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Abstrat

To any ompat Riemann surfae of genus g one may assign a prinipally polarized abelian

variety of dimension g, the Jaobian of the Riemann surfae. The Jaobian is a omplex

torus, and a Gram matrix of the lattie of a Jaobian is alled a period Gram matrix. This

paper provides upper and lower bounds for all the entries of the period Gram matrix with

respet to a suitable homology basis. These bounds depend on the geometry of the ut lous

of non-separating simple losed geodesis. Assuming that the ut loi an be alulated, a

theoretial approah is presented followed by an example where the upper bound is sharp.

Finally we give pratial estimates based on the Fenhel-Nielsen oordinates of surfaes of

signature (1, 1), or Q-piees. The methods developed here have been applied to surfaes that

ontain small non-separating simple losed geodesis in [BMMS℄.

Keywords : Riemann surfaes, Jaobians, harmoni forms, energy, hyperboli geometry.
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1 Introdution

Let S be a hyperboli Riemann surfae of genus g ≥ 2. We all a set of 2g oriented simple losed

geodesis

A = (α1, α2, ..., α2g−1, α2g)

a anonial basis, if

- for eah αi there exists exatly one ατ(i) =

{

αi+1

αi−1
if

i odd

i even
∈ A that intersets αi in

exatly one point.

- the urves are oriented in a way, suh that

Int(αi, αi+1) = 1 for all i = 1, 3, ..., 2g − 1,

where Int(·, ·) denotes the algebrai intersetion number.

∗
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Note that A an be alled a basis as the homology lasses ([αi])i=1,...,2g ⊂ H1(S,Z) form a basis

of H1(S,R) as a vetor spae.

In the vetor spae of real harmoni 1-forms on S, let (σk)k=1,...,2g be the dual basis for ([αi])i=1,...,2g ⊂
H1(S,Z) de�ned by

∫

[αi]

σk = δik.

A period Gram matrix PS (with respet to A) of S is the Gram matrix

PS = (〈σi, σj〉)i,j=1,...,2g =





∫

S

σi ∧
∗σj





i,j=1,...,2g

.

This period matrix PS de�nes a omplex torus, the Jaobian or Jaobian variety J(S) of the
Riemann surfae S (see [FK℄, hapter III). Let

E(σi) = ES(σi) =

∫

S

σi ∧
∗σi = 〈σi, σi〉

be the energy of σi (over S). As PS is a Gram matrix, E(σi) is also the squared norm of a vetor

vi in the lattie of the Jaobian. By Riemann's period relations the Jaobian is a prinipally

polarized abelian variety (see [BL℄, Setion 4.1 for a de�nition). The latties of prinipally po-

larized abelian varieties are exatly the sympleti latties ( [BS℄). The Shottky problem is to

haraterize the Jaobians among the prinipally polarized abelian varieties.

Buser and Sarnak ( [BS℄) approahed this problem by means of a geometri invariant:

The squared norm of the shortest non-zero vetor in the lattie of a Jaobian of a Riemann

surfae of genus g ≥ 2 is bounded from above by log(4g), whereas it an be of order g for

the lattie of a prinipally polarized abelian variety of dimension g. Reently, more insight has

been obtained into the onnetion between the global geometry of a ompat Riemann surfae

of genus g and the geometry of its Jaobian. In [BPS℄ the log(g)-bound on the squared norm

of a lattie vetor of the Jaobian has been further extended to almost g linearly independent

vetors. In [Mu2℄ it was shown that, for the ase of a hyperellipti surfae, the squared norm of

the shortest lattie vetor is bounded from above by a onstant independent of the genus.

In this paper, we examine the onnetion between the metri, hyperboli geometry of a ompat

Riemann surfae, and the geometry of its Jaobian. In previous papers (see [BSi℄ or [Se℄), this

approah has been taken for speial ases, for example when the Riemann surfae is a real alge-

brai urve. For these speial ases, there exist algorithms to alulate the period matrix. The

aim of this paper is to �nd upper and lower bounds for all entries of the period Gram matrix

given with respet to a anonial basis, based on the hyperboli metri of an arbitrary ompat

Riemann surfae. The bounds depend on the geometry of the ut loi of these urves and related

simple losed geodesis, and are obtained by estimating the energy of the orresponding dual

harmoni forms.

