this case, the main system crosses the bifurca-

tion and is quickly attracted to the low branch of the

curve, which leads to a jump down for the energy of

the main system. This jump demonstrates an efficient

TET from the main linear system to the considered at-

tachment, and reduces significantly vibrations of the

master structure.

This criterion will be endowed to design an effi-

cient NES. As soon as we know the initial condition

of the system, i.e., an estimation of the energy E0 to

be controlled, we will be able to evaluate physical pa-

rameters of the NES that will immediately trigger the

energy pumping and establish an efficient control.

The optimal case for E0 is to be just above E+
0 , oth-

erwise if E0 is too high the system will take time to lin-

early dissipate the energy before reaching the thresh-

old of the TET.
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A convenient design for the NES is

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

E0 ∈ [E+
0 ,E+

0 + χ]

E+
0 =

1

φ2
n,j

(

ζ 2
n,j +

(

1 −
3

4
γ −(ζn,j )

)2)

γ −(ζn,j )

⇒ �n,j |ϕ00|2 ∈ [E+
0 ;E+

0 + χ]

(24)

where χ is a small parameter such as χ ≪ E+
0 . We

finally obtain the tuning for the stiffness of the NES j

which is attached to the dof n of the modal shape φn,j

as it follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

kn,j ∈ [kopt, kopt + χ]

kopt ≈
μn,jω

∗
0

4

φ2
n,j |ϕ00|2

(

ζ 2
n,j +

(

1

−
3

4
γ −(ζn,j )

)2)

γ −(ζn,j )

(25)

The main results of this analytical study presented

in (18), (19), and (25) underline the interest of using

parallel NES instead of single NES. Let us consider a

NES with mass m, damping c and nonlinear stiffness

knl . This NES can be easily replaced by two NES in

parallel of masses m
2

, damping c; according to (25) to

keep the same level of activation these two NES will

only require a nonlinear stiffness of knl

2
. We notice that

the use of parallel NES allows to disseminate the mass

along the structure and significantly reduces the re-

quired nonlinear stiffness for activation, which could

be very interesting for practical applications. More-

over, according to (18), the two NES in parallel will

have an equivalent damping of 2c, which means that

this configuration will be more efficient than the cor-

responding single NES system (the equivalent damp-

ing is 2c, but each NES keeps a damping of c, with c

below the critical damping).

Finally, according to the principle of separated acti-

vation of (19) the parallel NES configuration can also

be interesting to build NES with several levels of acti-

vation that could be able to control several modes of a

linear structure, by tuning each NES or groups of NES

on a chosen linear mode.

3.2 Two NES in parallel

In this subsection, we consider the relevant case of two

parallel NES which are attached to the relevant dof of

modal shapes φn,1 and φn,2. The mass, damping, and

stiffness of these NES are (μn,1,μn,2), (cn,1, cn,2) and

(kn,1, kn,2), respectively.

In this case, (2) can be rewritten as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M∗
1 q̈1 + C∗

1 q̇1 + K∗
1 q1 + φn,1μn,1ẍn,1

+ φn,2μn,2ẍn,2 = 0

μn,1ẍn,1 + cn,1(ẋn,1 − φn,1q̇1)

+ kn,1(xn,1 − φn,1q1)
3 = 0

μn,2ẍn,2 + cn,2(ẋn,2 − φn,2q̇1)

+ kn,2(xn,2 − φn,2q1)
3 = 0

(26)

By considering all the change of variables that have

been introduced, one can reach the following system

of equations:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

ω∗
0

∂R2
0

∂T1
= −ζ ∗R2

0 − αn,1ζn,1R
2
n1 − αn,2ζn,2R

2
n2

φ2
n,1R

2
0 =

[

ζ 2
n,1 +

(

1 −
3�n,1

4
R2

n1

)2]

R2
n1

(27)

After several mathematical manipulations on (27), we

obtain the following differential equation that governs

the system behavior:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

φ2
n,1ω

∗
0

dR2
n1

dT1

= −
16

K
ζ ∗R2

0 +
−16(αn,1ζn,1R

2
n1 + αn,2ζn,2R

2
n2)

K

K = 16
(

1 + ζ 2
n,1

)

− 48�n,1R
2
n,1 + 27�2

n,1R
4
n,1

(28)

The tuning parameters for each NES can be defined as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

k
opt

n,1 ≈
μn,1ω

∗
0

4

φ2
n,1|ϕ00|2

(

ζ 2
n,1

+
(

1 −
3

4
γ −(ζn,1)

)2)

γ −(ζn,1)

k
opt

n,2 ≈
μn,2ω

∗
0

4

φ2
n,2|ϕ00|2

(

ζ 2
n,2

+
(

1 −
3

4
γ −(ζn,2)

)2)

γ −(ζn,2)

(29)

