
HAL Id: hal-00803423
https://hal.science/hal-00803423

Submitted on 21 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards using SCTP as a Data Transport Protocol for
Data-Intensive Batch Jobs

Lucian Ghinea, Mugurel Ionut Andreica, Vlad Olaru, Nicolae Tapus

To cite this version:
Lucian Ghinea, Mugurel Ionut Andreica, Vlad Olaru, Nicolae Tapus. Towards using SCTP as a Data
Transport Protocol for Data-Intensive Batch Jobs. Proceedings of the 19th International Conference
on Control Systems and Computer Science (CSCS) (ISBN: 978-1-4673-6140-8), May 2013, Bucharest,
Romania. pp.83-90, �10.1109/CSCS.2013.29�. �hal-00803423�

https://hal.science/hal-00803423
https://hal.archives-ouvertes.fr

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Towards using SCTP as a Data Transport Protocol for

Data-Intensive Batch Jobs

Lucian Ghinea, Mugurel Ionuţ Andreica, Vlad Olaru, Nicolae Ţăpuş

Computer Science Department

Politehnica University of Bucharest

Bucharest, Romania

ghinea.lucian@gmail.com, mugurel.andreica@cs.pub.ro, vladolaru@gmail.com, nicolae.tapus@cs.pub.ro

Abstract—In this paper we investigate the usage of the Stream

Control Transmission Protocol (SCTP) as a data transport

protocol for client-initiated data-intensive computations. The

considered environment consists of job schedulers, storage nodes,

computational nodes (workers) and clients. The clients submit

jobs to the schedulers, which split them into multiple

computation units and schedule these computations on the

available workers. The data which needs to be processed by the

computation units will be transferred from the storage nodes to

the computational nodes using SCTP. Experimental evaluations

considered images as the data to be processed and simple image

processing operations as computations.

Keywords-data-intensive computations; SCTP; SOAP; workers;

image processing

I. INTRODUCTION

In this paper we investigate the usage of the Stream Control
Transmission Protocol (SCTP) [9] as a data transport protocol
for data-intensive computations. The entities which are part of
our considered environment are the following:

• job schedulers

• computational nodes (workers)

• storage nodes

• clients

The job schedulers receive job submissions from clients. A
job is submitted from a client to a single job scheduler, selected
among the available ones, and consists of performing a specific
operation on some specific input data. The input data is located
on the storage nodes and, thus, it is referenced by an identifier
within the client’s submission. The storage nodes are,
essentially, organized in a distributed storage system which
may present varying degrees of complexity.

The operation which needs to be performed may be split by
the scheduler into multiple independent computation units,
which may be executed in parallel. Each such computation unit
will be executed on a separate part of the input data (although
our system does not exclude the possibility of overlapping
input data for multiple computation units). Although we will
only consider the case in which the computation units may be
executed independently in this paper, our system allows for the

job to be split into a set of computation units where some units
are dependent upon other units (i.e. the job is split into a
directed acyclic graph of computation units, where the output
of some units is part of the input of other units).

The scheduler is responsible for scheduling the execution of
computation units on the available workers and for scheduling
the data transfer of the corresponding input data from a storage
node which has the data to the worker which requires that data
and for scheduling the data transfer of the output data of each
computation unit from the worker where it was running to one
or more storage nodes (selected by the scheduler).

The computation units may not be split any further. A
computation unit needs to be executed sequentially, by a single
worker.

Besides actually transferring the data files which need to be
processed, our system’s entities need to communicate with
each other. The clients need to submit their jobs, while the job
schedulers, storage nodes and workers need to cooperate. This
communication is not data-intensive, so we chose to use web
services for this part (based on SOAP).

The rest of this paper is structured as follows. In Section II
we discuss related work. In Section III we present the exact
architectural details of the system which we considered for
testing the impact of SCTP as a data transport protocol. In
Section IV we present experimental results. In Section V we
conclude and discuss future work.

II. RELATED WORK

A. Volunteer Computing Systems

Volunteer computing systems are distributed systems in
which individuals donate their computing resources (e.g. CPU
cycles and storage space) to one or more projects. The first
volunteer computing system was “Great Internet Mersenne
Prime Search”, started in January 1996, followed in 1997 by
distributed.net. In 1998 a series of academic Java-based
projects were started, like Bayanihan, Popcorn, Superweb and
Charlotte [3-6].

