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Abstra
t

To any 
ompa
t Riemann surfa
e of genus g one may assign a prin
ipally polarized abelian

variety of dimension g, the Ja
obian of the Riemann surfa
e. The Ja
obian is a 
omplex

torus, and a Gram matrix of the latti
e of a Ja
obian is 
alled a period Gram matrix. This

paper provides upper and lower bounds for all the entries of the period Gram matrix with

respe
t to a suitable homology basis. These bounds depend on the geometry of the 
ut lo
us

of non-separating simple 
losed geodesi
s. Assuming that the 
ut lo
i 
an be 
al
ulated, a

theoreti
al approa
h is presented followed by an example where the upper bound is sharp.

Finally we give pra
ti
al estimates based on the Fen
hel-Nielsen 
oordinates of surfa
es of

signature (1, 1), or Q-pie
es. The methods developed here have been applied to surfa
es that


ontain small non-separating simple 
losed geodesi
s in [BMMS℄.

Keywords : Riemann surfa
es, Ja
obians, harmoni
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1 Introdu
tion

Let S be a hyperboli
 Riemann surfa
e of genus g ≥ 2. We 
all a set of 2g oriented simple 
losed

geodesi
s

A = (α1, α2, ..., α2g−1, α2g)

a 
anoni
al basis, if

- for ea
h αi there exists exa
tly one ατ(i) =

{

αi+1

αi−1
if

i odd

i even
∈ A that interse
ts αi in

exa
tly one point.

- the 
urves are oriented in a way, su
h that

Int(αi, αi+1) = 1 for all i = 1, 3, ..., 2g − 1,

where Int(·, ·) denotes the algebrai
 interse
tion number.

∗
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Note that A 
an be 
alled a basis as the homology 
lasses ([αi])i=1,...,2g ⊂ H1(S,Z) form a basis

of H1(S,R) as a ve
tor spa
e.

In the ve
tor spa
e of real harmoni
 1-forms on S, let (σk)k=1,...,2g be the dual basis for ([αi])i=1,...,2g ⊂
H1(S,Z) de�ned by

∫

[αi]

σk = δik.

A period Gram matrix PS (with respe
t to A) of S is the Gram matrix

PS = (〈σi, σj〉)i,j=1,...,2g =





∫

S

σi ∧
∗σj





i,j=1,...,2g

.

This period matrix PS de�nes a 
omplex torus, the Ja
obian or Ja
obian variety J(S) of the
Riemann surfa
e S (see [FK℄, 
hapter III). Let

E(σi) = ES(σi) =

∫

S

σi ∧
∗σi = 〈σi, σi〉

be the energy of σi (over S). As PS is a Gram matrix, E(σi) is also the squared norm of a ve
tor

vi in the latti
e of the Ja
obian. By Riemann's period relations the Ja
obian is a prin
ipally

polarized abelian variety (see [BL℄, Se
tion 4.1 for a de�nition). The latti
es of prin
ipally po-

larized abelian varieties are exa
tly the symple
ti
 latti
es ( [BS℄). The S
hottky problem is to


hara
terize the Ja
obians among the prin
ipally polarized abelian varieties.

Buser and Sarnak ( [BS℄) approa
hed this problem by means of a geometri
 invariant:

The squared norm of the shortest non-zero ve
tor in the latti
e of a Ja
obian of a Riemann

surfa
e of genus g ≥ 2 is bounded from above by log(4g), whereas it 
an be of order g for

the latti
e of a prin
ipally polarized abelian variety of dimension g. Re
ently, more insight has

been obtained into the 
onne
tion between the global geometry of a 
ompa
t Riemann surfa
e

of genus g and the geometry of its Ja
obian. In [BPS℄ the log(g)-bound on the squared norm

of a latti
e ve
tor of the Ja
obian has been further extended to almost g linearly independent

ve
tors. In [Mu2℄ it was shown that, for the 
ase of a hyperellipti
 surfa
e, the squared norm of

the shortest latti
e ve
tor is bounded from above by a 
onstant independent of the genus.

In this paper, we examine the 
onne
tion between the metri
, hyperboli
 geometry of a 
ompa
t

Riemann surfa
e, and the geometry of its Ja
obian. In previous papers (see [BSi℄ or [Se℄), this

approa
h has been taken for spe
ial 
ases, for example when the Riemann surfa
e is a real alge-

brai
 
urve. For these spe
ial 
ases, there exist algorithms to 
al
ulate the period matrix. The

aim of this paper is to �nd upper and lower bounds for all entries of the period Gram matrix

given with respe
t to a 
anoni
al basis, based on the hyperboli
 metri
 of an arbitrary 
ompa
t

Riemann surfa
e. The bounds depend on the geometry of the 
ut lo
i of these 
urves and related

simple 
losed geodesi
s, and are obtained by estimating the energy of the 
orresponding dual

harmoni
 forms.

After introdu
ing the ne
essary tools and de�nitions in Se
tion 2, we will present a theoreti
al

approa
h in Se
tion 3. Here we �nd upper bounds for the energy of the dual harmoni
 forms by

estimating the 
apa
ity of hyperboli
 tubes as follows.

Let T (ατ(i)) ⊂ S be a topologi
al tube, embedded in S obtained by a 
ontinuous deformation of

2



a small embedded 
ylinder C around ατ(i). The 
apa
ity of su
h a tube gives an upper bound

for the energy E(σi) of σi. This is the diagonal entry pii of the period Gram matrix PS :

cap(T (ατ(i))) ≥ E(σi) = pii.

In our theoreti
al approa
h, the boundary of su
h a tube will be provided by the 
ut lo
us of

a simple 
losed geodesi
 of the 
anoni
al basis. More pre
isely, we will take T (ατ(i)) = Sτ(i),

where Sτ(i) is the surfa
e obtained by 
utting open S along the 
ut lo
us CL(ατ(i)) of ατ(i) (see
(4)). This allows us to extend our tubes over the whole surfa
e S and to obtain a lower bound

on E(σi). This bound is obtained using proje
tions of ve
tor �elds onto 
urves. Upper and lower

bounds for the non-diagonal elements are obtained in a similar way.

The method presented in Se
tion 3 relies on the premise that the 
ut lo
i in question 
an be


al
ulated. This is illustrated by two examples, one based on a ne
kla
e surfa
e and one based

on a linear surfa
e presented in this se
tion. Example 3.1 shows the limitations of the method,

while Example 3.2 shows a 
ase where the upper bound is sharp.

Example 1.1. Let N be a ne
kla
e surfa
e of genus g ≥ 2 and A = (αi)i=1,...,2g a 
anoni
al

basis. Let N1 be the surfa
e obtained by 
utting open N along the 
ut lo
us CL(α1) of α1. Let

PN = (pij)i,j be the period Gram matrix with respe
t to A. Then

cα1

g − 1
≥ p22 ≥ 0 and cap(N1) ≥ p22, but cap(N1) ≥

ℓ(α1)

π
,

where cα1 is a fa
tor that depends only on the �xed length ℓ(α1) of α1.

Hen
e p22 is at most of order

1
g
and goes to zero, as g goes to in�nity. Our upper bound, on the


ontrary, is always bigger than the 
onstant

ℓ(α1)
π

. This example shows an instan
e of the 
ase

where our upper bound 
annot be of the right order.

Example 1.2. Let L be a linear surfa
e of genus g ≥ 2 and A = (αi)i=1,...,2g a 
anoni
al

basis. Let L1 be the surfa
e obtained by 
utting open L along the 
ut lo
us CL(α1) of α1. Let

PL = (pij)i,j be the period Gram matrix with respe
t to A. Then for ǫL > 0

p22 = cap(L1)− ǫL.

Note that ǫL depends on the geometry of L and may be
ome arbitrarily small.

This example shows an instan
e of the 
ase where the bound is sharp for any genus.

The methods developed in this paper have been applied to surfa
es that 
ontain small simple


losed geodesi
s in [BMMS℄. We state this re�ned estimate here to enlarge the list of examples:

Example 1.3. [BMMS℄ Let S be a Riemann surfa
e of genus g ≥ 2, that 
ontains a separating

simple 
losed geodesi
 γ of length ℓ(γ) ≤ 1
2 . Then γ separates the surfa
e into two surfa
es S1

and S2
of signature (g1, 1) and (g2, 1). Let A = (αi)i=1,...,2g be a 
anoni
al basis of S, su
h that

(α1, ..., α2g1) ⊂ S1
and (α2g1+1, ..., α2(g1+g2)) ⊂ S2

. Let PS = (pij)i,j be the period Gram matrix

with respe
t to A. Then

|pij | = |pji| ≤
cατ(i)

+ cατ(j)

exp
(

π2

ℓ(γ) − 2π
)

for j ∈ {1, ..., 2g1}, i ∈ {2g1 + 1, ..., 2g},

where cατ(i)
and cατ(j)

depend only on the length of ατ(i) and ατ(j), respe
tively.
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This means that the matrix PS 
onverges to a blo
k matrix if ℓ(γ) goes to zero. In this 
ase the

bound on a non-diagonal entry of PS is sharp.

Finally, in Se
tion 4 we present pra
ti
al estimates based on the geometry of surfa
es of signature

(1, 1), or Q-pie
es embedded in S. Under this 
ondition the 
ut lo
i of the elements of a 
anoni
al

basis 
an be (at least partially) 
al
ulated. Estimates on the entries of a period Gram matrix will

be 
omputed based on the 3g Fen
hel-Nielsen 
oordinates (see Se
tion 2.3) of these g Q-pie
es.

Let

(Qi)i=1,3,..,2g−1 ⊂ S

be a set of Q-pie
es, whose interiors are pairwise disjoint. Let βi be the boundary geodesi
 of

Qi, αi an interior simple 
losed geodesi
, and twi the twist parameter at αi. The geometry of

Qi is determined by the Fen
hel-Nielsen 
oordinates (ℓ(βi), ℓ(αi), twi). For te
hni
al reasons we
assume furthermore that

cosh(
ℓ(αi)

2
) ≤ cosh(

ℓ(βi)

6
) +

1

2
for all i ∈ {1, 3, .., 2g − 1}. (1)

Su
h a pair (αi, βi) always exists, see [Pa℄, Proposition 5.4.

In Se
tion 4, we �rst determine suitable ατ(i) ⊂ Qi for ea
h αi, su
h that the pairs ((αi, ατ(i)))i=1,3,..,2g−1

form a 
anoni
al basis. Now �x an i ∈ {1, 3, .., 2g − 1}. Let αiτ(i) ⊂ Qi be the simple 
losed

geodesi
 in the free homotopy 
lass of αi(ατ(i))
−1
. For j ∈ {i, τ(i), iτ(i)}, let

- βj = βi be the boundary geodesi
 of Qi,

- twj the twist parameter at αj ,

- FNj := (ℓ(βj), ℓ(αj), twj) the 
orresponding Fen
hel-Nielsen 
oordinates of Qi.

In Se
tion 4.1, FNτ(i) and FNiτ(i) are 
al
ulated from FNi. Se
tion 4.2 and 4.3 give expli
it

fun
tions

fu, f l : R
+ × R

+ × (−
1

2
,
1

2
] → R

+

fu : FNj 7→ fu(FNj) and f l : FNj 7→ f l(FNj),

providing upper and lower bounds on all entries of PS = (pij)i,j in the following way. For a

diagonal entry pii we have:

f l(FNτ(i)) ≤ pii ≤ cap(Sτ(i) ∩ Qi) ≤ fu(FNτ(i)).