Let us consider the case where the two NES have the

same modal shape factor φn = φn,1 = φn,2. Moreover,
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we consider that the design of the two NES leads to

the same damping, which means ζn = ζn,1 = ζn,2. This

configuration of NES is considered for the sake of ex-

perimental test set up which will be presented in the

companion paper. Even if this case brings a lot of sim-

plifications compared to the considered general case, a

similar analytical study could be undertake for p NES

disseminated along the structure. To optimize the con-

trol process, the two NES are tuned on the same level

of activation. According to (29), we have

kn,1

μn,1
=

kn,2

μn,2
⇒ �n = �n,1 = �n,2 (30)

We reduce (17) to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

φ2
nR2

0

=
[

ζ 2
n +

(

1 −
3�n

4
R2

n1

)2]

R2
n1

φ2
nR2

0 =
[

ζ 2
n +

(

1 −
3�n

4
R2

n2

)2]

R2
n2

[

ζ 2
n +

(

1 −
3�n

4
R2

n1

)2]

R2
n1

=
[

ζ 2
n +

(

1 −
3�n

4
R2

n2

)2]

R2
n2

(31)

Then we obtain algebraic relations between Rn1 and

Rn2:

R2
n1 = R2

n2 (32)

R2
n1 = −

1

2
R2

n2 +
4

3�n

±
√

48�nR
2
n2 − 27�2

nR
2
n2 − 64ζ 2

n (33)

Equation (33) is not physically relevant as it verifies

the third equation of (31) but not the whole system.

Then we get

R2
n1 = R2

n2 (34)

By introducing this result in the system of (27), with

En = �nR
2
n1 = �nR

2
n2 and E0 = �nR

2
0 , after several

mathematical manipulations we get

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

φ2
nE0 =

[

ζ 2
n +

(

1 −
3

4
En

)2]

En

1

ω∗
0

dEn

dT1
= −

16

K

[

ζ 2
n +

(

1 −
3

4
En

)2]

Enζ
∗

+
−16ζnφ

2
n(αn,1 + αn,2)

K
En

K = 16
(

1 + ζ 2
n

)

− 48En + 27E2
n

(35)

By rescaling the time and neglecting the damping of

the linear system ζ ∗ in (35) we get

1

εω∗
0

dEn

dt
=

−16ζnφ
2
n(αn,1 + αn,2)

K
En (36)

which yields to the following function:

f (En) =
27

32
E2

n − 3En +
(

1 + ζ 2
n

)

ln(En)

= C − φ2
nζn(αn,1 + αn,2)ω

∗
0εt (37)

As we saw previously in Sect. 3.1, the denominator

K of (36) has real roots if and only if ζn ≤ 1√
3

, which

is the condition for occurrence of the TET.

3.3 Numerical simulations

In this part, some numerical simulations have been

performed in order to compare different analytical pre-

dictions of the previous sections with the numerical in-

tegration of Eq. (1). These numerical simulations are

performed in the case of two parallel NES, attached to

the same degree of freedom. We choose the following

parameters.

– Initial conditions due to the impulse load:

⎧

⎪

⎨

⎪

⎩

q̇(0) = 0.1 m s−1, q(0) = 0 m

xn,1(0) = xn,2(0) = 0 m

ẋn,1(0) = ẋn,2(0) = 0 m s−1

(38)

– Modal parameters of the master structure:

⎧

⎪

⎨

⎪

⎩

M∗
1 = 1 kg, C∗

1 = M∗
1 ω∗

0ζ ∗ N s m−1

K∗
1 = (2π)2 N m−1

εζ ∗ = 0.41%, φn = 1

(39)
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– NES parameters:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

μn,1 = μn,2 =
1

100
M∗

1 kg,

cn,1 = cn,2 = 0.005 N s m−1

kn = kn,1 = kn,2 = [250;312;600] N m−3

(40)

By using this numerical parameters, (29) gives

k
opt
n = k

opt

n,1 = k
opt

n,2 ≈ 312 N m−3 (41)

Numerical simulations and analytical predictions

are presented for three different values of kn, under,

above, and near the optimal tuning. Through these

simulations, we investigate different mechanisms of

control around the optimal design, with unchanged im-

pulse load. Figures 2a, 2c, 2e represent the decreas-

ing of dimensionless variable En. These figures show

good agreements between analytical prediction of (36)

and numerical integration of (2). Figures 2b, 2d, 2f

represent the generalized displacement of the main

system q(t) with and without the NES device. These

figures underline the efficiency of the nonlinear ab-

sorber that is able to significantly reduce vibrations

of the main system and clearly illustrate the evolu-

tion of the absorption efficiency around the optimal

tuning value kn. The analytical prediction of Figs. 2a,

2c, 2e underline the occurrence of multiple solutions

near and above the optimal tuning that lead to a sud-

den jump with high energy dissipation in the main sys-

tem (see Figs. 2d, 2f). These results show up that these

multiple solutions are responsible for the efficiency of

the NES. As a conclusion, these NES mechanisms de-

note that with a nonlinearity under the optimal value

we have no multiple solutions and slow dissipation of

the main system energy. Near the optimal value, the

system quickly goes through the bifurcation that leads

to sudden dissipation. Above the optimal value, the

system first slowly dissipates energy; this low dissi-

pation phase increases with the nonlinearity of the ab-

sorber, before passing through the bifurcation and sud-

denly decreases. We can conclude that the analytical

prediction allows an efficient design of the nonlinear

absorber.