In 1999 SETI@home [7] and Folding@home [8] were
launched. These projects became very well known and
attracted hundreds of thousands of users.

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Between 1998 and 2002 a series of commercial projects
were launched, whose purpose was to develop solutions based
on sharing the resources of multiple devices (e.g. Popular
Power, Porivo, Entropia and United Devices).

Most of these systems have the same base structure: a client
program runs on a “volunteer” system. Periodically, the client
contacts the project’s server, requesting tasks and sending back
results. Volunteer computing systems need to find solutions to
several aspects regarding their functionality: heterogeneity,
variable number of clients, variable availability of the clients,
etc.

B. XtremWeb

XtremWeb [2] is a global computing architecture which
aims to take advantage of multiple types of workers, with
various performance levels. Although it is not particularly
focused on data-intensive computing, its general architecture is
similar in structure and scope with that of our system.

C. SOAPExpress

SOAPExpress [1] is a SOAP web services engine in which
transport of the data is performed over SCTP instead of TCP.
Performance improvements of up to 56% were noticed. The
architecture of SOAPExpress is presented in Fig. 1.

Figure 1. SOAPExpress architecture [1].

D. Stream Control Transmission Protocol

SCTP is a relatively new data transport protocol which
provides features like: multi-streaming, multi-homing, reliable
delivery of packets, preservation of message boundaries,
congestion control and many others. It is a connection-oriented
protocol, like TCP, but within a connection (called SCTP
association) there are multiple independent streams. SCTP has
the potential of behaving better than TCP at least on the
following two accounts:

• A SCTP association with N streams consumes fewer
resources than N parallel TCP connections.

• Sending packets over multiple streams avoids head-
of-line blocking and may increase throughput (if a
packet on some stream is lost, the congestion window
is reduced only for that stream, while the other
streams are unaffected; moreover, a lost packet only
delays further other packets sent on the same stream).

Many projects in which SCTP is used as a data transport
protocol instead of TCP or other data transport protocols were
discussed in the scientific literature. The usage of SCTP as a
data transport protocol for web servers was considered in [10,

11]. Experiments of SCTP vs. TCP for high-speed intra-cluster
communication (with applications to cluster-based data
acquisition systems in mind) were performed and presented in
[12]. SCTP was also compared against TCP for communication
between MPI-based processes [13].

III. ARCHITECTURAL DETAILS OF OUR SYSTEM

In this section we will describe in more detail the functions
of and the interactions between our system’s entities.

A. Job Schedulers and Storage Nodes

Because dynamic coordination of the data transfers is
difficult when the scheduler and the storage nodes are separate,
we decided to combine the job scheduling and storage
functions together, on the same machine. Thus, our system will
consist only of “servers” (a server is both a job scheduler and a
storage node), workers (computational nodes) and clients. Fig.
2 presents the generic architecture of our system, with only one
server depicted.

Figure 2. Generic system architecture.

The server stores both data (files) and the code of the
operations which can be performed on the data. The server
interacts with clients and workers. The client-server
interactions consist of the following steps:

• The server receives a job submission from a
client.

• The server splits the job into multiple
computation units and schedules them for
execution on the available workers.

• When all the computation units are finished, the
server assembles the final result from the results
of each computation unit and sends the answer to
the client (note that the answer does not
necessarily contain the final result itself; instead,
it may contain a data identifier with which the

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

client may later retrieve the result). Alternatively,
the server may not send an answer to the client
(e.g. because the client may not be accessible
from the server); instead, the client is responsible
for polling the server regarding the status of its
submission (when the job is completed, the client
will get the answer as the result of the polling).

All the communication between the server and the clients is
performed by using web services (based on SOAP).