Upper and lower bounds for the non-diagonal entries are provided in terms of simple linear


ombinations of the fun
tions. These estimates are summarized in Theorem 4.1. An example

of a period Gram matrix obtained via this method is given in Example 4.3:

Example 1.4. Let Q1 and Q3 be two isometri
 Q-pie
es given in Fen
hel-Nielsen 
oordinates

FN1 and FN3, respe
tively, where FNi = (ℓ(βi), ℓ(αi), twi) = (2, 1, 0.1) for i ∈ {1, 3}. Let

S = Q1 + Q3 be a Riemann surfa
e of genus 2, whi
h we obtain by gluing Q1 and Q3 along

β1 and β3 with arbitrary twist parameter twβ ∈ (−1
2 ,

1
2 ]. Then there exists a 
anoni
al basis

A = (α1, ..., α4) and a 
orresponding period Gram matrix PS, su
h that









2.11 −0.46 −0.42 −0.26
−0.46 0.33 −0.26 −0.11
−0.42 −0.26 2.11 −0.46
−0.26 −0.11 −0.46 0.33









≤ PS ≤









2.53 0.20 0.42 0.26
0.20 0.44 0.26 0.11
0.42 0.26 2.53 0.20
0.26 0.11 0.20 0.44









.
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In Se
tion 4.4, the results are summarized in Table 1 and 2 and 
ompared with the upper bound

fusimp(FNj) that 
an be obtained from the method in [BS℄ applied to Q-pie
es. This bound is in

general mu
h larger than fu(FNj).
We note that the upper bound fu(FNj) is 
lose to the lower bound f l(FNj), if a large part of

the 
ut lo
us CL(αj) of αj is 
ontained in Qi and if ℓ(αj) · |twj| is small. The �rst 
ondition is

ful�lled if the length ℓ(βi) of the boundary geodesi
 βi is small, the se
ond if both ℓ(αj) and |twj|
are small. This justi�es the 
hoi
e of αi in inequality (1). It is noteworthy that for |twj| = 0 and
ℓ(βi) small the estimates are almost sharp, independent of the length ℓ(αj).
Sin
e the estimates for the entries of PS are linear 
ombinations of the fun
tions (fu(FNj))j and
(f l(FNj))j , the estimates are good if all Fen
hel-Nielsen 
oordinates involved are small. Note

that by [BSe2℄ there exists a 
anoni
al basis for a Riemann surfa
e of genus g, where the largest

element is of order g. Hen
e, at least the 
ondition on the length of the geodesi
s involved 
an

in prin
iple be satis�ed for small g.

The advantage of the method is that information about the geometry of the surfa
e 
an be

in
orporated. Suppose, for example, that the geometry of Y1, the surfa
e of signature (0, 3), or
Y-pie
e, atta
hed to the Q-pie
e Q1 is known. Then for j ∈ {1, 2, 12} the 
ut lo
us CL(αj) ∩
(Q1 ∪ Y1) 
an be 
al
ulated. In
orporating this information we obtain better estimates for the


orresponding entries of the period Gram matrix. Information about isometries of the surfa
e


an also be in
orporated. This is shown in Example 3.2.

2 Preliminaries

Many 
al
ulations presented in the following se
tions rely on the embedding of topologi
al tubes

around simple 
losed geodesi
s of Riemann surfa
es into hyperboli
 
ylinders and subsequent ap-

proximations and 
al
ulations in Fermi 
oordinates. These 
on
epts are presented in Se
tion 2.1.

To des
ribe these tubes we make use of the geometry of hyperboli
 polygons. The 
orresponding

trigonometri
 formulas are given in Se
tion 2.2. Finally, Se
tion 2.3 presents the de�nition of

the Fen
hel-Nielsen 
oordinates used throughout the paper.

2.1 Fermi 
oordinates and 
apa
ity estimates

The Poin
aré model of the hyperboli
 plane is the following subset of the 
omplex plane C,

H = {z = x+ iy ∈ C | y > 0}

with the hyperboli
 metri
 ds2 = 1
y2
(dx2 + dy2).

Fermi 
oordinates ψ, with baseline η and base point p, are de�ned as follows: the Fermi 
oordi-

nates are a bije
tive parametrization of H

ψ : R2 → H, ψ : (t, s) 7→ ψ(t, s),

where ψ(0, 0) = p. Ea
h point q = ψ(t, s) ∈ H 
an be rea
hed by starting from the base point p

and moving along η, the dire
ted distan
e t to ψ(t, 0). There is a unique geodesi
, ν, interse
ting
η perpendi
ularly in ψ(t, 0). From ψ(t, 0) we now move along ν the dire
ted distan
e s to ψ(t, s).
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A hyperboli
 
ylinder C or shortly 
ylinder is a set isometri
 to

{ψ(t, s) | (t, s) ∈ [0, b] × [a1, a2]} mod {ψ(0, s) = ψ(b, s) | s ∈ [a1, a2]},

with the indu
ed metri
 from H. The baseline of C is the simple 
losed geodesi
 γ in C, whi
h

has length ℓ(γ) = b.

Consider a 
ylinder C. Let U ⊂ C be a set and F ∈ Lip(Ū) a Lips
hitz fun
tion on the 
losure

of U . Let G be the metri
 tensor with respe
t to the Fermi 
oordinates. Then, the energy of F

on U , EU (F ) is given by

EU (F ) =

∫∫

ψ−1(U)

‖D(F ◦ ψ)‖2G−1

√

det(G).

Using Fermi 
oordinates, we obtain EU (F ) with F ◦ ψ = f :

EU (F ) =

∫∫

ψ−1(U)

1

cosh(s)

∂f(t, s)

∂t

2

+ cosh(s)
∂f(t, s)

∂s

2

ds dt ≥

∫∫

ψ−1(U)

cosh(s)
∂f(t, s)

∂s

2

. (2)

The 
apa
ity of an annulus R ⊂ C, cap(R) is given by

cap(R) = inf{ER(F ) | {F ∈ Lip(R̄) | F |∂1R = 0, F |∂2R = 1}}.

In [Mu1℄, we obtain general upper and lower bounds on the 
apa
ity of annuli on a 
ylinder of


onstant 
urvature. These annuli are obtained by a 
ontinuous deformation of the 
ylinder itself.

The upper bound is obtained by 
onstru
ting a test fun
tion as explained next. We adapt the

known harmoni
 fun
tion that solves the 
apa
ity problem for 
ylinders of a 
onstant width to

the boundary, using the parametrization of a 
ylinder in Fermi 
oordinates. We obtain a lower

bound by determining expli
itly the fun
tion p, that satis�es the boundary 
onditions of the


apa
ity problem on R and minimizes the last integral in the above inequality (2). If the annulus

R ⊂ C is given in Fermi 
oordinates by

R = ψ{(t, s) | s ∈ [a1(t), a2(t)], t ∈ [0, ℓ(γ)]},

where a1(·) and a2(·) are pie
ewise di�erentiable fun
tions with respe
t to t. Then by [Mu1℄,

Theorem 4.1 we have:

Theorem 2.1. There exists a Lips
hitz fun
tion F̃ ∈ Lip(R), su
h that forH(s) = 2 arctan(exp(s))

and qi(t) =
∂H(s0)
∂s

|s0=ai(t) · a
′
i(t) for i ∈ {1, 2}, we have:

ℓ(γ)
∫

t=0

1 + q1(t)2+q1(t)q2(t)+q2(t)2

3

H(a2(t))−H(a1(t))
dt = E(F̃ ) ≥ cap(R) ≥

ℓ(γ)
∫

t=0

1

H(a2(t))−H(a1(t))
dt.

The estimate is sharp if the boundary is 
onstant. In this 
ase, a1(t) = a1, a2(t) = a2, and

R = C ′
is itself an embedded 
ylinder. Espe
ially, for a1 = −a2, this simpli�es to

cap(C ′) =
ℓ(γ)

π − 2 arcsin((cosh(a1))−1)
. (3)

The estimate worsens, if the variation of the boundary,

ℓ(γ)
∫

t=0

|a′1(t)|
2 + |a′2(t)|

2 dt in
reases.
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2.2 Hyperboli
 trigonometry

Hyperboli
 trigonometry is a basi
 tool in Se
tion 4 of this paper. We will give here the formulas

of the polygons used in the following se
tions:

a c

α
b

a

β
ϕ

α

b

Figure 1: Right-angled triangle and trire
tangle

1.) Right-angled triangles

cosh(ℓ(c)) = cosh(ℓ(a)) cosh(ℓ(b))

cos(α) = tanh(ℓ(b)) coth(ℓ(c)) and sinh(ℓ(a)) = sin(α) sinh(ℓ(c))

2.) Trire
tangles

cosh(ℓ(a)) = tanh(ℓ(β)) coth(ℓ(b)) and sinh(ℓ(α)) = sinh(ℓ(a)) cosh(ℓ(β))

a

β c

α

b

a

β

c

α
b

γ

Figure 2: Right-angled pentagon and hexagon

3.) Right-angled pentagons

cosh(ℓ(c)) = sinh(ℓ(a)) sinh(ℓ(b)) and cosh(ℓ(c)) = coth(ℓ(α)) coth(ℓ(β))

4.) Right-angled hexagons

cosh(ℓ(c)) = sinh(ℓ(a)) sinh(ℓ(b)) cosh(ℓ(γ)) − cosh(ℓ(a)) cosh(ℓ(b))
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2.3 Y-pie
es and Fen
hel-Nielsen 
oordinates

An important 
lass of hyperboli
 Riemann surfa
es with geodesi
 boundary are the surfa
es of

signature (0, 3), or Y-pie
es. Any Riemann surfa
e of signature (g, n) 
an be de
omposed into

or built from these basi
 building blo
ks.

The geometry of a hyperboli
 Y-pie
e is determined by the length of its three boundary geodesi
s.

If Y is a Y-pie
e with boundary geodesi
s γ1, γ2, γ3, then we 
an introdu
e a marking on Y. The
marking entails labelling the boundary 
omponents to obtain the marked Y-pie
e Y[γ1, γ2, γ3].
For Y[γ1, γ2, γ3], we introdu
e a standard parametrization of the boundaries as explained below.

Let cij be the geodesi
 ar
 going from γi to γj that meets these boundaries perpendi
ularly. We

set S
1 = R mod (t 7→ t+ 1) and parametrize all boundary geodesi
s

γi : S
1 → Y[γ1, γ2, γ3], γi : t 7→ γi(t),

su
h that ea
h geodesi
 is traversed on
e and with the same orientation. We parametrize the

geodesi
s, su
h that γ1(0) is the endpoint of c31, γ2(0) is the endpoint of c12, and γ3(0) is the
endpoint of c23 (see Figure 3).

γ1

γ2 γ3

c12

c23

c31

Figure 3: A marked Y-pie
e Y[γ1, γ2, γ3]

Two marked Y-pie
es Y and Y ′
, that have a boundary geodesi
 of the same length, 
an be pasted

together. If γ1 ⊂ Y and γ′1 ⊂ Y ′
are the geodesi
s of equal length, then we 
an glue Y and Y ′

using the identi�
ation

γ1(t) = γ′1(−t+ tw), t ∈ S
1,

where tw ∈ R is an additional 
onstant, 
alled the twist parameter. We obtain the surfa
e

Y + Y ′ mod (γ1(t) = γ′1(−t+ tw), t ∈ S
1).

If γ is the simple 
losed geodesi
 in Y + Y ′
, whi
h 
orresponds to γ1 in Y, then we 
all tw the

twist parameter at γ.

Every Riemann surfa
e S of signature (g, n) 
an be built from 2g− 2 + n Y-pie
es. The pasting

s
heme 
an be en
oded in a graph G(S) (see [Bu℄, pp. 27 -30).

Let L(S) be the set of 3g−3+n lengths of simple 
losed geodesi
s in the surfa
e S, 
orresponding

to the boundary geodesi
s of the Y-pie
es from the 
onstru
tion. Let A(S) be the set of 3g−3+n
twist parameters that de�ne the gluing of these geodesi
s. Then, any Riemann surfa
e S 
an be


onstru
ted from the information provided in the triplet (G(S), L(S), A(S)).
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De�nition 2.2. (L(S), A(S)) is the sequen
e of Fen
hel-Nielsen 
oordinates of the Riemann

surfa
e S.

We �nally note that any Riemann surfa
e 
an be 
onstru
ted taking all twist parameters in the

interval (−1
2 ,

1
2 ] (see [Bu℄, Theorem 6.6.3) and will make use of this fa
t in Se
tion 4.

3 Theoreti
al estimates for the period Gram matrix

Let S be a Riemann surfa
e of genus g ≥ 2, A a 
anoni
al basis, and PS the period Gram matrix

of S with respe
t to A,

PS = (pij)i,j=1,...,2g =





∫

S

σi ∧
∗σj





i,j=1,...,2g

.

Here we �rst show how to obtain bounds on the diagonal entries of PS using the geometry of

embedded 
ylinders around the elements of the 
anoni
al basis. This approa
h 
an be elaborated

to obtain estimates for all entries of PS . It relies on the premise that the 
ut lo
us of a given

simple 
losed geodesi
 on a Riemann surfa
e 
an be (at least partially) 
al
ulated.