4 Under harmonic forcing

In this section, the study of Sect. 3 is extended to the

forced system. We investigate the periodic solution of

the system in the vicinity of 1:1 resonance. Approxi-

mation of the system response, stability and bifurca-

tions are analytically investigated and a tuning crite-

rion is obtained. Then an application with two NES in

parallel is analytically and numerically performed for

experimental considerations.

Let us consider system of (1), where the linear sys-

tem is under an harmonic excitation:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M∗
1 q̈1 + C∗

1 q̇1 + K∗
1 q1

+
p

∑

l=1

nl
∑

j=1

φl,1μl,j ẍl,j =
p

∑

l=1

φl,1Fl(t)

∀n = 1..p, ∀j = 1..nn

μn,j ẍn,j + cn,j (ẋn,j − φn,1q̇1)

+ kn,j (xn,j − φn,1q1)
3 = 0

(42)

We consider the system under harmonic forcing then

we assume that:

p
∑

l=1

φl,1
Fl(t)

M∗
1

= εω∗
0F cos(ωt) (43)

Analysis of harmonic solutions of the system is

performed using complexification methods in the

vicinity of 1:1 resonance with the external forcing

εω∗
0F cos(ωt).

First, we are interested in the design of multiple

NES in the forced regime. We introduce global and

internal displacements as it follows:

{

u(t) = q1(t)

vn,j = xn,j − φn,1q1 ∀n = 1..p, ∀j = 1..nn.
(44)

Equations (42) are written as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

ü + ω∗
0

2u
)

+ ελ∗u̇ + ε

p
∑

l=1

nl
∑

j=1

αl,jφl,j v̈l,j

+ ε

p
∑

l=1

nl
∑

j=1

αl,jφ
2
l,j ül,j = εω∗

0F cosωt

(

v̈n,j + ω∗
0

2vn,j

)

+ φn,j

(

ü + ω∗
0

2u
)

+ λn,j v̇n,j

+ �n,jω
∗
0

4v3
n,j − ω∗

0
2vn,j − φn,jω

∗
0

2u = 0

∀n = 1..p,∀j = 1..nn

(45)

Manevitch’s complex variables [22] are introduced to

investigate periodic solutions in the vicinity of forcing
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Fig. 2 (a, c, e) Comparison of the absorber efficiency through

dimensionless variable En for different values of kn, analyti-

cal prediction in dotted line and numerical simulations in solid

line. (b, d, f) Comparison of master system displacements, cou-

pled with NES in solid line and without NES in dotted line.

(a, b) kn = 250 N m−3; (c, d) kn = kopt; (e, f) kn = 600 N m−3

pulsation ω:

ϕ0e
iωt = u̇ + iω∗

0u

ϕnj e
iωt = v̇n,j + iω∗

0vn,j ∀n = 1..p, ∀j = 1..nn.
(46)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ü + ω∗
0

2u = ϕ̇0e
iωt + i

(

ω − ω∗
0

)

ϕ0e
iωt

∀n = 1..p,∀j = 1..nn,

v̈n,j + ω∗
0

2vn,j = ϕ̇nj e
iωt + i(ω − ω∗

0)ϕnj e
iωt

(47)

We investigate the response in the vicinity of 1:1 res-

onance with the external forcing. It is possible to sug-

gest that the evolution of modulation variables ϕ0 and

ϕnj are slow compared to the excitation due to the ex-

ternal force. Under this assumption, first approxima-

tion for modulation variables may be obtained by av-

eraging the complexification of (45) with respect to

this fast time scale.
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We are interested in the design of the NES, so we

only consider the (n1 + n2 + · · · + np) last equations

of (45). By averaging of these equations one can reach

the following system:

i
φn,j εσ

∗

2
ϕ0 + i

εσ ∗

2
ϕnj +

ζn,j

2
ϕnj −

3i�n,j

8
|ϕnj |2ϕnj

+
iφn,j

2
ϕ0 +

i

2
ϕnj = 0 ∀n = 1..p, ∀j = 1..nn

(48)

with ω
ω∗

0
= 1 + εσ ∗

2
. Steady-state regime of (48) is ob-

tained by demanding:

ϕ̇0 = 0

ϕ̇nj = 0, ∀n = 1..p, ∀j = 1..nn

(49)

so,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∀n = 1..p, ∀j = 1..nn,

(1 + εσ ∗)φn,jϕ0 =
(

iζn,j −
(

(1 + εσ ∗)

−
3i�n,j

4
|ϕnj |2

))

ϕnj

(50)

By considering the complex conjugate of (50), we ob-

tain:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∀n = 1..p, ∀j = 1..nn,
[

ζ 2
n,j +

(

X −
3�n,j

4
|ϕnj |2

)2]

|ϕnj |2

= φ2
n,jX

2|ϕ0|2

(51)

where X = 1 + εσ ∗.