The server maintains a list of available workers, together
with information regarding their performance level and other
parameters. The way the server splits a job into computation
units and schedules these units on the available workers is part
of the server’s job scheduling strategy. From our perspective,
we will be interested in the following two aspects of this
strategy:

• Static or dynamic splitting of the job into
computation units (e.g. all the units are generated
at the beginning, or they are generated
dynamically, according to the results and
monitoring data concerning already generated
units)

• Static or dynamic association of computation units
to workers: the number of computation units sent
to each worker may be decided in the beginning
(statically), or may be adjusted dynamically,
according to the results of the completed
computation units and according to monitoring
data

The worker-server interaction consists of the following
steps:

• When the worker starts, it registers itself to one or
more (or maybe even all the) job schedulers.
During the registration phase, the worker sends to
the job scheduler information about how to be
contacted in order to process jobs (e.g. its own
web service address, SCTP IP address and port,
etc.), as well as performance information (e.g.
RAM size, hard-disk size, number of
processors/cores, processor frequency, etc.), as
well as the maximum number of processing
threads it is willing to assign for running
computation units. Moreover, the worker may
download the code for some or all of the
operations that may be performed on the data from
the server. It is possible for a worker to be able to
execute only a subset of the total number of
operations which the clients may request. A
worker will only be considered for scheduling a
computation unit if it is capable of executing the
corresponding operation.

• The worker will announce each scheduler to which
it registered whenever there is a change in its
performance characteristics, or, optionally, a job
scheduler may ask for updated performance
characteristics from each worker at any time.

• After a job is received from a client and a worker
is selected for processing the job, the server will
establish an SCTP association to each selected
worker. The number of SCTP streams used (both
incoming and outgoing) will be at most equal to
the number of (still) available processing threads
on that worker. Once the association is open, the
worker reserves a processing thread for each
SCTP stream and, thus, those threads will not be
available anymore until the association is closed.

• The server will send computation units on SCTP
streams. A computation unit will be self-
describing. It will properly identify the operation
which needs to be performed and it will also
contain the data on which the operation needs to
be performed. A computation unit is sent on a
single SCTP stream, as a sequence of one or more
consecutive packets.

• The worker will send back the result of each
computation unit to the server, on one of the SCTP
streams (possibly the same one on which the unit
was received). Each computation unit should have
a unique identifier assigned by the server and the
worker’s result will contain the identifier of the
corresponding computation unit.

The sending of computation units and the receiving of their
results is performed by using SCTP. All other communication
between a server and a worker is performed by using SOAP-
based web services.

B. Workers (Computational Nodes)

A computational node (worker) executes computation units.
It interacts directly only with the servers and not with the
clients. When a worker starts, it registers to some of the
existing servers (how a worker finds out a list of servers is
outside the scope of this paper). Only those servers to which
the worker registered will be able to send computation units to
it. The interaction between a worker and a server was described
in the previous subsection. Here we will discuss the
communication and computation unit processing aspects.

Each worker has a thread which listens for incoming SCTP
connections. Once an SCTP association is established, it is
handled to a thread from a pool of packet receiving threads.
Each thread from the pool is responsible for receiving packets
from all the streams of a subset of SCTP associations which are
associated to it (by using the socket Selector paradigm).

The worker also has a pool of available processing threads.
When a SCTP association with M streams is started, M
processing threads are removed from the pool of processing
threads and a sub-pool containing these threads is created.
Then, whenever a computation unit is received from a stream
of the SCTP association, the unit is placed in a dedicated
queue. The M threads from the sub-pool take the units from the
queue and execute them. When the execution of a computation
unit is finished, the thread which executed the unit sends the
result back to the server on the SCTP association (using the
same stream on which the unit was received). Since multiple

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

threads may try to send data on the same SCTP stream
simultaneously, a synchronization mechanism for each stream
of an association is used. Alternatively, each of the M threads
could have been statically assigned to one of the M streams of
the SCTP association. Each thread would process only
computation units received on the assigned stream and would
send the results back on the same stream. No per-stream-
synchronization mechanism would be required in this case.
However, we did not implement this option. When the
association is closed, the M threads are returned to the pool of
available processing threads. See Fig. 3 for a graphical
description of these steps.

Figure 3. Processing of computation units by a worker.

C. Client

The client selects a job scheduler and submits a job to it
(how the client finds out about or selects a job scheduler or
what format the job submission has is outside the scope of this
paper). The client may receive a response from the scheduler in
a synchronous or asynchronous manner. In the synchronous
manner, the client blocks until the response arrives. The
blocking duration may be very long, depending on the
complexity of the job and on the size of the processed data.
SOAP allows for a web service client to receive asynchronous
responses, so this is the option we selected.