3.1 Estimates for the diagonal entries of PS

Let T (ατ(i)) ⊂ S be a topologi
al tube whi
h is obtained by a 
ontinuous deformation of a small

embedded 
ylinder C(ατ(i)) in S of 
onstant width. We will see in Se
tion 3.1.1 that the 
apa
ity

of su
h a tube gives an upper bound for the energy of σi, E(σi) = pii. Consider without loss of

generality E(σ1) = p11.

We will use the tube obtained by 
utting open S along the 
ut lo
us CL(α2) of α2. The 
ut

lo
us of a subset X ⊂ S, CL(X) is de�ned as follows:

CL(X) := {y ∈ S | ∃γx,y, γx′,y, γx,y 6= γx′,y, with x, x
′ ∈ X and dist(x, y) = ℓ(γx,y) = ℓ(γx′,y)},

(4)

where γa,b denotes a geodesi
 ar
 
onne
ting the points a and b. We denote by SX the surfa
e,

whi
h we obtain by 
utting open S along CL(X). For a set X ⊂ S, set

Zr(X) = {x ∈ S | dist(x,X) ≤ r}. (5)

If U is a union of disjoint simple 
losed geodesi
s (γi)i=1,...,n, then for a su�
iently small r,

Zr(U) 
onsists of disjoint 
ylinders around these geodesi
s. We obtain CL(U) by letting r grow


ontinuously until Zr(U) self-interse
ts. We stop the expansion at the points of interse
tion, but


ontinue expanding the rest of the set, until the pro
ess halts. The points of interse
tion then

form CL(U). It follows from this pro
ess that the surfa
e SU , that we obtain by 
utting open S

along CL(U), 
an be retra
ted onto the union of small 
ylinders around (γi)i=1,...,n. If U = γ,

then SU 
an be embedded into an su�
iently large 
ylinder C around γ. For more information

about the 
ut lo
us, see [Ba℄.

Consider an embedding of Sα2 = S2 in a 
ylinder C (see Figure 4), whi
h, by abuse of notation,

we also 
all S2. The boundary ∂S2 of S2 ⊂ C 
onsists of the two 
onne
ted 
omponents ∂1S2
and ∂2S2, whi
h are pie
ewise geodesi
 (see [Ba℄). Fixing a base point x ∈ S2 ⊂ C, we 
an
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S2
α2

α1

α3
α4

C

α2

α1

α3

α3

α4

Figure 4: Embedding of S2 = Sα2 in a 
ylinder around α2


onstru
t a primitive F1 of σ1 by integrating σ1 along paths starting from the base point x. As
∫

α2

σ1 = 0, the value of the integral is independent of the 
hosen path in S2. Hen
e, there exists

a primitive F1 of σ1 on S2 ⊂ C. Furthermore, F1 is a real harmoni
 fun
tion, as σ1 is a real

harmoni
 1-form. We re
all that the value of the integral of σ1 over a 
losed 
urve depends only

on the homology 
lass of the 
urve. In parti
ular, the value of the integral is the same for two


urves in the same free homotopy 
lass.

The 
onditions on the 
anoni
al basis A imply the following boundary 
onditions for F1. For

ea
h point p1 on the boundary ∂S2 ⊂ C, there exists a point p2, su
h that p1 and p2 map to the

same point p on S, and

F1(p2)− F1(p1) = 0 or F1(p2)− F1(p1) = 1.

We 
olor p1 and p2 blue in the �rst 
ase and red in the se
ond 
ase and 
all su
h a de
omposition

a red-blue de
omposition of the 
ut lo
us (see Figure 4).

Let CLblue(α2) and CL
red(α2) denote the blue and the red parts of CL(α2), both in S and S2.

Then

CL(α2) = CLblue(α2) ∪CL
red(α2).

For the red-blue de
omposition that is obtained via the 
ut lo
us CL(α2), the following holds.

If p1 and p2 are blue, then p1 and p2 lie on the same side of the boundary ∂S2. If p1 and p2 are

red, then they lie on di�erent sides of ∂S2. This follows from the relationship of the 
anoni
al

1-forms with the interse
tion number of 
urves (see [FK℄, 
hapter III). At the interse
tion of the

red and the blue parts of a boundary, there exist a �nite number points that are both red and

blue.

We now 
onne
t the endpoints of two 
orresponding opposite red boundary segments in the

red-blue de
omposition of S2 ⊂ C with di�erentiable 
urves. Then the 
urves, together with

the boundary segments of S2, en
lose a subset of S2. Note that some of these 
urves may 
ross.
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Therefore we 
hoose from S2 a subset of 
urves, su
h that these do not mutually interse
t and

denote by Sred2 the union of all en
losed areas obtained this way.

3.1.1 Upper bound

Let T (α2) ⊂ S be a topologi
al tube (with pie
ewise di�erential boundary) whi
h is obtained by

a 
ontinuous deformation of a small embedded 
ylinder C(α2) with baseline α2.

Let σ̃1 be a 
losed 1-form that satis�es

∫

[αk]

σ̃1 = δ1k for all k ∈ {1, ..., 2g}. (6)

Then σ1 is the unique energy-minimizing 
losed 1-form satisfying the above equation. Hen
e,

E(σ1) ≤ E(σ̃1).
Let F be a fun
tion, that solves the 
apa
ity problem for T (α2), i.e.

F |∂1T (α2) = 0 , F |∂2T (α2) = 1 and cap(T (α2)) = E(F ).

We 
an smoothen F in an ǫ-environment U ⊂ T (α2) of the boundary of T (α2), to obtain a

di�erentiable fun
tion F ′
1 on T (α2) that satis�es:

There are open subsets U1 ⊃ ∂1T (α2) and U2 ⊃ ∂1T (α2) of U , su
h that

F ′
1|U1 = 0, F ′

1|U2 = 1 and E(F ′
1)− ǫ = E(F ) = cap(T (α2)),

where ǫ > 0 is a positive real number whi
h 
an be 
hosen arbitrarily 
lose to zero. We obtain a


losed 1-form σ′1 setting

σ′1 =

{

0
dF ′

1
on

S\{T (α2)}
T (α2)

.

Now, due to Stokes theorem, σ′1 is 
losed 1-form, that satis�es Equation (6). Hen
e

E(σ1) ≤ E(σ′1) = cap(T (α2)) + ǫ,

where ǫ 
an be 
hosen arbitrarily small. The above inequality is also used in [BS℄, where T (α2) =
C(α2) is an embedded 
ylinder, but the method is not des
ribed as expli
itly there.

Setting T (α2) = S2, we obtain that the 
apa
ity cap(S2) of S2 ⊂ C provides an upper bound

on the energy of σ1. We obtain an upper bound on cap(S2) by evaluating the energy of any

test fun
tion F1t, that is a Lips
hitz fun
tion on S2 and satis�es the boundary 
onditions of the


apa
ity problem (see [GT℄). As S2 ⊂ C is an annulus that satis�es the 
onditions of Theorem

2.1, su
h a fun
tion F1t is provided there:

E(F1t) ≥ cap(S2) ≥ E(σ1) = p11. (7)

3.1.2 Lower bound

We obtain a lower bound on p11 = E(F1) as explained next. Consider the set Sred2 . Remember

that in ea
h 
onne
ted subset of Sred2 there are boundary points p1 and p2 on opposite sides,

su
h that F1(p2)− F1(p1) = 1. We get:

E(σ1) = E(F1) ≥

∫

Sred
2

‖DF1‖
2
2.
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Let I be a disjoint union of intervals in R and

ϕ : I × [a1, a2] → Sred2 , ϕ : (t, s) 7→ ϕ(t, s)

a bije
tive fun
tion that parametrizes Sred2 as follows:

ϕ(I × {a1}) = Sred2 ∩ ∂1S2 and ϕ(I × {a2}) = Sred2 ∩ ∂2S2

and for a �xed c ∈ I, ϕ({c} × [a1, a2]) is a di�erentiable 
urve in Sred2 , su
h that

F1(ϕ(c, a2))− F1(ϕ(c, a1)) = 1.

Denote by F1 the set of fun
tions

F1 = {f : Sred2 → R | f ∈ Lip(Sred2 ) and f(ϕ(c, a2))− f(ϕ(c, a1)) = 1 ∀ c ∈ I}.

We 
an obtain a lower bound on p11 = E(σ1) = E(F1) if we �nd a fun
tion f̃1, su
h that

∫

Sred
2

‖Df̃1‖
2
2 = min

f∈F1

∫

Sred
2

‖Df‖22. (8)

We 
all this problem the free boundary problem for Sred2 .

Though this problem is quite interesting in its own right, we 
ould not �nd an expli
it solution.

To obtain an expli
it result, we 
onstru
t another lower bound based on proje
tion of tangent

ve
tors on 
urves. For a x = ϕ(c, a) ∈ Sred2 denote by pϕ : Tx(S
red
2 ) → {λ · ∂ϕ(c,a)

∂s
| λ ∈ R} the

orthogonal proje
tion of a tangent ve
tor in x onto the subspa
e spanned by

∂ϕ(c,a)
∂s

. Then we

have:

E(F1) ≥

∫

Sred
2

‖DF1‖
2
2 ≥

∫

Sred
2

‖pϕ(DF1)‖
2
2 ≥ min

f∈F1

∫

Sred
2

‖pϕ(Df)‖
2
2 =

∫

Sred
2

‖pϕ(Df1)‖
2
2. (9)

Here, f1 is a fun
tion that realizes the minimum. We have

∫

Sred
2

‖DF1‖
2
2 =

∫

Sred
2

‖pϕ(DF1)‖
2
2, if

and only if in every point ϕ(t, s) = x ∈ Sred2 , ϕ(t, ·) is orthogonal to the level set of F1 passing

through x. Note that the problem of �nding the fun
tion f1 is in general easier than �nding the

fun
tion F1 or f̃1. We will apply these ideas to Q-pie
es in Se
tion 4. To this end we will use

results from the 
al
ulus of variations.

Summarizing the inequalities (7)-(9), we obtain the following estimates for p11 = E(σ1):

E(F1t) ≥ cap(Sα2) ≥ E(σ1) = E(F1) ≥ min
f∈F1

∫

Sred
2

‖Df‖22 ≥ min
f∈F1

∫

Sred
2

‖pϕ(Df)‖
2
2. (10)

Note that the upper bound di�ers from the lower bound. One reason for this di�eren
e is that the

test fun
tion whose energy provides our upper bound has positive energy on S2\S
red
2 , whereas

the energy is zero in the estimate providing the lower bound. Another di�eren
e is due to the use

of the proje
tion along lines in the 
onstru
tion of the lower bound. In Se
tion 4, we will apply

these methods to a de
omposition of the Riemann surfa
e, where the elements of the 
anoni
al

basis are 
ontained in Q-pie
es. There, we will see these two e�e
ts expli
itly.
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3.2 Estimates for the non-diagonal entries of PS

We now show, how we 
an estimate the remaining entries of the period Gram matrix PS . Sin
e
∫

S

· ∧ ∗· is a s
alar produ
t, for i 6= j we have:

|pij| ≤
1

2
(E(σi) + E(σj)) , (11)

pij =
1

2
(E(σi + σj)− E(σi)− E(σj)) , and (12)

pij =
1

2
(E(σi) + E(σj)− E(σi − σj)) . (13)

We have shown how to �nd upper and lower bounds on E(σi) and E(σj). We obtain a dire
t

estimate of pij from inequality (11). However, to obtain a sharp estimate, both E(σi) and E(σj)
must be small. We will show how to obtain better estimates of pij from the following two

equations. If we 
an �nd upper and lower bounds on either E(σi + σj) or E(σi − σj), we will

obtain an estimate for pij .

Now σi + σj and σi − σj satisfy the following equations on the 
y
les:

∫

[αk]

σi + σj = δik + δjk and

∫

[αk]

σi − σj = δik − δjk for all k ∈ {1, .., 2g}. (14)

There is a geodesi
 α in the free homotopy 
lass of either ατ(i) · ατ(j) or ατ(i)(ατ(j))
−1

whi
h is

a simple 
losed 
urve. Applying a base 
hange of the 
anoni
al basis, we 
an in
orporate α into

a new basis. This 
an be done, su
h that one of the two 1-forms σi + σj and σi − σj be
omes

an element of the new dual basis. Hen
e we 
an obtain upper and lower bounds for the energy

of one of these harmoni
 forms using the methods from the previous subse
tion.