By introducing dimensionless variable Znj =
�n,j |ϕnj |2, we obtain

[

ζ 2
n,j +

(

X −
3

4
Znj

)2]

Znj = φ2
n,jX

2�n,j |ϕ0|2

∀n = 1..p, ∀j = 1..nn (52)

We denote that the principle of separated activity is

also verified, in the forced case which permits using

the same design method as described in Sect. 3.1. It

provides

d�n,j |ϕnj |2

dZn,j

=
1

X2φ2
n,j

[

27

16
Z2

n,j − 3Zn,j + (X2 + ζ 2
n,j )

]

(53)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�F (ζ ) = 9X2 −
27

4
(X2 + ζ 2)

γ −
F (ζ ) =

24X − 8
√

�F (ζ )

27

(54)

Then the tuning stiffness for each NES reads as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∀n = 1..p, ∀j = 1..nn,

k
opt
n,j =

μn,jω
∗
0

4

φ2
n,j (1 + εσ ∗)2|ϕ0|2

([

(1 + εσ ∗)

−
3

4
γ −
F (ζn,j )

]2

+ ζ 2
n,j

)

γ −
F (ζn,j )

(55)

In the forced case, the main point aims at find-

ing a reasonable value for |ϕ0|2. Contrary to the im-

pulse load case where initial conditions are known,

the steady-state response of the system is unknown.

The steady state amplitude of the master system |ϕ0|,
seems to depend on variables ϕnj and can be obtained

by solving (48) and (50), which is not interesting for

the design. But if we consider the behavior of a system

with the TET, and in particular the energy exchange,

it seems that the main system behaves linearly until

its energy reaches the energy pumping threshold, and

starts to be controlled. We can assume that the steady-

state can be obtained by considering that the system

behaves linearly until the energy pumping threshold is

reached.

Under this assumption, we will tune the NES under

harmonic forcing by considering:

|ϕ0|2 ≈ (u̇2 + ω∗
0

2
u2)statio

≈ ω∗
0

2
u2

statio

≈
ε2ω∗

0
2F 2

(ω∗
0 − ω̃)2 + ω̃2ελ∗ (56)

where ω̃ is the cut pulsation, i.e., the pulsation which

triggers the TET and ustatio (the stationary value for

displacement u(t)) at pulsation ω̃.

4.1 Case of two NES in parallel under harmonic

forcing

In this part, we consider the simple case of two paral-

lel NES that are attached at dof with the mode shapes

φn,1 and φn,2. Mass, damping, and stiffness of each

NES are (μn,1,μn,2), (cn,1, cn,2), and (kn,1, kn,2), re-

spectively.
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In this case, (45) can be rewritten as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

ü + ω∗
0

2u
)

+ ελ∗u̇ + εαn,1φn,1v̈n,1

+ εαn,2φn,2v̈n,2 + εY2ü = εω∗
0F cosωt,

(

v̈n,1 + ω∗
0

2vn,1

)

+ φn,1

(

ü + ω∗
0

2u
)

+ λn,1v̇n,1

+ �n,1ω
∗
0

4v3
n,1 − ω∗

0
2vn,1 − φn,1ω

∗
0

2u = 0,

(

v̈n,2 + ω∗
0

2vn,2

)

+ φn,2

(

ü + ω∗
0

2u
)

+ λn,2v̇n,2

+ �n,2ω
∗
0

4v3
n,2 − ω∗

0
2vn,2 − φn,2ω

∗
0

2u = 0

(57)

with Y2 = αn,1φ
2
n,1 + αn,2φ

2
n,2.

By introducing complex variables and averaging equa-

tions in the vicinity of 1:1 resonance with the external

forcing we obtain the following system of equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1 + εY2)

(

1

ω∗
0

ϕ̇0 + i

(

ω

ω∗
0

− 1

)

ϕ0

)

+ εαn,1φn,1

×
(

1

ω∗
0

ϕ̇n1 + i

(

ω

ω∗
0

− 1

)

ϕn1

)

+ αn,2φn2ε

×
(

1

ω∗
0

2
ϕ̇n2 + i

(

ω

ω∗
0

− 1

)

ϕn2

)

+
εζ ∗

2
ϕ0

+
iεφn,1

2
ϕn1 +

iαn,2εφn,2

2
ϕn2 +

iε

2
Y2ϕ0 =

εF

2

φn,1

(

1

ω∗
0

ϕ̇0 + i

(

ω

ω∗
0

− 1

)

ϕ0

)

+
(

1

ω∗
0

ϕ̇n1 + i

(

ω

ω∗
0

− 1

)

ϕn1

)

+
ζn,1

2
ϕn1

−
3i�n,1

8
|ϕn1|2ϕn1 +

iφn,1

2
ϕ0 +

i

2
ϕn1 = 0

φn,1

(

1

ω∗
0

ϕ̇0 + i

(

ω

ω∗
0

− 1

)

ϕ0

)

+
(

1

ω∗
0

ϕ̇n,2 + i

(

ω

ω∗
0

− 1

)

ϕn2

)

+
ζn,2

2
ϕ2

−
3i�n,2

8
|ϕn2|2ϕn2 +

iφn,2

2
ϕ0 +

i

2
ϕn2 = 0

(58)