After introduing the neessary tools and de�nitions in Setion 2, we will present a theoretial

approah in Setion 3. Here we �nd upper bounds for the energy of the dual harmoni forms by

estimating the apaity of hyperboli tubes as follows.

Let T (ατ(i)) ⊂ S be a topologial tube, embedded in S obtained by a ontinuous deformation of
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a small embedded ylinder C around ατ(i). The apaity of suh a tube gives an upper bound

for the energy E(σi) of σi. This is the diagonal entry pii of the period Gram matrix PS :

cap(T (ατ(i))) ≥ E(σi) = pii.

In our theoretial approah, the boundary of suh a tube will be provided by the ut lous of

a simple losed geodesi of the anonial basis. More preisely, we will take T (ατ(i)) = Sτ(i),

where Sτ(i) is the surfae obtained by utting open S along the ut lous CL(ατ(i)) of ατ(i) (see
(4)). This allows us to extend our tubes over the whole surfae S and to obtain a lower bound

on E(σi). This bound is obtained using projetions of vetor �elds onto urves. Upper and lower

bounds for the non-diagonal elements are obtained in a similar way.

The method presented in Setion 3 relies on the premise that the ut loi in question an be

alulated. This is illustrated by two examples, one based on a neklae surfae and one based

on a linear surfae presented in this setion. Example 3.1 shows the limitations of the method,

while Example 3.2 shows a ase where the upper bound is sharp.

Example 1.1. Let N be a neklae surfae of genus g ≥ 2 and A = (αi)i=1,...,2g a anonial

basis. Let N1 be the surfae obtained by utting open N along the ut lous CL(α1) of α1. Let

PN = (pij)i,j be the period Gram matrix with respet to A. Then

cα1

g − 1
≥ p22 ≥ 0 and cap(N1) ≥ p22, but cap(N1) ≥

ℓ(α1)

π
,

where cα1 is a fator that depends only on the �xed length ℓ(α1) of α1.

Hene p22 is at most of order

1
g
and goes to zero, as g goes to in�nity. Our upper bound, on the

ontrary, is always bigger than the onstant

ℓ(α1)
π

. This example shows an instane of the ase

where our upper bound annot be of the right order.

Example 1.2. Let L be a linear surfae of genus g ≥ 2 and A = (αi)i=1,...,2g a anonial

basis. Let L1 be the surfae obtained by utting open L along the ut lous CL(α1) of α1. Let

PL = (pij)i,j be the period Gram matrix with respet to A. Then for ǫL > 0

p22 = cap(L1)− ǫL.

Note that ǫL depends on the geometry of L and may beome arbitrarily small.

This example shows an instane of the ase where the bound is sharp for any genus.

The methods developed in this paper have been applied to surfaes that ontain small simple

losed geodesis in [BMMS℄. We state this re�ned estimate here to enlarge the list of examples:

Example 1.3. [BMMS℄ Let S be a Riemann surfae of genus g ≥ 2, that ontains a separating

simple losed geodesi γ of length ℓ(γ) ≤ 1
2 . Then γ separates the surfae into two surfaes S1

and S2
of signature (g1, 1) and (g2, 1). Let A = (αi)i=1,...,2g be a anonial basis of S, suh that

(α1, ..., α2g1) ⊂ S1
and (α2g1+1, ..., α2(g1+g2)) ⊂ S2

. Let PS = (pij)i,j be the period Gram matrix

with respet to A. Then

|pij | = |pji| ≤
cατ(i)

+ cατ(j)

exp
(

π2

ℓ(γ) − 2π
)

for j ∈ {1, ..., 2g1}, i ∈ {2g1 + 1, ..., 2g},

where cατ(i)
and cατ(j)

depend only on the length of ατ(i) and ατ(j), respetively.
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This means that the matrix PS onverges to a blok matrix if ℓ(γ) goes to zero. In this ase the

bound on a non-diagonal entry of PS is sharp.