Sin
e it is often di�
ult to expli
itly determine the geodesi
 α, we will present this approa
h

only for the 
ase αj = ατ(i). We present these estimates in Se
tion 3.2.1. If αj 6= ατ(i), we will

present an alternative approa
h in Se
tion 3.2.2. We will make use of both methods in Se
tion

4.

3.2.1 Estimates for a non-diagonal entry piτ(i)

Consider without loss of generality p12. Let α12 be the simple 
losed geodesi
 in the free homotopy


lass of α1 α2
−1
. We apply the base 
hange

A = (α1, α2, ..., α2g) → (α12, α2, ..., α2g) = A′.

This way we obtain the dual basis (σ′k)k=1,...,2g for A
′
, where

(σ1, σ1 + σ2, σ3, ..., σ2g) = (σ′1, σ
′
2, σ

′
3, ..., σ

′
2g).

Let F12 = F ′
2 be a primitive of σ1+σ2 = σ′2 on Sα12 = S12. We embed S12 into a 
ylinder C and

denote this surfa
e also by S12. Pro
eeding as in the previous subse
tion, we obtain upper and

lower bounds on E(σ1 + σ2) = E(σ′2) from the geometry of S12:

E(F12t) ≥ cap(S12) ≥ E(σ1 + σ2) ≥ ESred
12

(pϕ(Df12)).
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Here F12t is the test fun
tion provided by Theorem 2.1, whose energy provides an upper bound

for cap(S12) and f12 is the fun
tion 
onstru
ted analogously to f1 (see inequality (9)).

Substituting the estimates of E(σ1+σ2), E(σ1), and E(σ2) in Equation (12), we obtain an upper

and lower bound on p12.

3.2.2 Estimates for a non-diagonal entry pij, where j 6= τ(i)

In this 
ase αi and αj do not interse
t. Consider without loss of generality p13. For ατ(1) = α2

and ατ(3) = α4 
onsider Sα2 ∪α4 = S24. S24 
onsists out of two 
onne
ted parts. Let S1
24 ⊂ Sα2

be the part that 
ontains α2 and let S3
24 ⊂ Sα4 be the part that 
ontains α4. We embed S1

24

into a 
ylinder C1 around α2 and S3
24 into a 
ylinder C3 around α4, and denote the embedded

surfa
es by the same name. Due to the relationships in Equation (14), σ1 + σ3 has a primitive

on both S1
24 ⊂ C1 and S

3
24 ⊂ C3. Su
h a de
omposition is shown in Figure 5.

S1
24 α2

α1

S3
24

α3

α4

C1

α2

α1

C3

α3

α4

Figure 5: Embedding of Si24 in a 
ylinder Ci around ατ(i) for i ∈ {1, 3}

For i ∈ {1, 3}, let F̃i on Si24 be a fun
tion that satis�es boundary 
onditions for the 
apa
ity

problem on Si24. Together, these fun
tions naturally de�ne a fun
tion F̃13 on S24. By smoothing

F̃13 in an inner environment of the boundary of S24, we obtain a fun
tion f̃13 on S, whose

derivative df̃13 is a 
losed di�erential form that satis�es the same integral 
onditions on the


y
les as σ1 + σ3. Due to the energy-minimizing property of σ1 + σ3, E(f̃13) ≥ E(σ1 + σ3).
Hen
e, the sum of the 
apa
ities of S1

24 and S
3
24 provides an upper bound for E(σ1 + σ3):

cap(S1
24) + cap(S3

24) ≥ E(σ1 + σ3).

We obtain a lower bound for E(σ1 + σ3) by applying the same methods used to obtain a lower

bound on E(σ1) on S2 (see Se
tion 3.1.2). Below, we obtain estimates from the red-blue de
om-

positions indu
ed by a primitive F13 of σ1+σ3 on the boundary of S1
24 in C1 and S

3
24 in C3. The

only di�eren
e is that we have some segments of the boundary, where the red-blue de
omposition
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does not apply. Here we disregard these pie
es in the 
onstru
tion of S1red
24 and S3red

24 . As these

sets are disjoint, we need a 
ertain fun
tion f13 that satis�es

f13(p2)− f13(p1) = F13(p2)− F13(p1) = 1

for all points p1, p2 in ∂S
1red
24 or ∂S3red

24 . Let pϕ be the proje
tion of a ve
tor �eld in the tangent

spa
e onto lines of a suitable parametrization ϕ of S1red
24 and S3red

24 . Let f13 furthermore be a

fun
tion that minimizes the proje
ted energy E(pϕ(D·)). With Sr24 = S1red
24 ∪ S3red

24 , we have:

E(σ1 + σ3) ≥ ESr
24
(pϕ(Df13)).

Substituting the estimates for E(σ1 + σ3), E(σ1), and E(σ3) in Equation (12), we obtain upper

and lower bounds on p13:

p13 ≤
1

2

(

cap(S1
24) + cap(S3

24)− ESred
α2

(pϕ(Df1))− ESred
α4

(pϕ(Df3))
)

> 0 and (15)

p13 ≥
1

2

(

ESr
24
(pϕ(Df13))− cap(Sα2)− cap(Sα4)

)

< 0. (16)

In the above equation, f3 is the minimizing fun
tion 
orresponding to a primitive F3 of σ3 on

Sredα4
, 
onstru
ted analogously to f1 in Se
tion 3.1.2 (see inequality (9)). That our estimate for

p13 in the �rst inequality is bigger than zero 
an be seen as follows. By 
onstru
tion, we have

S1
24 ⊂ Sα2 and S3

24 ⊂ Sα4 .

Now, if an annulus R1 is 
ontained in an annulus R2, then cap(R1) ≥ cap(R2). Hen
e

cap(S1
24) ≥ cap(Sα2) > ESred

α2
(pϕ(Df1)) and cap(S3

24) ≥ cap(Sα4) > ESred
α4

(pϕ(Df3)),

from whi
h follows the last inequality in (15).

It follows furthermore from the boundary 
onditions of the fun
tions F1, F3, and F13 that

∂S1red
24 ⊂ ∂Sredα2

and ∂S3red
24 ⊂ ∂Sredα4

.

Hen
e

ESr
24
(pϕ(Df13)) = ES1red

24
(pϕ(Df13)) + ES3red

24
(pϕ(Df13)) ≤ ESred

α2
(pϕ(Df1)) + ESred

α4
(pϕ(Df3)).

Now the se
ond inequality in (16) follows from this inequality and the fa
t that ESred
α2

(pϕ(Df1)) <

cap(Sα2) and ESred
α4

(pϕ(Df3)) < cap(Sα4).

Using this approa
h, we 
an only obtain optimal estimates if p13 is 
lose to zero. This is due

to the fa
t that we do not have full information of the boundary values on our tubes S3
24 and

S1
24. This estimate is however better than the one obtained from Equation (11). Note that by

Example 1.3 the value of p13 is 
lose to zero, if α2 and α4 are separated by a small separating

simple 
losed geodesi
 γ.
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Ri−1

C(γi) C(γi+1)

ηi

η′i
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Ri+1

L

α2

Ri−1

γi γi+1
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η′i

νbi
νri νri+1

Ri

Ri+1

Figure 6: Building blo
ks for the surfa
es N and L of genus g

3.3 Examples

We now give two examples to demonstrate the weaknesses and strengths of our method. We �rst

show that the energy of a dual harmoni
 form 
an be lower than the 
apa
ity of a 
ylinder of

even in�nite length. The upper bound on p22 in the following example is due to Peter Buser.

Example 3.1 For 
omparison we brie�y review the example of the ne
kla
e surfa
e given in

[BSe1℄. Let Y be a Y-pie
e, a surfa
e of signature (0, 3). Let γ, η and η′ be its boundary

geodesi
s, su
h that η and η′ have equal length. We paste two 
opies of Y along η and η′ to

obtain R of signature (1, 2). As shown in Figure 6, the ne
kla
e surfa
e N of genus g is obtained

by pasting together g − 1 
opies R1, ...,Rg−1 of a building blo
k R. The free boundary of Rg−1

is pasted along γ1 of R1 to obtain a ring. In this example, the twist parameter for any pasting


an be 
hosen arbitrarily.

By the 
ollar lemma (see [Bu℄, p. 106), ea
h γi has a 
ollar of width wγ , where

wγ ≥ arcsinh

(

1

sinh( ℓ(γ)2 )

)

.

Let A = (αi)i=1,...,2g be a 
anoni
al basis, su
h that α1 = γ1 and ατ(1) = α2 is a simple 
losed

geodesi
 that interse
ts all (γi)i=1,...,g−1 exa
tly on
e. Let PS be the 
orresponding period Gram

matrix. We will examine the upper bound on the entry p22 = E(σ2).
Following our method, we have to embed N1 = Nα1 into a 
ylinder C1 and have to evaluate

cap(N1). Now if an annulus R1 is 
ontained in an annulus R2, then cap(R1) ≥ cap(R2), and
hen
e cap(N1) ≥ cap(C1). From Equation (3), it follows that the 
apa
ity of the 
ylinder C1

with baseline of length ℓ(α1) = ℓ(γ) of in�nite width is not zero. We obtain

cap(N1) ≥ cap(C1) =
ℓ(γ)

π
. (17)
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We now give another estimate for the energy of σ2 with the help of a test form s2. This approa
h

applies only to this example. To this end 
onsider the 
ollar C(γi) of a γi. On ea
h C(γi) set
s2 = dF2 , where F2 is the real harmoni
 fun
tion that has value 0 on one boundary of C(γi)

and

1
g−1 on the other. We set s2 = 0 on S\

g−1
⋃

i=1
C(γi). Then s2 is arbitrarily 
lose to a 
losed

form that satis�es the same 
onditions on the elements of A as σ2 and we have

E(σ2) < E(s2) ≤ (g − 1) ·
(g − 1)−2 · ℓ(γ)

π − 2 arcsin
(

1
cosh(wγ)

) , (18)

where wγ is bounded from below by the 
ollar lemma. Summing up the inequalities (17) and

(18), we obtain the �rst inequality for p22 in Example 1.1.

Hen
e, E(σ2) is at most of order

1
g
and goes to zero as g goes to in�nity. Our upper bound,

on the 
ontrary, is always bigger than the 
onstant

ℓ(γ)
π
. This shows that there exist examples

where our upper bound 
an not be of the right order. This might be due to the fa
t that the

proje
tion of CLblue(α1) onto α1 
an attain almost the length of α1. Hen
e, as CLblue(α1) is
large, E(σ2) might be small.

Example 3.2 For our se
ond example we 
onstru
t a linear surfa
e L of genus g. This ex-

ample belongs to the 
lass of M-
urves des
ribed in [BSi℄. In this 
onstru
tion, we use Y-pie
es

Y, where the length of η and η′ is large. We 
onstru
t R from two 
opies of these Y-pie
es

as in the previous example, however, here the twist parameter in the two pastings is zero. To


onstru
t a surfa
e L of genus g, we paste together g − 2 
opies R2, ...,Rg−1 along the γi (see

Figure 6). Then, we take two 
opies of Y, Y1, and Yg and paste ea
h together along η and η′

to obtain Q1, and Qg, respe
tively. For i ∈ {1, g}, let ηi denote the image of η in Qi. Then we

paste Q1 and Qg on ea
h side of R2 and Rg−1, respe
tively. Again, the twist parameter for any

pasting is zero.

Let A = (αi)i=1,...,2g be a 
anoni
al basis, su
h that α1 = η1 and α2 is the unique simple 
losed

geodesi
 in Q1 that interse
ts α1 perpendi
ularly. Let PL be the 
orresponding period matrix.

We now show that in this 
ase, the upper bound for p22 = E(σ2) is optimal. Therefore we use

the symmetries of the surfa
e L.

To this end, we �rst determine the 
ut lo
us CL(α1) of α1. For i ∈ {2, ..., g} let νri be the

simple 
losed geodesi
 that interse
ts the geodesi
 γi perpendi
ularly. Set νb1 = α2 and for

i ∈ {2, ..., g − 1} let νbi ⊂ Ri be the simple 
losed geodesi
 that interse
t ηi and η
′
i perpendi
-

ularly (see Figure 6). Set νrg+1 = ηg and let νbg be the simple 
losed geodesi
 interse
ting ηg
perpendi
ularly. We make the following 
laim:

Claim. The 
ut lo
us CL(α1) = CL(α1)
red ∪ CL(α1)

blue
of α1 in L 
onsists of the sets

CL(α1)
red = {νr2 , ..., ν

r
g+1} and CL(α1)

blue = {νb2, ..., ν
b
g}.