We investigate the stationary response regime by re-

quiring:

ϕ̇0 = ϕ̇n1 = ϕ̇n2 = 0 (59)

which yield to the following system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1 + εY2)iσ
∗ϕ0 + εαn,1φn,1iσ

∗ϕn1

+ αn,2φn,2εiσ
∗ϕn2 + ζ ∗ϕ0 + iαn,1φn,1ϕn1

+ iαn,2φn,2ϕn2 + iY2ϕ0 = F

i
φn,1εσ

∗

2
ϕ0 + i

εσ ∗

2
ϕn1 +

ζn,1

2
ϕn1

−
3i�n,1

8
|ϕn1|2ϕn1 +

iφn,1

2
ϕ0 +

i

2
ϕn1 = 0

i
φn,2εσ

∗

2
ϕ0 + i

εσ ∗

2
ϕn2 +

ζn,2

2
ϕn2

−
3i�n,2

8
|ϕn2|2ϕn2 +

iφn,2

2
ϕ0 +

i

2
ϕn2 = 0

(60)

By introducing Zn10 = �n,1|ϕ0|2, Zn20 = �n,2|ϕ0|2,

Zn22 = �n,2|ϕn22|2, Zn11 = �n,1|ϕn1|2 and using po-

lar form and calculating modulus, one can find the fol-

lowing dimensionless equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[[

(1 + εσ ∗) −
3

4
Zn11

]2

+ ζ 2
n,1

]

Zn11

= φ2
n,1(1 + εσ ∗)2Zn10

[[

(1 + εσ ∗) −
3

4
Zn22

]2

+ ζ 2
n,2

]

Zn22

= φ2
n,2(1 + εσ ∗)2Zn20

(61)

Let us consider the case of two parallel NES which

are attached at the same dof, with the same damping

(φn,1 = φn,2 = φn and ζn,1 = ζn,2 = ζn). The NES are

attached to the same dof in order to make a compar-

ison with experimental results which are given in the

companion paper; nevertheless, the following analyt-

ical study could be undertaken for φn,1 �= φn,2 with

similar method. As in the previous section, the two

NES are tuned on the same level of activation:

kn,1

μn,1
=

kn,2

μn,2
⇒ �n,1 = �n,2 = �n (62)

Then we obtain algebraic relations between Zn11 and

Zn22:

Zn11 = Zn22 (63)

Zn11 = −
1

2
Zn22 +

4X

3

±
1

6

√

48XZn22 − 27Z2
n22 − 64ζ 2

n (64)

11



Equation (64) is not physically relevant as it verifies

the third equation of (61) but does not verify the whole

system. Then we have:

|ϕn1|2 = |ϕn2|2 ⇒ ϕn1 = ϕn2 (see (60)) (65)

and the following reduced system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(i[XY + σ ∗] + ζ ∗)ϕ0 +
i

φn

XYϕn1 = F

iXφnϕ0 + iXϕn1 −
3i�n

4
|ϕn1|2ϕn1 + ζnϕn1 = 0

(66)

After some mathematical manipulations the behavior

of the system in terms of ϕn1 can be expressed as:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iφnXF(ζn − i[XY + σ ∗])
K

=
[

i

(

X2Y [XY + σ ∗]
K

− X +
3�n

4
|ϕn1|2

)

−
(

X2Y

K
ζ ∗ + ζn

)]

ϕn1

K = (XY + σ ∗)2 + ζ ∗2

(67)

By evaluating the modulus, we find:

φ2
nX2ZF

K
=

[

(

X2Y [XY + σ ∗]
K

− X +
3

4
Zn

)2

+
(

X2Y

K
ζ ∗ + ζn

)2
]

Zn

with ZF = �n|ϕ0|2 and Zn = �n|ϕn1|2. (68)

Equation (68) is polynomial of order 3 in terms of Zn.

It can be written under the following general form:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

p3Z
3
n + p2Z

2
n + p1Zn + p0 = 0 with:

p3 =
9

16

p2 = −
3X

2
+ (σ ∗ + XY)

3X2Y

2K

p1 = (X2 + ζ ∗2
) +

2X2Y

K
(ζnζ

∗ − σ ∗ + X − X2Y)

+
X4Y 2

K2
(ζ ∗2 + (σ ∗ + XY)2)

p0 = −
φ2

nX2ZF

K

(69)

Roots of this polynomial are the values of Zn at each

step of frequency. The behavior of the main system

can be expressed by the following system:

ZF =
1

φ2
n(1 + εσ ∗)2

[[

(1 + εσ ∗) −
3

4
Zn

]2

+ ζ 2
n

]

Zn,

u2
statio ≈

ZF

ω∗
0�n

.

(70)

4.2 Multiple solutions and linear stability analysis

4.2.1 Multiplicity of periodic solutions

The polynomial of (69) can exhibit multiple solutions.