Finally, in Setion 4 we present pratial estimates based on the geometry of surfaes of signature

(1, 1), or Q-piees embedded in S. Under this ondition the ut loi of the elements of a anonial

basis an be (at least partially) alulated. Estimates on the entries of a period Gram matrix will

be omputed based on the 3g Fenhel-Nielsen oordinates (see Setion 2.3) of these g Q-piees.

Let

(Qi)i=1,3,..,2g−1 ⊂ S

be a set of Q-piees, whose interiors are pairwise disjoint. Let βi be the boundary geodesi of

Qi, αi an interior simple losed geodesi, and twi the twist parameter at αi. The geometry of

Qi is determined by the Fenhel-Nielsen oordinates (ℓ(βi), ℓ(αi), twi). For tehnial reasons we
assume furthermore that

cosh(
ℓ(αi)

2
) ≤ cosh(

ℓ(βi)

6
) +

1

2
for all i ∈ {1, 3, .., 2g − 1}. (1)

Suh a pair (αi, βi) always exists, see [Pa℄, Proposition 5.4.

In Setion 4, we �rst determine suitable ατ(i) ⊂ Qi for eah αi, suh that the pairs ((αi, ατ(i)))i=1,3,..,2g−1

form a anonial basis. Now �x an i ∈ {1, 3, .., 2g − 1}. Let αiτ(i) ⊂ Qi be the simple losed

geodesi in the free homotopy lass of αi(ατ(i))
−1
. For j ∈ {i, τ(i), iτ(i)}, let

- βj = βi be the boundary geodesi of Qi,

- twj the twist parameter at αj ,

- FNj := (ℓ(βj), ℓ(αj), twj) the orresponding Fenhel-Nielsen oordinates of Qi.

In Setion 4.1, FNτ(i) and FNiτ(i) are alulated from FNi. Setion 4.2 and 4.3 give expliit

funtions

fu, f l : R
+ × R

+ × (−
1

2
,
1

2
] → R

+

fu : FNj 7→ fu(FNj) and f l : FNj 7→ f l(FNj),

providing upper and lower bounds on all entries of PS = (pij)i,j in the following way. For a

diagonal entry pii we have:

f l(FNτ(i)) ≤ pii ≤ cap(Sτ(i) ∩ Qi) ≤ fu(FNτ(i)).

Upper and lower bounds for the non-diagonal entries are provided in terms of simple linear

ombinations of the funtions. These estimates are summarized in Theorem 4.1. An example

of a period Gram matrix obtained via this method is given in Example 4.3:

Example 1.4. Let Q1 and Q3 be two isometri Q-piees given in Fenhel-Nielsen oordinates

FN1 and FN3, respetively, where FNi = (ℓ(βi), ℓ(αi), twi) = (2, 1, 0.1) for i ∈ {1, 3}. Let

S = Q1 + Q3 be a Riemann surfae of genus 2, whih we obtain by gluing Q1 and Q3 along

β1 and β3 with arbitrary twist parameter twβ ∈ (−1
2 ,

1
2 ]. Then there exists a anonial basis

A = (α1, ..., α4) and a orresponding period Gram matrix PS, suh that









2.11 −0.46 −0.42 −0.26
−0.46 0.33 −0.26 −0.11
−0.42 −0.26 2.11 −0.46
−0.26 −0.11 −0.46 0.33