Proof. Set

CL1 = {νr2 , ..., ν
r
g+1} ∪ {νb2, ..., ν

b
g}.

We have to show that CL1 is indeed CL(α1). To this end, we show that for any point q in

L\{CL1} there exists exa
tly one geodesi
 ar
 realizing the distan
e between q and α1. It

follows from the de�nition of the 
ut lo
us (see (4)), that q does not belong to CL(α1). Hen
e
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CL(α1) ⊂ CL1. We re
all that 
utting L along CL(α1) we obtain a tube. Now 
utting L along

CL1 we obtain a topologi
al tube and if only if we 
ut along all points of CL1. Hen
e it follows

that CL1 = CL(α1). The de
omposition of CL(α1) into CL(α1)
red

and CL(α1)
blue

then follows

from the de�nition of the red-blue de
omposition of CL(α1).
Let q be a point in L\{CL1 ∪ ν

b
1}. We �rst show that any geodesi
 ar
 realizing the distan
e

dist(q, α1) between q and α1 does not interse
t {CL1 ∪ νb1}. To this end we make use of the

isometries of L.

- Let φ1 ∈ Isom(L) be the hyperellipti
 involution that �xes CL1 as a set, su
h that for all

i ∈ {2, .., g − 1}: φ1(ηi) = η′i.

- Let φ2 ∈ Isom(L) be the isometry that �xes CL1 as a set and all νbi point-wise.

- Set φ = φ1 ◦ φ2.

Now assume that there is a geodesi
 ar
 δ, su
h that

dist(q, α1) = ℓ(δ),

with δ interse
ting {CL1 ∪ ν
b
1} transversally. We 
onsider two 
ases - either δ interse
ts one of

the (νbi )i=1,..,g or δ interse
ts one of the (νri )i=2,..,g+1.

In the �rst 
ase, we assume that δ interse
ts without loss of generality νb1 in a point s. Now, s

divides δ into two ar
s, δ1 
onne
ting α1 and s and δ2 
onne
ting s with q. Consider the point

φ2(q) and the geodesi
 ar
 φ2(δ). Sin
e φ2(α1) = α1, this is a geodesi
 ar
, su
h that

ℓ(φ2(δ)) = dist(φ2(q), φ2(α1)) = dist(φ2(q), α1) = ℓ(δ).

Sin
e φ2(s) = s, the 
urve d = φ2(δ
1) ∪ δ2 
onne
ts α1 with q. Sin
e φ2 is an isometry, we

have ℓ(d) = ℓ(δ). But d interse
ts the geodesi
 νb1 under an angle θ. Hen
e, by applying a small

deformation to d, we 
an deform d into a 
urve d′, su
h that

ℓ(d′) < ℓ(d) = ℓ(δ) = dist(q, α1),

whi
h 
ontradi
ts the de�nition of δ. Hen
e δ does not interse
t {CL1 ∪ ν
b
1}.

If δ interse
ts one of the simple 
losed geodesi
 in the set (νri )i=2,..,g+1 then we obtain a 
on-

tradi
tion in a similar fashion. In that 
ase we use the isometry φ instead of φ2 to obtain our

statement.

We now show that for any point in L\{CL1} there exists exa
tly one geodesi
 ar
 realizing the

distan
e between this point and α1, from whi
h follows that CL1 = CL(α1).
Assume to the 
ontrary and let q ∈ L\{CL1} be a point for whi
h there exist two geodesi
 ar
s

δ1 and δ2, su
h that

dist(q, α1) = ℓ(δ1) = ℓ(δ2).

We �rst treat the 
ase where q 6∈ νb1. Consider the set {CL1 ∪ νb1 ∪ α1}. This set divides L

into two parts. Note that 
utting along {CL1 ∪ νb1 ∪ α1} ea
h embedded Y-pie
e from whi
h

L is built de
omposes into two isometri
 right-angled hexagons. Let L1
and L2

be the surfa
es

whi
h we obtain by 
utting L along CL1 ∪ ν
b
1 ∪ α1. Without loss of generality, let L1

be the

surfa
e 
ontaining q. L1
lifts to a hyperboli
 4g-gon P4g in the universal 
overing, whi
h 
an be

tesselated by the aforementioned hexagons. Sin
e all angles at the verti
es are

π
2 , P4g is 
onvex.
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Let α′
1 be the smooth boundary line of P4g that maps to α1 under the 
overing map, and let

q′ ∈ P4g be a lift of q. Let δ′1 and δ′2 be a lift of δ1 and δ2, respe
tively, with endpoint q′.

As both δ1 and δ2 are 
ontained in L1
, δ′1 and δ′2 are 
ontained in P4g. Furthermore, sin
e δ1

and δ2 realize the distan
e between α1 and q, they meet α1 perpendi
ularly at their respe
tive

endpoints. Hen
e, δ′1 and δ
′
2 meet α′

1 perpendi
ularly at their endpoints. Let α′
be the ar
 of α′

1


onne
ting these two endpoints. Then α′
, δ′1, and δ

′
2 form a triangle where two interior angles

are

π
2 . But su
h a triangle does not exist in the hyperboli
 plane. This is a 
ontradi
tion. Hen
e,

for q ∈ L\{CL1 ∪ ν
b
1} there is only one geodesi
 ar
 in L realizing the distan
e between q and

α1 and therefore q 6∈ CL(α1).
Now, if q ∈ νb1, it follows from the geometry of Q1 that only the interse
tion point of νb1 with ν

r
2

is part of CL(α1). To summarize, we obtain that CL1 = CL(α1). This settles our 
laim.

We now show that our 
apa
ity estimate for p22 = E(σ2) is almost sharp. To this end we


onsider again the isometries φ1, φ2 and φ in Isom(L). φ is the isometry that maps any point p

in CL(α1)
red ⊂ S1 to the 
orresponding point p′ in the red-blue 
omposition indu
ed by σ2.

Consider now a primitive F2 of σ2 on Lα1 = L1. F2 ◦φ2 is a harmoni
 fun
tion, whose derivative

d(F2 ◦ φ2) de�nes a 1-form σ′2 on L. σ
′
2 satis�es the same 
onditions on the 
y
les as σ2. Due to

the uniqueness of σ2, σ
′
2 = σ2. In the same way 1−F2 ◦φ1 is a harmoni
 form, whose derivative

−d(F2 ◦ φ1) de�nes a 1-form σ′′2 on L that satis�es the same integral 
onditions on the 
y
les as

σ2. This leads to σ
′′
2 = σ2. By 
hoosing an appropriate additive 
onstant, we obtain:

F2 ◦ φ2 = F2 and

1− F2 ◦ φ1 = F2 ⇒ 1− F2 = F2 ◦ φ1.

Now, for any p on one side of CL(α1)
red ⊂ L1, we have

F2(p)− F2(φ(p)) = F2(p)− F2((φ1 ◦ φ2)(p))) = 1.

Using the two equations above this yields F2(p) − (1 − F2(φ2(p))) = 1 or likewise 2F2(p) = 2,
hen
e F2(p) = 1. As F2(p)− F2(φ(p)) = 1 it follows that F2(φ(p)) = 0. In total we obtain:

F2(φ(p)) = 0 and F2(p) = 1.

Hen
e, the red parts of the boundary satisfy the 
onditions for the 
apa
ity problem. Consider

the two boundary geodesi
s η and η′ of our building blo
k Y. If ℓ(η) = ℓ(η′) is large, then it

follows from hyperboli
 geometry that the 
urves (νbi )i=1,..,g are arbitrarily small. Hen
e in this


ase we obtain

p22 = E(σ2) = cap(L1)− ǫL,

where ǫL > 0 depends on the geometry of L and may be
ome arbitrarily small. Hen
e our upper

bound for a diagonal entry of PL is sharp. This is the inequality in Example 1.2.

4 Estimates for the period Gram matrix based on Q-pie
es

In this se
tion we present pra
ti
al estimates for the period Gram matrix, based on the Fen
hel-

Nielsen 
oordinates of Q-pie
es 
ontaining the paired 
urves of a 
anoni
al basis. Under this


ondition, the 
ut lo
i of these 
urves 
an be (at least partially) 
al
ulated.
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More pre
isely, let S be a Riemann surfa
e of genus g ≥ 2. Let (Qi)i=1,3,..,2g−1 ⊂ S be a

set of Q-pie
es, whose interiors are pairwise disjoint. Let βi be the boundary geodesi
 of Qi, αi
an interior simple 
losed geodesi
, and twi ∈ (−1

2 ,
1
2 ] the twist parameter at αi. The geometry

of Qi is determined by the triplet (ℓ(βi), ℓ(αi), twi).
Now �x an i ∈ {1, 3, .., 2g − 1}. Let ατ(i) ⊂ Qi be a simple 
losed geodesi
 that interse
ts αi
exa
tly on
e, and αiτ(i) ⊂ Qi the simple 
losed geodesi
 in the free homotopy 
lass of αi(ατ(i))

−1
.

For j ∈ {i, τ(i), iτ(i)}, let

- βj = βi be the boundary geodesi


- twj the twist parameter at αj

- FNj := (ℓ(βj), ℓ(αj), twj) the 
orresponding Fen
hel-Nielsen 
oordinates of Qi.

In Lemma 4.2 we show how to �nd a suitable geodesi
 ατ(i) that interse
ts αi on
e and how to


al
ulate FNτ(i) and FNiτ(i) from FNi. This enables us to state estimates for all entries of the

period Gram matrix PS of S based on the 3g Fen
hel-Nielsen 
oordinates (FNi)i=1,3,..,2g−1:

Theorem 4.1. Let S be a Riemann surfa
e of genus g ≥ 2 and (Qi)i=1,3,..,2g−1 ⊂ S be a set

of Q-pie
es, whose interiors do not mutually interse
t. If Qi is given in the Fen
hel-Nielsen


oordinates FNi = (ℓ(βi), ℓ(αi), twi), where αi is an interior simple 
losed geodesi
, su
h that

cosh( ℓ(αi)
2 ) ≤ cosh( ℓ(βi)6 ) + 1

2 .

Then there is a simple 
losed geodesi
 ατ(i) ⊂ Qi, and a simple 
losed geodesi
 αiτ(i) in the free

homotopy 
lass of αi(ατ(i))
−1

, and the following fun
tions

fu, f l : R
+ × R

+ × (−
1

2
,
1

2
] → R

+
(see Se
tion 4.4)

fu : FNj 7→ fu(FNj) and f l : FNj 7→ f l(FNj),

that provide upper and lower bounds for all entries of the 
orresponding period Gram matrix

PS = (pij)i,j as follows:
For a diagonal entry pii, we have:

f l(FNτ(i)) ≤ pii ≤ fu(FNτ(i)).

For a non-diagonal entry piτ(i), we have:

pi,τ(i) ≤
1

2

(

fu(FNiτ(i))− f l(FNτ(i))− f l(FNi)
)

and

pi,τ(i) ≥
1

2

(

f l(FNiτ(i))− fu(FNτ(i))− fu(FNi)
)

.

For a non-diagonal entry pik, where k 6= τ(i), we have:

0 ≤ |pi,k| ≤
1

2

(

fu(FNτ(i)) + fu(FNτ(k))− f l(FNτ(i))− f l(FNτ(k))
)

.

The 
ondition on the length ℓ(αi) of αi in Theorem 4.1 is due to te
hni
al reasons. Su
h a pair

(αi, βi) always exists by [Pa℄, Proposition 5.4. Though this assumption is not mandatory, it

will simplify the 
al
ulations in Se
tion 4.1.

In Se
tions 4.2 and 4.3, we develop the fun
tions fu and f l expli
itly. In Se
tion 4.4, we

summarize these formulas and give a summary of our estimates in Table 1 and 2. Lastly, we give

a good example for our estimates in Example 4.3.
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4.1 Conversion of Fen
hel-Nielsen 
oordinates for a Q-pie
e

Lemma 4.2. Let Q1 be a Q-pie
e given in the Fen
hel-Nielsen 
oordinates (ℓ(β1), ℓ(α1), tw1),
where

- β1 is the boundary geodesi


- α1 an interior simple 
losed geodesi
, su
h that cosh( ℓ(α1)
2 ) ≤ cosh( ℓ(β1)6 ) + 1

2

- tw1 the twist parameter at α1.