We will investigate the case of the shift between one

single real solution to three real solutions. The poly-

nomial of (69) reads as

p3Z
3
n + p2Z

2
n + p1Zn + p0 = 0 (71)

which can be written in the Cardan form:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

T 3 + pT + q = 0 with

p =
p1

p3
−

p2
2

3p2
3

q =
p2

27p3

(

2p2
2

p3
−

9p1

p3

)

+
p0

p3

(72)

According to the Cardan formulas the double roots T̄

can be expressed as

T̄ =
−3q

2p
⇒ Z̄n =

p1p2 − 9p3p0

6p1p3 − 2p2
2

(73)

As a double root Z̄n is also solution of the first deriva-

tive of (71):

3p3Z̄n + 2p2Z̄n + p1 = 0 (74)

Combination of (73) and (74) gives the following

equation for the border between single periodic solu-

tion and three periodic solutions:

3p3(p1p2 − 9p3p0)
2

+ 2p2(p1p2 − 9p3p0)
(

6p1p3 − 2p2
2

)

+ p1

(

6p1p3 − 2p2
2

)2 = 0 (75)
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4.2.2 Linear stability analysis

To prevent the system from unpredicted behaviors, the

stability of fixed points of (58), i.e., solutions of poly-

nomial of (69) must be investigated. By introducing

(65) in (58) can be rewritten as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1 + εY2)

(

1

ω∗
0

ϕ̇0 +
iεσ ∗

2
ϕ0

)

+
εY

φn

(

1

ω∗
0

ϕ̇n1

+
iεσ ∗

2
ϕn1

)

+ ε

(

ζ ∗

2
+ iY

)

ϕ0 +
iεY2

2φn

ϕn1 = 0

φn

(

1

ω∗
0

ϕ̇0 +
iεσ ∗

2
ϕ0

)

+
(

1

ω∗
0

ϕ̇n1 +
iεσ ∗

2
ϕn1

)

+
ζn

2
ϕn1 −

3i�n

8
|ϕn1|2ϕn1 +

iφn

2
ϕ0 +

i

2
ϕn1 = 0

(76)

We first linearize (58) in the vicinity of the steady-state

response to investigate the stability of fixed points. Let

us introduce small perturbations to the fixed points as

it follows:

{

ϕ0 = ϕ00 + χ0 |χ0| ≪ |ϕ00|
ϕn1 = ϕn10 + χn1 |χn1| ≪ |ϕn10|

(77)

By progressing until second-order expansions, the sys-

tem of linearized equations can be expressed as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1 + εY2)

(

1

ω∗
0

χ̇0 +
iεσ ∗

2
χ0

)

+
εY2

φn

(

1

ω∗
0

χ̇n1

+
iεσ ∗

2
χn1

)

+ ε

(

ζ ∗

2
+ iY

)

χ0 +
iεY2

2φn

χn1 = 0,

φn

(

1

ω∗
0

χ̇0 + iεσ ∗

2
χ0

)

+
(

1

ω∗
0

χ̇n1 + iεσ ∗

2
χn1

)

+
ζn

2
χn1 −

3i�n

8
ϕ2

n10χ̄n1 −
3i�n

4
|ϕn10|2χn1

+
iφn

2
χ0 +

i

2
χn1 = 0

(78)

Equation (78) is a linear system which can be written

in a matrix form as

⎛

⎜

⎜

⎜

⎜

⎝

χ̇0

χ̇n1

¯̇χ0

¯̇χn1

⎞

⎟

⎟

⎟

⎟

⎠

= A

⎛

⎜

⎜

⎜

⎜

⎝

χ0

χn1

χ̄0

χ̄n1

⎞

⎟

⎟

⎟

⎟

⎠

(79)

where

A = ω∗
0

⎛

⎜

⎜

⎜

⎝

a11 a12 0 a14

a21 a22 0 a24

0 ā14 ā11 ā12

0 ā24 ā21 ā22

⎞

⎟

⎟

⎟

⎠

(80)

and

a11 = −
ε

2

(

i(σ + Y) + ζ0

)

a12 =
[

εY (2ζa − 3i�a|ϕn10|2)
4φa

]

a14 = −
3i�aεY

φa

ϕ10

a21 =
[

−
i

2
φa(1 + εY ) +

εφa

2
ζ0 + iεφaY

]

(81)

a22 =
[(

−
X

2
+

3i�a

4
|ϕn10|2 −

ζa

2

)

× (1 + εY ) +
εXY

2

]

a24 =
[

3i�a

8
(1 + εY )ϕn10

]

Then we can evaluate the characteristic equation of the

matrix A which is a 4th order polynomial in terms of θ

with coefficient depending on variable Zn = �n|ϕn1|2:

P(θ) = θ4 +
[

(1 + εY )ζa + εζ0

]

θ3 + g2

(

Z2
n,Zn

)

θ2

+ g1

(

Z2
n,Zn

)

θ + g0

(

Z2
n,Zn

)

(82)

where g2(Z
2
n,Zn), g1(Z

2
n,Zn) and g0(Z

2
n,Zn) are

functions which depend on variables Z2
n and Zn. By

investigating the real parts of roots of polynomial

function P(θ) of (82), we can establish the stability

of the different solutions. A Routh–Hurwitz criterion

is used to establish stable and unstable areas. To inves-

tigate the equation of the Hopf bifurcation, we look

for purely imaginary eigenvalues of matrix A. Let us

introduce

θ = ±iβ (83)