IV. EXPERIMENTAL RESULTS

A good example of data-intensive computations consists of
image processing operations. Thus, in our system, a job
submitted by a client requests a specific operation to be applied
on an image (stored on the storage nodes). An image
processing operation is not necessarily an atomic operation. In
fact, most image processing operations can be split into
multiple independent computation units (tasks) which are
performed on separate parts of the image. The parallelization
may be as finely grained as we want. Thus, there is a large
potential for parallelizing a job and also for parallelizing the
data transfer of an image from the storage nodes to the workers
performing the computation.

The purpose of our experiments was to analyze the impact
of using multi-stream SCTP on a set of simple image
processing tasks. We tested the cases when the number of tasks
sent to each worker is the same, or is different depending on
the number of threads available on each worker. Each task

(computation unit) consisted of applying a blur operation on a
19 KB GIF file. The size overhead regarding the description of
the operation to be performed is negligible compared to the size
of the data being processed. We always used the same file for
each task. The client request mentioned the name of the file and
the number of times the operation should be performed (thus
effectively deciding the number of tasks).

We used 4 physical machines, each of them running the
Ubuntu operating system within a virtual machine:

• S1 – Windows 7 64 bits, Core 2 Duo 2.53 Ghz , 4GB
RAM DDR 3, VM Ubuntu (2GB RAM, 2 processors,
HDD 10GB)

• C1 – Windows XP 32 bits, Core 2 Duo 2.53 Ghz,
4GB RAM DDR3, VM Ubuntu (1.5 GB RAM, 2
processors, HDD 10 GB)

• C2 – Windows XP 32 bits, Core 2 Duo 2.53 Ghz,
4GB RAM DDR3, VM Ubuntu (1.5 GB RAM, 2
processors , HDD 10 GB)

• C3 – Windows XP 32 bits, Pentium 4, 3Ghz, 4GB
RAM DDR3, VM Ubuntu (1.5 GB RAM, 1 processor,
HDD 10 GB)

In all the tests, S1 was used for running the server (the web
service and communication and management module, plus
storing the image files and the code of the image processing
operations). We implemented the server program in Java, using
OpenJDK 7 [14] (which is the first JDK version with support
for SCTP) and the Apache web server [16] plus Apache Axis
[15] for the web service. We did not run any tests with multiple
servers (e.g. where a worker is registered at both servers and
receives tasks from both servers in parallel).

C1, C2 and C3 were used as machines for running
independent workers. The worker programs were also
implemented in Java, using the same technologies as for the
server (OpenJDK 7 and the Apache web server plus Apache
Axis for the web service). The number of available threads
could easily be configured from a configuration file, as well as
the ports on which SCTP communication takes place.

C1 and C2 had an identical hardware structure and ran the
same virtual machine. C3, however, had a lower performance.
By changing the data sent by the workers during the
registration phase we could analyze the impact of improper
worker choices.

All the measured times are expressed in milliseconds (ms)
and were computed as an average over multiple instances of
the same test (between 5 and 10). Time measurement always
started as soon as the server received the job from the client
and ended as soon as it received all the processed images back.

The number of SCTP streams used in order to communicate
between a server and a worker was always chosen to be equal
to the number of processing threads advertised as available by
the worker (thus, all the available processing threads of a
worker were fully utilized by the test job).

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

A. Reference Test

We considered that there was only one worker, and SCTP
communication took place over only one stream (similarly to
TCP). C1 was used as the worker. Results are presented in Fig.
4.

Reference Test

172.70

74.24
63.85 62.63

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

10 100 500 1000

Number of tasks

A
v
e
ra

g
e
 p

ro
c
e
s
s
in

g
 d

u
ra

ti
o

n

p
e
r

ta
s
k
 (

m
s
)

Figure 4. Average processing duration per task for one worker (C1) and one

SCTP stream.

We notice a decrease of the average processing duration per
task once the total number of tasks increases. This decrease is a
reflection of the fact that the influence of the SCTP association
establishment overhead is reduced over multiple tasks.

B. SCTP with 1 Worker

We considered only one worker, for which we varied the
number of tasks and the number of available threads. We used
C1 for running the worker. We also considered the case when
the worker advertises more threads than the number of
available processors. The number of SCTP streams is always
equal to the number of available processing threads.