Then, there is a simple 
losed geodesi
 α2 ⊂ Q1, and a simple 
losed geodesi
 α12 in the free

homotopy 
lass of α1(α2)
−1
, su
h that

cosh(
ℓ(αk)

2
) = cosh

(

ℓ(α1)|t
′
k|

2

)

√

√

√

√

(

cosh( ℓ(β1)4 )

sinh( ℓ(α1)
2 )

)2

+ 1, where |t′k| =

{

|tw1|
1− |tw1|

if

k = 2
k = 12.

Furthermore, for k ∈ {2, 12}, let twk be the twist parameter at αk, then

|twk| = min{
2rk
ℓ(αk)

, 1−
2rk
ℓ(αk)

}, where rk = arctanh

(

tanh( ℓ(α1)|tw1|
2 ) tanh( ℓ(α1)

2 )

tanh( ℓ(αk)
2 )

)

.

α1
′ α1

∗

s′

θ

θ

r1

r2

η′1

η′2

α2
′

s∗

Figure 7: Two lifts of α1 in the universal 
overing

Proof. In Q1 there exists a unique shortest geodesi
 ar
 η1 meeting α1 perpendi
ularly on both

sides of α1. Figure 7 shows a lift of α1 and η1 in the universal 
overing, α1 lifts to α1
′
and α1

∗
and

η1 to η′1. Note that α1
′
and α1

∗
have the same orientations with respe
t to η′1. In the 
overing

there exist two points, s′ ∈ α1
′
and s∗ ∈ α1

∗
, on opposite sites of η′1 and at the same distan
e

from η′1, su
h that s′ and s∗ are mapped to the same point s ∈ α1 by the 
overing map. Observe

that s′ and s∗ 
an always be found, su
h that the distan
e r1 from η′1 is equal to
ℓ(α1)·|tw1|

2 . Let

α2
′
denote the geodesi
 from s′ to s∗. Using α2

′
we obtain two isometri
 right-angled geodesi


triangles. Sin
e α2
′
interse
ts s′ and s∗ under the same angle θ, the image α2 of α2

′
under the

universal 
overing map is a smooth simple 
losed geodesi
, whi
h interse
ts α1 exa
tly on
e.
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Hen
e we 
an in
orporate α2 into our 
anoni
al basis for S. Applying the 
osine formula to one

of the isometri
 triangles (see Se
tion 2.2), we obtain:

cosh(
ℓ(α2)

2
) = cosh(r1) cosh(

ℓ(η1)

2
), where r1 =

ℓ(α1) · |tw1|

2
.

The length ℓ(η1) of η1 
an be 
al
ulated from a de
omposition of Q1 into a Y-pie
e (see Equation

(20)), leading to

sinh(
ℓ(η1)

2
) =

cosh( ℓ(β1)4 )

sinh( ℓ(α1)
2 )

thus cosh(
ℓ(η1)

2
) =

√

√

√

√

(

cosh( ℓ(β1)4 )

sinh( ℓ(α1)
2 )

)2

+ 1.

For further 
al
ulations we also need the angle θ. From hyperboli
 geometry we obtain:

cos(θ) = tanh(
ℓ(α1) · |tw1|

2
) coth(

ℓ(α2)

2
) (19)

In Q1, there exists likewise a unique shortest geodesi
 ar
 η2 meeting α2 perpendi
ularly on both

sides of α2. This ar
 
an be seen in Figure 7. Now α2 and α1 interse
t exa
tly on
e under

the angle θ. Consider a right-angled triangle with sides of length ℓ(α1
2 ), r2 and ℓ(η22 ). Here r2


ontains information about the twist parameter tw2 with respe
t to α2. We get:

cos(θ) = tanh(r2) coth(
ℓ(α1)

2
).

Together with Equation (19), we obtain:

tanh(r2) =
tanh( ℓ(α1)·|tw1|

2 ) coth( ℓ(α2)
2 )

coth( ℓ(α1)
2 )

and |tw2| = min(
2r2
ℓ(α2)

, 1 −
2r2
ℓ(α2)

).

We will now look for a suitable α12. Consider again the lifts of α1 in Figure 7. Consider the two

points, q′ ∈ α1
′
and q∗ ∈ α1

∗
on the opposite side of s′ and s∗ with respe
t to the interse
tion

point with η1 and at distan
e ℓ(α1)− r1 from η′1. q
′
and q∗ are mapped to the same point q ∈ Q1

by the 
overing map. Conne
ting these points we obtain a geodesi
 ar
 α′
12, whi
h maps to a

simple 
losed geodesi
 α12 in Q1. It follows from its interse
tion properties with α1 and α2 that

α12 is in the free homotopy 
lass α1(α2)
−1
. Using the same reasoning as for α2, we 
an �nd its

length and the twist parameter tw12, whi
h leads to Lemma 4.2.

4.2 Upper bounds for the energy of dual harmoni
 forms based on Q-pie
es

We will establish estimates for all entries of the period Gram matrix based on the geometry of the

Q-pie
es (Qi)i=1,3,..,2g−1. Following the approa
h given in Se
tion 3, it is su�
ient to 
onstru
t

suitable fun
tions on

Sγ ∩ Qi, where γ ∈ {αi, ατ(i), αiτ(i)}, for i ∈ {1, 3, .., 2g − 1}.

In this and the following subse
tion, we will only show how to obtain estimates for E(σ1) = p11
based on the geometry of Q1. These estimates will only depend on the Fen
hel-Nielsen 
oordi-

nates (ℓ(β1), ℓ(α2), tw2) ofQ1. In the same way, we obtain estimates for E(σ2) = p22 based on the
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oordinates (ℓ(β1), ℓ(α1), tw1), and for E(σ1+σ2) based on the 
oordinates (ℓ(β1), ℓ(α12), tw12).
Pro
eeding the same way on the remaining Q-pie
es and 
ombining these estimates as des
ribed

in Se
tion 3.2 (see Equations (12),(15) and (16)) we �nally obtain estimates for all entries of the

period matrix.

To obtain an upper bound for p11, we embed Sα2 ∩Q1 into a hyperboli
 
ylinder C with baseline

α2 and denote this embedding by the same name. To obtain an estimate on E(σ1), we will give
a parametrization of

Sα2 ∩ Q1 ⊂ C

based on a de
omposition into trire
tangles. To obtain this parametrization, we �rst 
ut open

Q1 along α2 to obtain the Y-pie
e Y1 with boundary geodesi
s β = β1, α2
1
and α2

2
. Both α2

1

and α2
2
have length ℓ(α2) (see Figure 8).

Denote by b the shortest geodesi
 ar
 
onne
ting α2
1
and α2

2
. We 
ut open Y1 along the shortest

geodesi
 ar
s 
onne
ting β and the other two boundary geodesi
s. We 
all O1 the o
tagon, whi
h

we obtain by 
utting open Y1 along these lines. By abuse of notation, we denote the geodesi


ar
s in O1 by the same letter as in Y1. The geodesi
 ar
 b divides O1 into two isometri
 hexagons

H1 and H2. This de
omposition is also shown in Figure 8.

Y1

β δ

α2
2

α2
1

b

O1

H1 H2

β
2

δ1 δ2

α2
2

α2
1

b

a1 a2

c

P1

β
4

b
2

a1

α1 α2

c

δ1

T1

T2

Figure 8: De
omposition of Y1 into isometri
 hexagons H1 and H2

In H1 b is the boundary geodesi
 
onne
ting

α2
1

2 and

α2
2

2 . Denote by δ1 the shortest geodesi
 ar


in H1 
onne
ting b and the side opposite of b of length ℓ(β2 ). By abuse of notation, we denote

this side by

β
2 . We denote by δ2 the ar
 in H2 
orresponding to δ1 in H1. Let δ = δ1 ∪ δ2 be the

geodesi
 ar
 in O1 formed by δ1 and δ2. By abuse of notation, we denote the 
orresponding ar


in Q1 and Y1 that maps to δ1 ∪ δ2 in O1 also by δ. It follows from the symmetry of Y1 that δ


onstitutes the interse
tion of the 
ut lo
us of α2 with Q1:

δ = CL(α2) ∩ Q1.

Let a1 denote the geodesi
 ar
 
onne
ting α2
1

2 and

β
2 in H1, and a

2
the 
orresponding ar
 in H2

of the same length ℓ(a1) = ℓ(a2) = a. δ1 divides H1 into two isometri
 right-angled pentagons P1
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and P2. Let P1 be the pentagon that has

α2
1

2 as a boundary. To establish the parametrization

for Sα2 ∩Q1, we divide P1 into two trire
tangles. Let c be the geodesi
 ar
 in P1 that emanates

from the vertex, where

β
2 and δ1 interse
t and that meets

α2
1

2 perpendi
ularly. It divides

α2
1

2
into two parts, α1

and α2
(see Figure 8). c divides P1 into two trire
tangles T1 and T2, that have

boundaries α1
and α2

, respe
tively.

To obtain an upper bound for p11, we need to know the geometry of T1 and T2. Hen
e, we need
to know the lengths a, ℓ(α1), ℓ(α2), and ℓ(b)

2 . In the following subse
tion we will also need the

length ℓ(c) of c, whi
h we will 
al
ulate here. To obtain these lengths, we will use the geometry

of H1, P1, T1 and T2. All formulas for the geometry of hyperboli
 polygons are given in Se
tion

2.2.

From the geometry of the hyperboli
 pentagon P1 we have:

sinh(
ℓ(b)

2
) =

cosh( ℓ(β)4 )

sinh( ℓ(α2)
2 )

(20)

cosh(ℓ(δ1)) = sinh(
ℓ(α2)

2
) sinh(a). (21)

Hen
e, we 
an express ℓ(b) in terms of ℓ(α2) and ℓ(β).
We obtain a, in terms of ℓ(b) and ℓ(α2), from the geometry of the hyperboli
 hexagon H1 and

ℓ(δ1) = ℓ(δ)
2 in terms of a and ℓ(α2) from Equation (21).

Finally, we 
an express ℓ(α2) and ℓ(c) in terms of ℓ(δ1) and ℓ( ℓ(b)2 ) using the geometry of the

hyperboli
 trire
tangles T1 and T2.
In total, we 
an express the lengths ℓ(b), a, ℓ(α2) and ℓ(α1) = ℓ(α2)

2 − ℓ(α2) in terms of ℓ(α2) and
ℓ(β). These formulas are simpli�ed and summarized in Equations (27)-(29).

With these formulas we 
an obtain a des
ription of the boundary of Sα2 ∩ Q1 ⊂ C. Consider

now δ ⊂ O1. δ divides O1 into two isometri
 hexagons. Let G1 be the hexagon that 
ontains

α2
1
as a boundary geodesi
 and G2 be the hexagon that 
ontains α2

2
as a boundary geodesi
.

δ forms the 
ut lo
us of α2 in Q1. Denote by C2 the surfa
e that we obtain if we 
ut open Q1

along δ. C2 is a topologi
al 
ylinder around α2. A lift of C2 in the universal 
overing is depi
ted

in Figure 9.

Let G′
1 and G′

2 denote two hexagons in this lift, that are isometri
 to the hexagons G1 and G2 in

O1, and that are adja
ent along the lift α̃2 of α2. We denote by δ′ ⊂ G′
1 and δ′′ ⊂ G′

2 the two

sides 
orresponding to δ in O1. We keep the notation from O1, but denote all 
orresponding

geodesi
 ar
s in the 
overing spa
e with prime, i.e. a lift of α1
is denoted by α′1

et
.

In the lift of C2 the two hexagons G
′
1 and G′

2 are shifted against ea
h other by the length |tw2|·ℓ(α2).
It 
an be seen from Figure 9, how to parametrize Sα2 ∩ Q1 in a 
ylinder C around α2. Here

all boundaries are boundaries of trire
tangles, whi
h are isometri
 to either T1 or T2, whi
h 
an

be parametrized in Fermi 
oordinates. Using these formulas in Theorem 2.1, we 
an �nd an

upper bound fu(FN2) for E(σ1):

fu(FN2) ≥ cap(Sα2 ∩ Q1) ≥ E(σ1) = p11.