Equation (82) gives

β4 − g1β
2 + g0 = 0 (84)

−
[

(1 + εY )ζa + εζ0

]

β3 + g2β = 0 (85)
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According to (85),

β
(

g2 −
[

(1 + εY )ζa + εζ0

]

β2
)

= 0 (86)

β = 0 corresponds to the case ZF = 0, which is the

unforced case and was studied previously; then we get

β = ±
√

g2

[(1 + εY )ζa + εζ0]
(87)

By introducing this result in (84), we obtain the border

of the Hopf bifurcation:

⎧

⎪

⎨

⎪

⎩

g2
2 − g1g2[(1 + εY )ζa + εζ0]

+ g3[(1 + εY )ζa + εζ0]2 = 0

p3Z
3
n + p2Z

2
n + p1Zn + p0 = 0

(88)

4.3 Numerical simulations

In this part, numerical simulations are performed in or-

der to compare analytical predictions of Sect. 4.1 with

numerical integration of (1). These numerical simula-

tions are performed for the case of two parallel NES

which are attached to the same degree-of-freedom.

System parameters are given by:

– Initial conditions before harmonic excitation:

⎧

⎨

⎩

q̇(0) = 0 m s−1, q(0) = 0 m

xn,1(0) = xn,2(0) = 0 m,

ẋn,1(0) = ẋn,2(0) = 0 m s−1

(89)

– Amplitude of the external excitation:

F = 0.36 m s−1 (90)

– Modal parameters of the master structure:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

M∗
1 = 0.835 kg,

C∗
1 = M∗

1 ω∗
0ζ ∗ N s m−1

K∗
1 = (2π × 4.26)2 N m−1,

εζ ∗ = 3%, φn = 1

(91)

– NES parameters:

⎧

⎪

⎨

⎪

⎩

μn,1 = μn,2 = 0.03 kg

cn,1 = cn,2 = 0.25 N s m−1

kn,1 = kn,2 = [0.6;1.8;3.2;3.5] × 105 N m−3.

(92)

– Level of activation and tuning calculated from (55):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Cut frequency:
ω̃

ω∗
0

= {0.91,1.08} (Frf level:5.65)

⇒ k
opt
n ≈ 1.76 × 105 N m−3

(93)

where the cut frequency ω̃ defines the intersection be-

tween the chosen activation threshold and the linear

Frf of the system.

Modal shape has been normalized with respect to

the infinite norm of mode shapes. The modal para-

meters represent the first mode modal parameters of

a four storey prototype structure which is used for ex-

perimental test in the companion paper. As we are con-

sidering the first mode and the two NES are attached

to the last storey of the structure, we have φn = 1.

For external excitation, we do not consider any ini-

tial conditions on the system and we investigate the

system under an harmonic excitation with the ampli-

tude of F = 0.36 m s−1, where F is the same ampli-

tude which is considered in (45). Since the system is

under harmonic forcing, then we are interested to con-

sider the system in the frequency domain. We study

the frequency response of the system in the vicinity

of 1:1 resonance for three different nonlinearity val-

ues around an optimal value. Contrary to the transient

case the optimal value is not unique and is determined

through a chosen threshold, represented by the linear

behavior level of FrF at the chosen cut pulsation ω̃.

This threshold is investigated in Figs. 3, 4, and 5, with

cut pulsation ω̃
ω∗

0
= {0.91,1.08}. Let us analyze the

frequency response of the structure. We suppose that

F is invariable and we change the nonlinearity of the

NES kn. Figures 3, 4, and 5 represent the frequency re-

sponse function in the vicinity of pulsation ω∗
0 for val-

ues of kn under (Fig. 3a), above (Figs. 4a, 4b and 5a,

5b) and near the optimal value kopt (Fig. 3b). In these

figures, we can observe the theoretical linear behav-

ior of the main structure in dashed line, the analytical

prediction of the nonlinear behavior which is obtained

from (69) in solid line, and the numerical integration

of (42) with circles markers. The numerical integra-

tion is computed with a Matlab RK45 scheme, data

are taken during the stationary regime, after enough

periods of excitation. At each increment of frequency,

the initial conditions are the conditions of the previous

point in the frequency sweep. This numerical sweep

goes from low to high frequencies.
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Fig. 3 FrF of the system in the vicinity of 1:1 reso-

nance for different value of kn. (a) kn = 6 × 104 N m−3;

(b) kn = 1.76 × 105 N m−3 ≈ kopt. (− − −) analytical linear

behavior, (—) analytical prediction (stable), (-.-.-.-) analytical

prediction (unstable), (◦ ◦ ◦) numerical integration

The stability of multiple analytical solutions is

highlighted: stable periodic solutions are in solid line

and unstable are plotted with dash-dot line. Multiple

solutions areas are identified by vertical dotted lines

and the chosen activation threshold is plotted with an

horizontal solid line.