≤ PS ≤









2.53 0.20 0.42 0.26
0.20 0.44 0.26 0.11
0.42 0.26 2.53 0.20
0.26 0.11 0.20 0.44









.
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In Setion 4.4, the results are summarized in Table 1 and 2 and ompared with the upper bound

fusimp(FNj) that an be obtained from the method in [BS℄ applied to Q-piees. This bound is in

general muh larger than fu(FNj).
We note that the upper bound fu(FNj) is lose to the lower bound f l(FNj), if a large part of

the ut lous CL(αj) of αj is ontained in Qi and if ℓ(αj) · |twj| is small. The �rst ondition is

ful�lled if the length ℓ(βi) of the boundary geodesi βi is small, the seond if both ℓ(αj) and |twj|
are small. This justi�es the hoie of αi in inequality (1). It is noteworthy that for |twj| = 0 and
ℓ(βi) small the estimates are almost sharp, independent of the length ℓ(αj).
Sine the estimates for the entries of PS are linear ombinations of the funtions (fu(FNj))j and
(f l(FNj))j , the estimates are good if all Fenhel-Nielsen oordinates involved are small. Note

that by [BSe2℄ there exists a anonial basis for a Riemann surfae of genus g, where the largest

element is of order g. Hene, at least the ondition on the length of the geodesis involved an

in priniple be satis�ed for small g.

The advantage of the method is that information about the geometry of the surfae an be

inorporated. Suppose, for example, that the geometry of Y1, the surfae of signature (0, 3), or
Y-piee, attahed to the Q-piee Q1 is known. Then for j ∈ {1, 2, 12} the ut lous CL(αj) ∩
(Q1 ∪ Y1) an be alulated. Inorporating this information we obtain better estimates for the

orresponding entries of the period Gram matrix. Information about isometries of the surfae

an also be inorporated. This is shown in Example 3.2.

2 Preliminaries

Many alulations presented in the following setions rely on the embedding of topologial tubes

around simple losed geodesis of Riemann surfaes into hyperboli ylinders and subsequent ap-

proximations and alulations in Fermi oordinates. These onepts are presented in Setion 2.1.

To desribe these tubes we make use of the geometry of hyperboli polygons. The orresponding

trigonometri formulas are given in Setion 2.2. Finally, Setion 2.3 presents the de�nition of

the Fenhel-Nielsen oordinates used throughout the paper.

2.1 Fermi oordinates and apaity estimates

The Poinaré model of the hyperboli plane is the following subset of the omplex plane C,

H = {z = x+ iy ∈ C | y > 0}

with the hyperboli metri ds2 = 1
y2
(dx2 + dy2).

Fermi oordinates ψ, with baseline η and base point p, are de�ned as follows: the Fermi oordi-

nates are a bijetive parametrization of H

ψ : R2 → H, ψ : (t, s) 7→ ψ(t, s),

where ψ(0, 0) = p. Eah point q = ψ(t, s) ∈ H an be reahed by starting from the base point p

and moving along η, the direted distane t to ψ(t, 0). There is a unique geodesi, ν, interseting
η perpendiularly in ψ(t, 0). From ψ(t, 0) we now move along ν the direted distane s to ψ(t, s).
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A hyperboli ylinder C or shortly ylinder is a set isometri to

{ψ(t, s) | (t, s) ∈ [0, b] × [a1, a2]} mod {ψ(0, s) = ψ(b, s) | s ∈ [a1, a2]},

with the indued metri from H. The baseline of C is the simple losed geodesi γ in C, whih

has length ℓ(γ) = b.

Consider a ylinder C. Let U ⊂ C be a set and F ∈ Lip(Ū) a Lipshitz funtion on the losure

of U . Let G be the metri tensor with respet to the Fermi oordinates. Then, the energy of F

on U , EU (F ) is given by

EU (F ) =

∫∫

ψ−1(U)

‖D(F ◦ ψ)‖2G−1

√

det(G).

Using Fermi oordinates, we obtain EU (F ) with F ◦ ψ = f :

EU (F ) =

∫∫

ψ−1(U)

1

cosh(s)

∂f(t, s)

∂t

2

+ cosh(s)
∂f(t, s)

∂s

2

ds dt ≥

∫∫

ψ−1(U)

cosh(s)
∂f(t, s)

∂s

2

. (2)

The apaity of an annulus R ⊂ C, cap(R) is given by

cap(R) = inf{ER(F ) | {F ∈ Lip(R̄) | F |∂1R = 0, F |∂2R = 1}}.