These formulas are summarized in Se
tion 4.4 and the results are summarized in Table 1 and 2.
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G′
1

G′
2

δ′

δ′′

α′1 α′2

β′

2
b′

2c′

a′1 a′2

α̃2

Figure 9: Lift of C2 into the universal 
overing

4.3 Lower bounds for the energy of dual harmoni
 forms based on Q-pie
es

Consider a primitive F1 of σ1 in C2 = Sα2∩Q1 ⊂ C. The two geodesi
 ar
s δ′ and δ′′ 
orresponding

to δ ⊂ Q1 
onstitute CL(α2)
red ∩ ∂C2. We will use the theoreti
al approa
h from Se
tion 3 to

obtain a 
on
rete lower bound f l(FN2) for

p11 = ES(F1) > EB(F1) ≥ f l(FN2), where B = B2 = Sred2 ∩ C2.

We will give a suitable 
onstru
tion for B = Sred2 ∩C2 in Se
tion 4.3.1. To this end, we lift C2 into
the universal 
overing as in the previous subse
tion (see Figure 9). We use the same notation

for the geodesi
 ar
s that o

ur. The important 
ut-out from Figure 9 is depi
ted in Figure 10.

B

V ′
λ

m

δ′

δ′′

α̃2

γ2p

γp

γ1p

D

µ1

µ2η
ν
m

λ

a′n

b′

2

Figure 10: The area B (grey) and the 
onstru
tion of skewed Fermi 
oordinates ψν

Let B be the grey hat
hed subset in the lift of C2 in Figure 10. We will now give an exa
t

des
ription and parametrization of B.
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4.3.1 Parametrization of B = Sred2 ∩ C2

The boundary of B 
ontains the lines δ′ and δ′′. For ea
h point p1 ∈ δ′, there exists a point

p2 ∈ δ′′, su
h that p1 and p2 map to the same point p on δ ⊂ Q1. We may assume, without loss

of generality, that

F1(p2)− F1(p1) = 1 for all p1 ∈ δ
′.

We will des
ribe B as a union of lines, where ea
h line lp 
onne
ts p1 and p2. The line lp is

de�ned as follows. From p1 we go along the geodesi
 that meets α̃2 perpendi
ularly until we

meet ∂Z ℓ(b)
2

(α̃2), the boundary of the 
ollar Z ℓ(b)
2

(α̃2) (see de�nition (5)). We 
all this interse
tion

point p′1 and the geodesi
 ar
 that forms γ1p . Let p′2 be the point on ∂Z ℓ(b)
2

(α̃2) on the other

side of α̃2 that 
an be rea
hed analogously, starting from p2. We now go along the geodesi
 ar


that 
onne
ts p′1 and p′2. We 
all this ar
 γp. Then from p′2, we move along the geodesi
 ar



onne
ting p′2 and p2. We 
all this ar
 γ2p . We de�ne lp as the line traversed in this way. Let B

be the disjoint union of these lines:

B =
⊎

p∈δ

{lp}

Let λ be the geodesi
 ar
 
onne
ting the midpoints of δ′ and δ′′, and let m be the midpoint of

λ. We will use a bije
tive parametrization ϕ of B:

ϕ : (t, s) 7→ ϕ(t, s), su
h that

- ϕ(0, 0) = m

- for all t ∈ [−ℓ(α2), ℓ(α2)], ϕ(t, 0) ∈ α̃2 has dire
ted distan
e t from m

- for a �xed t0 ∈ [−ℓ(α2), ℓ(α2)], ϕ(t0, ·) parametrizes the line lp that traverses α̃2 in a point

with dire
ted distan
e t0 from m by ar
 length.

We parametrize the sets

⋃

p∈δ

{γ1p} and
⋃

p∈δ

{γ2p} in Fermi 
oordinates with baseline α̃2. The proper

parametrization 
an be dedu
ed from the geometry of the trire
tangle T2.

We will parametrize Z ℓ(b)
2

(α̃2) ∩ B =
⋃

p∈δ

{γp} using skewed Fermi 
oordinates ψν , with angle

ν and baseline α̃2. These are de�ned in the same way as the usual Fermi 
oordinates ψ (see

Se
tion 2.1), but instead of moving along geodesi
s emanating perpendi
ularly from the base-

line, we move along geodesi
s that meet the baseline under the angle ν. We will not give these


oordinates expli
itly, but will derive the essential information from the usual Fermi 
oordinates

ψ.

We remind the reader that λ is the geodesi
 ar
 
onne
ting the midpoints of δ′ and δ′′. Its

midpoint m and the endpoints of

b′

2 are the verti
es of a right-angled triangle D (see Figure 10).

In our 
ase the angle ν for the 
oordinates ψν is the angle of D at the midpoint m. It follows

from the geometry of right-angled triangles that

cosh(
ℓ(λ)

2
) = cosh(

ℓ(b)

2
) cosh(

ℓ(α2)|tw2|

2
), (22)

where we assume, without loss of generality, that the twist parameter tw2 is in the interval [0, 12 ].
Otherwise the situation is symmetri
 to the depi
ted one. Using the geometry of the right-angled
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triangle D we have:

sin(ν) =
sinh( ℓ(b)2 )

√

cosh( ℓ(b)2 )2 cosh( ℓ(α2)|tw2|
2 )2 − 1

. (23)

Consider the following geodesi
 ar
s in Z ℓ(b)
2

(α̃2) ∩ B. For a n ∈ N, let a′n be a geodesi
 ar
 of

length

2α2

n
on α̃2 with midpoint m. λ interse
ts a′n in m under the angle ν. This is depi
ted in

Figure 10.

Let η′ be a geodesi
 interse
ting λ perpendi
ularly in m. Let µ1 and µ2 be two geodesi
 ar
s

with endpoints on Z ℓ(b)
2

(α̃2) that interse
t η
′
perpendi
ularly, su
h that ea
h of the ar
s passes

through an endpoint of a′n on ea
h side of λ. Let η be the geodesi
 ar
 on η′ with endpoints on

µ1 and µ2. For �xed n ∈ N, we denote by ηn the length of η and by µn the length of µ1 and µ2:

ηn = ℓ(η) and µn = ℓ(µ1) = ℓ(µ2).

By 
hoosing usual Fermi 
oordinates with baseline η, we 
an parametrize the strip, whose bound-

ary lines are µ1 and µ2 and two segments of ∂Z ℓ(b)
2

(α̃2) (see Figure 10).

n su
h strips 
an be aligned next to ea
h other to obtain a parametrization of Z ℓ(b)
2

(α̃2)∩B. For

n→ ∞ we obtain a parametrization ψν of Z ℓ(b)
2

(α̃2) ∩B. We get:

lim
n→∞

n · ηn = sin(ν)2ℓ(α2) and lim
n→∞

µn = ℓ(λ).

Combining the parametrizations for the several pie
es of B, we may assume that we have a

parametrization ϕ that satis�es our 
onditions. For pra
ti
al purposes, we extend the parametriza-

tion ϕ to the geodesi
s meeting ∂Z ℓ(b)
2

∩B perpendi
ularly in the dire
tion opposite of α̃2.

4.3.2 Evaluating the lower bound for p11 = ES(F1)

Consider a point p1 = ϕ(t0,−x) ∈ δ′ and p2 = ϕ(t0, x) ∈ δ′′. The fun
tion F1 satis�es the

boundary 
onditions F1(p2) = 1 + c̃ and F1(p2) = c̃, where c̃ is a 
onstant. As we will see in the

following, the 
onstant c̃ is not important for our estimate and we assume that c̃ = 0.
We 
onsider the strip V , where

V = ϕ([t0 − ǫ, t0]× [−x, x]), where ǫ > 0 if t0 < 0 and ǫ < 0 if t0 > 0.

We will show how to obtain a lower bound for the energy of F1|V , EV (F1) for a su�
iently small

ǫ. We 
an align these strips to obtain a lower bound for EB(F1) ≤ E(F1). We derive a lower

bound for the energy of F1|V , assuming that

F1|ϕ([t0−ǫ,t0]×{−x}) = F1(p1) = 0 and F1|ϕ([t0−ǫ,t0]×{x}) = F1(p2) = 1 and

F1|ϕ([t0−ǫ,t0]×{−ℓ(λ)
2

})
= F1(p

′
1) = a′1 and F1|ϕ([t0−ǫ,t0]×{ ℓ(λ)

2
})

= F1(p
′
2) = a′2.

Consider the subset V ′
of V given by

V ′ = ϕ([t0 − ǫ, t0]× [
−ℓ(λ)

2
,
ℓ(λ)

2
]).
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Let Ft0 = ft0 ◦ ψ
ν
be a fun
tion de�ned on V ′

that realizes the minimum

min{

∫

V ′

‖pϕ(Df)‖
2
2 | f ∈ Lip(V ′), f |

ϕ([t0−ǫ,t0]×{−ℓ(λ)
2

}
= a1 and f |ϕ([t0−ǫ,t0]×{ ℓ(λ)

2
}
= a2} (see (9)).

Considering skewed Fermi 
oordinates as a limit 
ase of Fermi 
oordinates with respe
t to an

imaginary baseline η, and by applying the 
al
ulus of variations (see [Ge℄, p. 14-16) to the last

integral in Equation (2), we obtain ft0 as follows:

ft0(t, s) =
a2 − a1

H( ℓ(λ)2 )−H(− ℓ(λ)
2 )

H(s) +
a1H( ℓ(λ)2 )− a2H(− ℓ(λ)

2 )

H( ℓ(λ)2 )−H(− ℓ(λ)
2 )

,

where H(s) = 2 arctanh(exp(s)). The energy EV ′(pϕ(DFt0)) is

EV ′(pϕ(DFt0)) =
(a2 − a1)

2 sin(ν)|ǫ|

2(arctan(exp( ℓ(λ)2 ))− arctan(exp(− ℓ(λ)
2 )))

= k1(a2 − a1)
2|ǫ|. (24)

We 
an extend Ft0 to a fun
tion on V that satis�es the boundary 
onditions

Ft0 |ϕ([t0−ǫ,t0]×{±x}) = F1|ϕ([t0−ǫ,t0]×{±x}).

As before, we 
hoose Ft0 su
h that it minimizes EV \V ′(pϕ(D(·))) with the given boundary 
on-

ditions. We have with EV \V ′(pϕ(DFt0)) = EV \V ′(Ft0):

EV \V ′(Ft0) =
(a21 + (1− a2)

2)|ǫ|

2(arctan(exp(x(t0)))− arctan(exp( ℓ(b)2 )))
= k2(t0)(a

2
1 + (1− a2)

2)|ǫ|, (25)

where x(t0) = ℓ(γ1p) +
ℓ(b)
2 , su
h that ϕ(t0, ·) parametrizes the line lp. For a1 = a′1 = F1(p

′
1) and

a2 = a′2 = F1(p
′
2), we have by 
onstru
tion EV (F1) ≥ EV (pϕ(DFt0)).

Though we do not know the values a′1 and a′2, we obtain a lower bound of the energy of F1 on

V , if we determine the values Ft0(p
′
1) = c1 = c1(t0) and Ft0(p

′
2) = c2 = c2(t0), respe
tively, su
h

that these values are minimizing the total energy EV (pϕ(Ft0)). As the two ar
s γ1p and γ2p have

the same length, we have to solve the following problem:

Find c1, c2, su
h that 1− c2 = c1 ⇔ (c2 − c1) = 1− 2c1, and

EV (pϕ(DFt0)) = EV ′(pϕ(DFt0)) + EV \V ′(Ft0)

is minimal. We obtain from Equations (24) and (25) that c1 =
k1

k2(t0)+2k1
. We 
an 
over B with

a set of su
h strips Vt0 = V , su
h that these interse
t only on the boundary and 
ombine the

Ft0 |Vt0 to a fun
tion f1 on B. We have EV (F1) ≥ EV (pϕ(Df1)).
As we 
onsider only the energy EB(pϕ(Df1)) of the proje
tion, the approximation is true in

the limit 
ase, where ǫ → 0. Due to the symmetry of the area B we obtain in total with c1 in

Equations (24) and (25):

p11 = E(F1) ≥ EB(pϕ(Df1)) = 2

ℓ(α2)
∫

t=0

k1k2(t)

k2(t) + 2k1
dt = f l(ℓ(β1), ℓ(α2), tw2). (26)
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EV \V ′(pϕ(DFt0)) is monotonously de
reasing if x(t0)−
ℓ(b)
2 in Equation (25) is in
reasing. Hen
e

we �nd a simpler approximation for E(F1), setting x(t0) := ℓ(c′) = ℓ(c) (see Figure 9). In this


ase, we 
an set k2(t) = k2(ℓ(α
2)) for all t. We obtain furthermore a simpli�ed upper bound, if

we de�ne our test fun
tion only on Zw′(α2), where w
′ = min{a, ℓ(b)2 }. This upper bound fusimp


orresponds to the method from [BS℄ applied to a Q-pie
e. The expli
it formulas for f lsimp and

fusimp are summarized in inequality (30).