The influence of variable kn on the behavior of the

system is demonstrated in Figs. 3, 4, and 5. By in-

creasing the stiffness of the nonlinear absorber, the

frequency response decreases and the resonance peak

breaks until the optimal design. This optimal design

defined through a displacement threshold that is il-

Fig. 4 (a) FrF of the system in the vicinity of 1:1 resonance for

kn = 2 × 105 N m−3; (b) Magnification on the range of pulsa-

tion [0.88;1.02] (− − −) analytical linear behavior, (—) analyt-

ical prediction (stable), (-.-.-.-) analytical prediction (unstable),

(◦ ◦ ◦) numerical integration

lustrated in Figs. 3, 4, and 5 with an horizontal solid

line. It is obvious that the structure behaves linearly

until it reaches the cut frequency, then strong nonlin-

ear behavior occurs; the resonance peak is broken and

the system is kept under the desired threshold, until it

passes the resonance and behaves linearly again. Fig-

ure 3b illustrates the case of the optimal choice, when

the NES is tuned on the chosen threshold. Figure 4a,
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Fig. 5 FrF of the system in the vicinity of 1:1 resonance for

high value of kn. (a) kn = 3.5 × 105 N m−3; (b) kn → +∞
(− − −) analytical linear behavior, (—) analytical prediction

(stable), (-.-.-.-) analytical prediction (unstable), (◦ ◦ ◦) numeri-

cal integration

4b illustrate the case of a nonlinearity above the opti-

mal design, or for a low cut frequency.

We denote that the frequency response remains at a

low level, but also the occurrence of a bifurcation with

a stable closed loop (see Figs. 4a, 4b) which appears

for under resonance frequencies. This loop represents

a risk, as the system can be possibly attracted on a sta-

ble solution with an amplitude that overcomes the de-

sired threshold. By increasing the nonlinear stiffness

this loop grows up (see Fig. 5a), until it generates a

new resonant peak. If the nonlinear connection is in-

creased until an infinite rigidity between the linear sys-

tem and the additional absorbers masses this new peak

turns out to the initial linear resonance peak shifted

Fig. 6 Evolution of the multiplicity of periodic solutions in the

plane (ω/ω∗
0 , kn)

to low frequencies because of the embedded mass to

the main system, as presented in Fig. 5b. The occur-

rence of this new resonant peak reduces the efficiency

of the control and can be dangerous for the system, but

the occurrence of the phenomenon can be predicted by

studying the multiplicity of the periodic solution of the

system calculated in (75) and represented in Fig. 6.

We denote also that the analytical prediction repre-

sented Figs. 3 and 5 are in good agreement with the

numerical simulations; we notice that in the unstable

areas numerical results suggest that the system has no

periodic solutions.

Nevertheless, in Fig. 4, the analytical prediction

is slightly different from numerical simulations. This

phenomenon occurs only for a small range of nonlin-

ear stiffness and represents the transition between the

close loop and the secondary resonant peak. From the

numerical simulations, which give a smooth curve, we

can suggest that significant contribution of harmon-

ics and/or secondary resonance stable phenomenons

are involved in this area. It means that for this range

of frequencies and stiffness 1:1 resonance assump-

tion is not correct, and unable to predict the numeri-

cal branch that appears. This specificity could be in-

vestigated more deeply. Indeed, we do not study this

case here as the phenomenon does not correspond to

an interesting value of stiffness for a good tuning of

the NES.

Figure 6 represents the evolution of the multiplicity

of the periodic solutions in the plane (kn,
ω
ω∗

0
) which

is obtained from (75). The shadowed areas represent

stiffnesses which inject three periodic solutions to the

16



system under consideration and the rest part repre-

sent the system with single periodic solutions. The

detected zones in this figure give us a good idea in

choosing the right nonlinear stiffness and predicting

the behavior of the system according to the chosen kn.

This diagram predicts, for example, the emergence of

the loop presented in Fig. 4. Here, we notice that the

first multiplicity of solution appears in the vicinity of

kn ≈ 1.4×105 N m−3, above the resonance frequency,

the second area of multiple solutions appears in the

vicinity of kn ≈ 1.94 × 105 N m−3, which is in good

agreement with the behavior of the system which is

presented in Figs. 3b and 4. This argument indicates

the complex and important influence of the NES on

the overall behavior of the system during the TET and

allow us to prevent from hazardous and uncommon be-

haviors.

5 Conclusion

An analytical tuning of NES devices is proposed for

controlling strong modes of linear master structure by

using the TET phenomenon. This method is based on

the study of the bifurcation that occurs during the TET

and is investigated for systems under transient and har-

monic excitations. Necessary conditions for appropri-

ate TET are highlighted and different mechanisms are

considered and commented upon. The efficiency of

a system of parallel NES compared to a single NES

system is also underlined for the transient and forced

cases. Even if the effect of NES damping is not so clear

in the forced case the main conclusions are that par-

allel NES offer better repartition of masses, multiple

levels of activation, lower the required nonlinear stiff-

ness, and finally results are more efficient. Obtained

theoretical results are endowed in the companion pa-

per to control the first mode of a four storey structure

with two parallel NES at the last floor.
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