In [Mu1℄, we obtain general upper and lower bounds on the apaity of annuli on a ylinder of

onstant urvature. These annuli are obtained by a ontinuous deformation of the ylinder itself.

The upper bound is obtained by onstruting a test funtion as explained next. We adapt the

known harmoni funtion that solves the apaity problem for ylinders of a onstant width to

the boundary, using the parametrization of a ylinder in Fermi oordinates. We obtain a lower

bound by determining expliitly the funtion p, that satis�es the boundary onditions of the

apaity problem on R and minimizes the last integral in the above inequality (2). If the annulus

R ⊂ C is given in Fermi oordinates by

R = ψ{(t, s) | s ∈ [a1(t), a2(t)], t ∈ [0, ℓ(γ)]},

where a1(·) and a2(·) are pieewise di�erentiable funtions with respet to t. Then by [Mu1℄,

Theorem 4.1 we have:

Theorem 2.1. There exists a Lipshitz funtion F̃ ∈ Lip(R), suh that forH(s) = 2 arctan(exp(s))

and qi(t) =
∂H(s0)
∂s

|s0=ai(t) · a
′
i(t) for i ∈ {1, 2}, we have:

ℓ(γ)
∫

t=0

1 + q1(t)2+q1(t)q2(t)+q2(t)2

3

H(a2(t))−H(a1(t))
dt = E(F̃ ) ≥ cap(R) ≥

ℓ(γ)
∫

t=0

1

H(a2(t))−H(a1(t))
dt.

The estimate is sharp if the boundary is onstant. In this ase, a1(t) = a1, a2(t) = a2, and

R = C ′
is itself an embedded ylinder. Espeially, for a1 = −a2, this simpli�es to

cap(C ′) =
ℓ(γ)

π − 2 arcsin((cosh(a1))−1)
. (3)

The estimate worsens, if the variation of the boundary,

ℓ(γ)
∫

t=0

|a′1(t)|
2 + |a′2(t)|

2 dt inreases.
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2.2 Hyperboli trigonometry

Hyperboli trigonometry is a basi tool in Setion 4 of this paper. We will give here the formulas

of the polygons used in the following setions:

a c

α
b

a

β
ϕ

α

b

Figure 1: Right-angled triangle and triretangle

1.) Right-angled triangles

cosh(ℓ(c)) = cosh(ℓ(a)) cosh(ℓ(b))

cos(α) = tanh(ℓ(b)) coth(ℓ(c)) and sinh(ℓ(a)) = sin(α) sinh(ℓ(c))

2.) Triretangles

cosh(ℓ(a)) = tanh(ℓ(β)) coth(ℓ(b)) and sinh(ℓ(α)) = sinh(ℓ(a)) cosh(ℓ(β))

a

β c

α

b

a

β

c

α
b

γ

Figure 2: Right-angled pentagon and hexagon

3.) Right-angled pentagons

cosh(ℓ(c)) = sinh(ℓ(a)) sinh(ℓ(b)) and cosh(ℓ(c)) = coth(ℓ(α)) coth(ℓ(β))

4.) Right-angled hexagons

cosh(ℓ(c)) = sinh(ℓ(a)) sinh(ℓ(b)) cosh(ℓ(γ)) − cosh(ℓ(a)) cosh(ℓ(b))
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2.3 Y-piees and Fenhel-Nielsen oordinates

An important lass of hyperboli Riemann surfaes with geodesi boundary are the surfaes of

signature (0, 3), or Y-piees. Any Riemann surfae of signature (g, n) an be deomposed into

or built from these basi building bloks.

The geometry of a hyperboli Y-piee is determined by the length of its three boundary geodesis.

If Y is a Y-piee with boundary geodesis γ1, γ2, γ3, then we an introdue a marking on Y. The
marking entails labelling the boundary omponents to obtain the marked Y-piee Y[γ1, γ2, γ3].
For Y[γ1, γ2, γ3], we introdue a standard parametrization of the boundaries as explained below.