10 100 500 1000

2 streams

5 streams
0

20
40
60
80

100
120
140

160
180

Average

processing

duration per

task (ms)

Number of tasks

SCTP with 1 worker

2 streams 161.2 46.02 41.152 41.398

3 streams 164.4 53.46 41.208 40.513

5 streams 114.7 45.51 42.956 39.531

10 100 500 1000

Figure 5. Average processing duration per task for one worker (C1) and

variable number of SCTP streams.

We notice (Fig. 5) that by varying the number of SCTP
streams (2, 3 and 5 streams) the average processing duration
per task decreases significantly.

10 100
500

1000

SCTP with 2 streams

TCP0

20

40

60

80

100

120

140

160

180

Average

processing

duration per task

(ms)

Number of tasks

TCP vs SCTP

SCTP with 2 streams 161.2 46.02 41.152 41.398

TCP 172.7 74.24 63.848 62.631

10 100 500 1000

Figure 6. TCP vs SCTP with 2 streams – Average processing duration per

task.

In Fig. 6 we compare TCP and SCTP with two streams. We
notice that SCTP outperforms TCP as the number of tasks
increases (with over 30% for more than 100 tasks – see Fig. 7).

SCTP with 2 streams vs TCP - Percentage

decrease of the average processing duration

per task

6.66

38.01
35.55 33.90

0.00

10.00

20.00

30.00

40.00

10 100 500 1000

Number of tasks

P
e
rc

e
n

ta
g

e

d
e
c
re

a
s
e

Figure 7. TCP vs SCTP with 2 streams – Percentage decrease of the average

processing duration per task.

SCTP with 2 workers

136.10

36.89 33.79 29.85 31.51 28.95 29.78
22.59 24.62 28.02

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

10 66 100 200 400 500 600 800 1000 1200

Number of tasks

A
v
e
ra

g
e
 p

ro
c
e
s
s
in

g
 d

u
ra

ti
o

n

p
e
r

ta
s
k
 (

m
s
)

Figure 8. Average processing duration per task for SCTP with 2 streams per

worker and 2 workers.

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

The same test was run with C2 as the worker, in order to
compare the results of two virtually identical machines. The
results obtained for C2 varied by at most 5% from the results
obtained for C1, which is considered acceptable.

C. SCTP with 2 Workers

We considered SCTP with 2 streams for this case, because
each machine only has two processors and there are also other
threads running (e.g. the web service thread, packet receiving
threads, etc.).

For this test, each of the two workers (C1 and C2) received
half of the total number of tasks, considering that the previous
test showed that the performances of C1 and C2 are very
similar. We notice improved results (see Fig. 8) compared to
the one worker – two streams case tested earlier.

D. 1 Worker vs 2 Workers

Considering the previous results, we wanted to analyze the
performance improvement when using two workers (C1 and
C2) instead of one (C1). All workers used two SCTP streams.

10 100
500 1000

2 workers

0
20
40
60
80

100
120

140
160

180

Average

processing

duration per

task (ms)

Number of tasks

1 Worker vs 2 Workers

2 workers 136.1 33.79 28.952 24.622

1 worker 161.2 46.02 41.152 41.398

10 100 500 1000

Figure 9. Average processing duration per task for SCTP with 2 streams per

worker. 1 worker vs 2 workers.

2 Workers vs 1 Worker - Percentage decrease of

the average processing duration per task

15.57

26.58
29.65

40.52

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

10 100 500 1000

Number of tasks

P
e
rc

e
n

ta
g

e
 d

e
c
re

a
s
e

Figure 10. SCTP with 2 streams per worker, 2 workers vs 1 worker –

Percentage decrease of the average processing duration per task.

Using two workers is faster than using just one (see Fig. 9

and Fig. 10), but the average processing duration per task does

not drop all the way to 50%. Instead, at best, a 40% decrease

of running time is noticed.

We also tested 2 SCTP workers (with 2 streams each)

against one TCP worker. The percentage decrease of the

average processing duration per task for the SCTP case can be

seen in Fig. 11.

2 SCTP Workers (2 streams each) vs 1 TCP

Worker - Percentage decrease of the

average processing duration per task

21.19

54.59 54.65
60.69

0

20

40

60

80

10 100 500 1000

Number of tasks

P
e
rc

e
n

ta
g

e

d
e
c
re

a
s
e

Figure 11. SCTP with 2 streams per worker and 2 workers vs 1 TCP worker –

Percentage decrease of the average processing duration per task.