To obtain the lower bound f l that depends only on ℓ(α2), |tw2|, and ℓ(β1) we �rst have to

express

ℓ(b)
2 and ℓ(λ) and ν in terms of these variables (see Equations (20),(22) and (23)). Using

the parametrization of T2 in Equation (25), we 
an then express f l in terms of ℓ(α2), |tw2| and
ℓ(β1). This way we obtain expli
it values in Equation (26). These formulas are summarized in

the following subse
tion.

4.4 Summary

In this se
tion, we summarize the formulas from the previous subse
tions and outline our esti-

mates in Table 1 and 2. We also give an example for our estimates in Example 4.3. First, we

give a des
ription of fu and f l from Theorem 4.1.

4.4.1 Upper bound fu from Theorem 4.1

In the remaining part of this paper we �x the notation in the following way.

For j ∈ {i, τ(i), iτ(i)}, let Qi be a Q-pie
e given in Fen
hel-Nielsen 
oordinates

FNj = (ℓ(βj), ℓ(αj), twj), where βj = βi is the boundary geodesi
 of Qi, and twj ∈ (−1
2 ,

1
2 ] be

the twist parameter at an interior simple 
losed geodesi
 αj . We have from Se
tion 4.2:

sinh(
ℓ(b)

2
) =

cosh(
ℓ(βj)
4 )

sinh(
ℓ(αj)
2 )

(27)

coth(a) = tanh(
ℓ(b)

2
) cosh(

ℓ(αj)

2
) and sinh(ℓ(c)) =

cosh( ℓ(β)4 )
√

tanh( ℓ(b)2 )2 cosh(
ℓ(αj )
2 )2 − 1

.(28)

coth(ℓ(α2)) = cosh(
ℓ(b)

2
)2 tanh(

ℓ(αj)

2
) and ℓ(α1) =

ℓ(αj)

2
− ℓ(α2). (29)

Using the above, we obtain a des
ription of the 
ut lo
us CL(αj) ∩Qi in a 
ylinder Cj in Fermi


oordinates. Set S
1
αj

= R mod (t 7→ t+ ℓ(αj)). For l ∈ {1, 2} let

al : S
1
αj

→ R, al : t 7→ al(t)

be a parametrization of the two 
onne
ted 
omponents of CL(αj) ∩ Qi in Cj . Then

a2(t) : =

{

arctanh(cosh(t− ℓ(α2)) tanh( ℓ(b)2 ))
arctanh(cosh(t− (2ℓ(α2) + ℓ(α1))) tanh(a2 ))

if

t ∈ (0, 2ℓ(α2)]
t ∈ (2ℓ(α2), ℓ(αj)]

a1(t) : = −a2(t+ |twj |)
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Applying Theorem 2.1 to estimate the 
apa
ity of Sαj
∩ Qi with boundary CL(αj) ∩ Qi, we

obtain:

fu(Nj) :=

ℓ(αj)
∫

t=0

1 + 1
3 ·
(

(a′1(t))
2

cosh2(a1(t))
+

a′1(t)
cosh(a1(t))

·
a′2(t)

cosh(a2(t))
+

(a′2(t))
2

cosh2(a2(t))

)

2(arctan(exp(a2(t)))− arctan(exp(a1(t))))
dt ≥

cap(Sαj
∩ Qi) ≥

ℓ(αj )
∫

t=0

1

2(arctan(exp(a2(t)))− arctan(exp(a1(t))))
dt := fulow(FNj),

where fulow(FNj) is a lower bound for the 
apa
ity of Sαj
∩ Qi.

4.4.2 Lower bound f l from Theorem 4.1

Based on Se
tion 4.3, we �rst give a suitable 
onstru
tion for Sredj ∩Qi, where j ∈ {i, τ(i), iτ(i)}.
From Equations (22) and (23) we obtain (see Figure 10):

cosh(
ℓ(λ)

2
) = cosh(

ℓ(b)

2
) cosh(

ℓ(αj)|twj |

2
) and sin(ν) =

sinh( ℓ(b)2 )
√

cosh( ℓ(b)2 )2 cosh(
ℓ(αj )|twj |

2 )2 − 1
.

Using the above we obtain a des
ription of the 
ut lo
us CL(αj)
red∩Qi in a 
ylinder Cj in Fermi


oordinates. Let

ared : [0, 2ℓ(α
2)] → R, ared : t 7→ ared(t)

be a parametrization of one of the two 
onne
ted 
omponents of CL(αj)
red ∩ Qi. Then

ared(t) := arctanh(cosh(t− ℓ(α2)) tanh(
ℓ(b)

2
)) for t ∈ [0, 2ℓ(α2)]

From Equation (24) and (25) (see Se
tion 4.3.2) we have:

k1 =
sin(ν)

2(arctan(exp( ℓ(λ)2 ))− arctan(exp(− ℓ(λ)
2 )))

k2(t) : =
1

2(arctan(exp(ared(t)))− arctan(exp( ℓ(b)2 )))
for t ∈ [0, 2ℓ(α2)].

Finally, we obtain the lower bound f l(FNj) on E(στ(j)), where στ(iτ(i)) = σi+στ(i) from Equation

(26):

E(στ(j)) ≥ 2

ℓ(α2)
∫

t=0

k1k2(t)

k2(t) + 2k1
dt := f l(FNj).
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We also provide here the simpli�ed upper and lower bound fusimp(FNj) and f
l
simp(FNj), respe
-

tively. For w′ = min{a, ℓ(b)2 }:

fusimp(FNj) =
ℓ(αj)

2(arctan(ew′)− arctan(e−w′))
≥ E(στ(j)) ≥

2ℓ(α2)k1k2(ℓ(α
2))

k2(ℓ(α2)) + 2k1
= f lsimp(FNj).

(30)

From (fu(FNj))j and (f l(FNj))j all entries of PS 
an be 
al
ulated. This follows from Equa-

tions (12),(15), and (16).

The following two tables provide a 
omparison of the estimates for the energy of a harmoni


form based on the geometry of a Q-pie
e Qi, given in Fen
hel-Nielsen 
oordinates FNj =
(ℓ(βj), ℓ(αj), twj) Here twj = 0 in Table 1 and twj =

1
4 in Table 2.

ℓ(βj) ℓ(αj) fusimp(FNj) fu(FNj) fulow(FNj) f l(FNj) f lsimp(FNj)

1 0.45 0.55 0.42 0.40 0.32

2 1.39 1.41 1.14 1.11 0.69

1 5 14.81 8.70 8.17 8.13 1.83

10 359.74 112.46 111.85 111.80 3.71

20 106778.29 16772.11 16771.50 16771.45 7.39

1 0.44 0.47 0.41 0.33 0.29

2 1.31 1.23 1.08 0.95 0.67

2 5 13.57 7.87 7.49 7.30 2.00

10 329.05 102.76 102.30 102.11 4.20

20 97667.22 15340.96 15340.49 15340.22 8.53

1 0.43 0.44 0.40 0.12 0.11

2 1.15 1.10 1.01 0.36 0.33

5 5 8.26 5.41 5.17 3.82 1.81

10 196.51 62.08 61.71 60.30 4.72

20 58319.75 9161.19 9160.80 9159.37 10.46

1 0.46 0.58 0.42 0.01 0.01

2 1.39 1.41 1.14 0.03 0.03

10 5 10.82 6.41 6.13 0.65 0.57

10 60.64 26.06 25.60 17.54 3.59

20 17959.42 2828.11 2827.62 2819.53 9.90

1 0.46 0.69 0.42 0.000068 0.000068

2 1.42 1.86 1.17 0.000212 0.000212

20 5 15.21 9.18 8.41 0.004493 0.004493

10 262.37 82.11 81.71 0.66 0.57

20 1484.09 347.17 346.61 231.58 6.81

Table 1: twj = 0: Comparison of the estimates for the energy of a harmoni
 form based on

the geometry of a Q-pie
e Qi, given in Fen
hel-Nielsen 
oordinates FNj = (ℓ(βj), ℓ(αj), 0), for
j ∈ {i, τ(i), iτ(i)}
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ℓ(βj) ℓ(αj) fusimp(FNj) fu(FNj) fulow(FNj) f l(FNj) f lsimp(FNj)

1 0.45 0.55 0.41 0.39 0.32

2 1.39 1.43 1.12 1.00 0.65

1 5 14.81 7.73 7.00 0.90 0.67

10 359.74 61.96 60.94 0.04 0.04

20 106778.29 2750.28 2749.10 0.00011 0.00011

1 0.44 0.47 0.40 0.33 0.29

2 1.31 1.22 1.07 0.87 0.63

2 5 13.57 6.92 6.44 0.91 0.70

10 329.05 56.48 55.76 0.04 0.04

20 97667.22 2515.41 2514.53 0.00012 0.00012

1 0.43 0.44 0.40 0.12 0.11

2 1.15 1.10 1.01 0.34 0.32

5 5 8.26 5.12 4.82 0.92 0.74

10 196.51 35.62 35.11 0.06 0.06

20 58319.75 1504.60 1503.90 0.00018 0.00018

1 0.46 0.59 0.42 0.010 0.010

2 1.39 1.42 1.12 0.032 0.032

10 5 10.82 5.78 5.46 0.41 0.37

10 60.64 19.40 18.75 0.14 0.14

20 17959.42 484.70 483.96 0.14 0.0005

1 0.46 0.72 0.42 0.000068 0.000068

2 1.42 1.83 1.15 0.000205 0.000205

20 5 15.21 8.32 7.21 0.003701 0.003701

10 262.37 45.52 44.96 0.18 0.18

20 1484.09 99.69 98.69 0.0042 0.0042

Table 2: twj = 1
4 : Comparison of the estimates for the energy of a harmoni
 form based on

the geometry of a Q-pie
e Qi, given in Fen
hel-Nielsen 
oordinates FNj = (ℓ(βj), ℓ(αj),
1
4), for

j ∈ {i, τ(i), iτ(i)}
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Example 4.3 Let Q1 and Q3 be two isometri
 Q-pie
es given in Fen
hel-Nielsen 
oordinates

FN1 and FN3, respe
tively, where

FNi = (ℓ(βi), ℓ(αi), twi) = (2, 1, 0.1), for i ∈ {1, 3},

where βi is the boundary geodesi
, αi an interior simple 
losed geodesi
, and twi the twist

parameter at αi. Let

S = Q1 +Q3

be a Riemann surfa
e of genus 2, whi
h we obtain by gluing Q1 and Q3 along β1 and β3 with

arbitrary twist parameter twβ ∈ (−1
2 ,

1
2 ]. Then there exists a 
anoni
al basis A = (α1, ..., α4)

and a 
orresponding period Gram matrix PS , su
h that









2.11 −0.46 −0.42 −0.26
−0.46 0.33 −0.26 −0.11
−0.42 −0.26 2.11 −0.46
−0.26 −0.11 −0.46 0.33









≤ PS ≤









2.53 0.20 0.42 0.26
0.20 0.44 0.26 0.11
0.42 0.26 2.53 0.20
0.26 0.11 0.20 0.44









.

This follows from Theorem 4.1. For the Q-pie
e Q1 we obtain the following Fen
hel Nielsen


oordinates FNj from Lemma 4.2 and the 
orresponding estimates for fu(FNj) and f
l(FNj):

j ℓ(βj) ℓ(αj) |twj | fusimp(FNj) fu(FNj) f l(FNj)

1 2 1 0.1 0.44 0.47 0.33

2 2 3.032 0.017 3.16 2.53 2.11

12 2 3.243 0.132 3.73 2.85 2.05

Table 3: A Q-pie
e Q1 given in di�erent Fen
hel-Nielsen 
oordinates FNj = (ℓ(βj), ℓ(αj), twj)
and the values of the 
orresponding fun
tions fusimp(FNj), f

u(FNj) and f
l(FNj)
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