Let cij be the geodesi ar going from γi to γj that meets these boundaries perpendiularly. We

set S
1 = R mod (t 7→ t+ 1) and parametrize all boundary geodesis

γi : S
1 → Y[γ1, γ2, γ3], γi : t 7→ γi(t),

suh that eah geodesi is traversed one and with the same orientation. We parametrize the

geodesis, suh that γ1(0) is the endpoint of c31, γ2(0) is the endpoint of c12, and γ3(0) is the
endpoint of c23 (see Figure 3).

γ1

γ2 γ3

c12

c23

c31

Figure 3: A marked Y-piee Y[γ1, γ2, γ3]

Two marked Y-piees Y and Y ′
, that have a boundary geodesi of the same length, an be pasted

together. If γ1 ⊂ Y and γ′1 ⊂ Y ′
are the geodesis of equal length, then we an glue Y and Y ′

using the identi�ation

γ1(t) = γ′1(−t+ tw), t ∈ S
1,

where tw ∈ R is an additional onstant, alled the twist parameter. We obtain the surfae

Y + Y ′ mod (γ1(t) = γ′1(−t+ tw), t ∈ S
1).

If γ is the simple losed geodesi in Y + Y ′
, whih orresponds to γ1 in Y, then we all tw the

twist parameter at γ.

Every Riemann surfae S of signature (g, n) an be built from 2g− 2 + n Y-piees. The pasting

sheme an be enoded in a graph G(S) (see [Bu℄, pp. 27 -30).

Let L(S) be the set of 3g−3+n lengths of simple losed geodesis in the surfae S, orresponding

to the boundary geodesis of the Y-piees from the onstrution. Let A(S) be the set of 3g−3+n
twist parameters that de�ne the gluing of these geodesis. Then, any Riemann surfae S an be

onstruted from the information provided in the triplet (G(S), L(S), A(S)).
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De�nition 2.2. (L(S), A(S)) is the sequene of Fenhel-Nielsen oordinates of the Riemann

surfae S.

We �nally note that any Riemann surfae an be onstruted taking all twist parameters in the

interval (−1
2 ,

1
2 ] (see [Bu℄, Theorem 6.6.3) and will make use of this fat in Setion 4.

3 Theoretial estimates for the period Gram matrix

Let S be a Riemann surfae of genus g ≥ 2, A a anonial basis, and PS the period Gram matrix

of S with respet to A,

PS = (pij)i,j=1,...,2g =





∫

S

σi ∧
∗σj





i,j=1,...,2g

.

Here we �rst show how to obtain bounds on the diagonal entries of PS using the geometry of

embedded ylinders around the elements of the anonial basis. This approah an be elaborated

to obtain estimates for all entries of PS . It relies on the premise that the ut lous of a given

simple losed geodesi on a Riemann surfae an be (at least partially) alulated.

3.1 Estimates for the diagonal entries of PS

Let T (ατ(i)) ⊂ S be a topologial tube whih is obtained by a ontinuous deformation of a small

embedded ylinder C(ατ(i)) in S of onstant width. We will see in Setion 3.1.1 that the apaity

of suh a tube gives an upper bound for the energy of σi, E(σi) = pii. Consider without loss of

generality E(σ1) = p11.

We will use the tube obtained by utting open S along the ut lous CL(α2) of α2. The ut

lous of a subset X ⊂ S, CL(X) is de�ned as follows:

CL(X) := {y ∈ S | ∃γx,y, γx′,y, γx,y 6= γx′,y, with x, x
′ ∈ X and dist(x, y) = ℓ(γx,y) = ℓ(γx′,y)},

(4)

where γa,b denotes a geodesi ar onneting the points a and b. We denote by SX the surfae,

whih we obtain by utting open S along CL(X). For a set X ⊂ S, set

Zr(X) = {x ∈ S | dist(x,X) ≤ r}. (5)

If U is a union of disjoint simple losed geodesis (γi)i=1,...,n, then for a su�iently small r,