E. Using a Worker with Lower Performance Levels

In this test we used the C3 machine in order to run a
worker. We notice a notable performance difference between a
worker running on C1 and one running on C3 (see Fig. 12).

10
50

100

1 worker on C1 with 2

SCTP streams

1 worker on C3 with 2

SCTP streams

0.00

50.00

100.00

150.00

200.00

250.00

Average

processing

duration per

task (ms)

Numar de taskruri

Worker with Lower Performance Levels

1 worker on C1 with 2

SCTP streams

161.20 46.02 41.15

1 worker on C1 with 1

SCTP stream

172.70 74.24 63.85

1 worker on C3 with 2

SCTP streams

244.30 195.28 184.61

10 50 100

Figure 12. Using a worker with lower performance levels. Average processing

duration per task.

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

F. Using an Extra Worker with Lower Performance
Levels together with Two Higher Performance Workers

Although C3 has lower performance compared to C1 and
C2, we still want to use it as part of the system, together with
C1 and C2.

1. Equal division of the number of tasks

We used C1, C2 and C3 for running workers, with two
threads (and two SCTP streams) each.

C1 + C2 vs C1 + C2 + C3. Each worker has 2 SCTP streams.

0

20

40

60

80

100

120

140

160

10 66 100 200 400 500 600

Number of tasks

A
v
e

ra
g

e
 p

ro
c
e
s
s
in

g
 d

u
ra

ti
o

n
 p

e
r

ta
s
k
 (

m
s
)

C1 + C2

C1 + C2 + C3

Figure 13. 2 high performance workers vs 2 high performance workers plus a

low performance worker – Average processing duration per task when each

worker receives the same fraction of the number of tasks.

We notice that by introducing C3 without considering its
performance the overall performance of the system decreases
(see Fig. 13).

2. Proportional division of the number of tasks

In this test each worker received a number of tasks which
was proportional to the number of available threads. We
considered C1 and C2 as having two threads each and C3 as
having only one thread. We notice that although C3 only
received half of the tasks each of C1 and C2 received, we still
do not obtain a performance improvement (see Fig. 14).

We considered next 3 processing threads for each of C1 and
C2 and only one thread for C3. In this case we notice that C3
brings a performance improvement (Fig. 15). Basically, any
extra worker may increase the system performance, as long as
its share of the total number of tasks is appropriately selected
according to the worker’s performance.

From the server’s perspective, allocating an appropriate
number of tasks to each worker is a very important step.
Perhaps a better approach would be for the server to establish a
pipeline of tasks. Initially, only a fraction of the tasks is
statically allocated among the workers. Then, as soon as a task
is finished by a worker, a new one is sent to the same worker,
thus obtaining a dynamic adaptation.

V. CONCLUSIONS AND FUTURE WORK

In this paper we investigated the usage of SCTP as a data
transport protocol for data-intensive parallelizable
computations. The experimental results showed that SCTP may
provide much better performance levels than TCP (or other
TCP-based protocols), but using it needs to be in accordance
with the performance levels of the computational nodes
(workers). Lack of carefulness in scheduling the computation
units (tasks) over the available workers may lead to the nearly

paradoxical case in which having extra workers actually hurts
the performance.

As future work we intend to consider multiple job
scheduling policies, both static and dynamically adjustable, and
see how they can be best combined with the usage of SCTP as
the data transport protocol. Moreover, we also intend to
separate the job scheduling and storage functions on separate
sets of machines. In this case, coordinated scheduling of data
transfers from and to the storage nodes may also be relevant in
order to achieve optimal performance.

25
50

150
250

1500

C1 + C2 + C3

C1+ C20.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Average processing

duration per task

(ms)

Number of tasks

C1 and C2 have 2 SCTP streams each. C3 has 1 SCTP stream.

C1 + C2 + C3 69.20 56.06 39.09 34.04 33.75

C1+ C2 86 36.89 31.81 29.84 28.01

25 50 150 250 1500

Figure 14. 2 high performance workers vs 2 high performance workers plus a

low performance worker – Average processing duration per task when each

worker receives a fraction of the number of tasks which is proportional to the

number of available processing threads (or SCTP streams). C1 and C2 have 2

threads each and C3 has only one thread.

1
2

3
4

5
6

C1 + C2 + C3

C1 + C2

0

10

20

30

40

50

60

70

80

90

100

Average processing

duration per task (ms)

Number of tasks

C1 and C2 have 3 SCTP streams each. C3 has 1 SCTP stream.

C1 + C2 + C3 55.62857143 31.55714286 24.67142857 22.88 22.04285714 21.74404762

C1 + C2 91.58 37.28 30.47 31.51 26.18 23.13

1 2 3 4 5 6

Figure 15. 2 high performance workers vs 2 high performance workers plus a

low performance worker – Average processing duration per task when each

worker receives a fraction of the number of tasks which is proportional to the

number of available processing threads (or SCTP streams). C1 and C2 have 3

threads each and C3 has only one thread.

ACKNOWLEDGEMENT

The work presented in this paper has been partially funded
by CNCS-UEFISCDI under research grants ID_1679/2008
(contract no. 736/2009), PN II – IDEI program, and
PD_240/2010 (contract no. 33/28.07.2010), PN II – RU
program, and by the Sectoral Operational Programme Human
Resources Development 2007-2013 of the Romanian Ministry
of Labour, Family and Social Protection through the Financial
Agreement POSDRU/89/1.5/S/62557.

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

REFERENCES

[1] N. Wang, M. Welzl, and L. Zhang, “A High Performance SOAP Engine
for Grid Computing”, Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, vol.
2, pp. 1-8, 2009.

[2] F. Cappello, et al., “Computing on Large-scale Dstributed Sstems:
XtremWeb Architecture, Programming Models, Security, Tests and
Convergence with Grid”, Future Generation Computer Systems, vol. 21,
pp. 417-437, 2005.

[3] L. F. G. Sarmenta, “Bayanihan: Web-Based Volunteer Computing Using
Java”, Lecture Notes in Computer Science, vol. 1368, pp. 444-461,
1998.

[4] O. Regev and N. Nisan, “The POPCORN Market - an Online Market for
Computational Resources”, Proceedings of the First International
Conference on Information and Computation Economies, pp. 148-157,
1998.

[5] A. D. Alexandrov, M. Ibel, K. E. Schauser, and K. E. Scheiman,
“SuperWeb: Research Issues in Java-Based Global Computing”,
Concurrency: Practice and Experience, vol. 9 (6), pp. 535-553, 1997.

[6] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff, “Charlotte:
Metacomputing on the Web”, Future Generation Computer Systems,
vol. 15 (5-6), 1999.

[7] Folding@home project. http://folding.stanford.edu/English/Main

[8] Seti@home project. http://setiathome.ssl.berkeley.edu

[9] R. Stewart, et al., “RFC2960 - Stream Control Transmission Protocol”,
2000. Available online at http://tools.ietf.org/html/rfc2960.

[10] V. Olaru, M. I. Andreica, and N. Ţăpuş, “Using the Stream Control
Transmission Protocol and Multi-Core Processors to Improve the
Performance of Web Servers”, Proceedings of the 13th IEEE
International Conference on High Performance Computing and
Communications (HPCC), pp. 135-144, 2011.

[11] P. Natarajan, J. R. Iyengar, P. D. Amer, and R. Stewart, “SCTP: An
Innovative Transport Layer Protocol for the Web”, Proceedings of the
15th International Conference on World Wide Web, pp. 615-624, 2006.

[12] M. Kozlovszky, T. Berceli, and L. Kutor, “Analysis of SCTP and TCP
based Communication in High-speed Clusters”, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 559 (1), pp. 85-89, 2006.

[13] H. Kamal, B. Penoff, and A. Wagner, “SCTP versus TCP for MPI”,
Proceedings of the 2005 ACM/IEEE Conference on Supercomputing,
pp. 30-43, 2005.

[14] OpenJDK 7. http://openjdk.java.net/projects/jdk7/

[15] J. Goodwill, “Apache Axis Live: A Web Services Tutorial”, SourceBeat,
LLC, 2004.

[16] B. Laurie and P. Laurie, “Apache: The Definitive Guide”, O’Reilly,
2003.