Zr(U) onsists of disjoint ylinders around these geodesis. We obtain CL(U) by letting r grow

ontinuously until Zr(U) self-intersets. We stop the expansion at the points of intersetion, but

ontinue expanding the rest of the set, until the proess halts. The points of intersetion then

form CL(U). It follows from this proess that the surfae SU , that we obtain by utting open S

along CL(U), an be retrated onto the union of small ylinders around (γi)i=1,...,n. If U = γ,

then SU an be embedded into an su�iently large ylinder C around γ. For more information

about the ut lous, see [Ba℄.

Consider an embedding of Sα2 = S2 in a ylinder C (see Figure 4), whih, by abuse of notation,

we also all S2. The boundary ∂S2 of S2 ⊂ C onsists of the two onneted omponents ∂1S2
and ∂2S2, whih are pieewise geodesi (see [Ba℄). Fixing a base point x ∈ S2 ⊂ C, we an
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S2
α2

α1

α3
α4

C

α2

α1

α3

α3

α4

Figure 4: Embedding of S2 = Sα2 in a ylinder around α2

onstrut a primitive F1 of σ1 by integrating σ1 along paths starting from the base point x. As
∫

α2

σ1 = 0, the value of the integral is independent of the hosen path in S2. Hene, there exists

a primitive F1 of σ1 on S2 ⊂ C. Furthermore, F1 is a real harmoni funtion, as σ1 is a real

harmoni 1-form. We reall that the value of the integral of σ1 over a losed urve depends only

on the homology lass of the urve. In partiular, the value of the integral is the same for two

urves in the same free homotopy lass.

The onditions on the anonial basis A imply the following boundary onditions for F1. For

eah point p1 on the boundary ∂S2 ⊂ C, there exists a point p2, suh that p1 and p2 map to the

same point p on S, and

F1(p2)− F1(p1) = 0 or F1(p2)− F1(p1) = 1.

We olor p1 and p2 blue in the �rst ase and red in the seond ase and all suh a deomposition

a red-blue deomposition of the ut lous (see Figure 4).

Let CLblue(α2) and CL
red(α2) denote the blue and the red parts of CL(α2), both in S and S2.

Then

CL(α2) = CLblue(α2) ∪CL
red(α2).

For the red-blue deomposition that is obtained via the ut lous CL(α2), the following holds.

If p1 and p2 are blue, then p1 and p2 lie on the same side of the boundary ∂S2. If p1 and p2 are

red, then they lie on di�erent sides of ∂S2. This follows from the relationship of the anonial

1-forms with the intersetion number of urves (see [FK℄, hapter III). At the intersetion of the

red and the blue parts of a boundary, there exist a �nite number points that are both red and

blue.

We now onnet the endpoints of two orresponding opposite red boundary segments in the

red-blue deomposition of S2 ⊂ C with di�erentiable urves. Then the urves, together with

the boundary segments of S2, enlose a subset of S2. Note that some of these urves may ross.

10



Therefore we hoose from S2 a subset of urves, suh that these do not mutually interset and

denote by Sred2 the union of all enlosed areas obtained this way.

3.1.1 Upper bound

Let T (α2) ⊂ S be a topologial tube (with pieewise di�erential boundary) whih is obtained by

a ontinuous deformation of a small embedded ylinder C(α2) with baseline α2.

Let σ̃1 be a losed 1-form that satis�es

∫

[αk]

σ̃1 = δ1k for all k ∈ {1, ..., 2g}. (6)

Then σ1 is the unique energy-minimizing losed 1-form satisfying the above equation. Hene,

E(σ1) ≤ E(σ̃1).
Let F be a funtion, that solves the apaity problem for T (α2), i.e.

F |∂1T (α2) = 0 , F |∂2T (α2) = 1 and cap(T (α2)) = E(F ).

We an smoothen F in an ǫ-environment U ⊂ T (α2) of the boundary of T (α2), to obtain a

di�erentiable funtion F ′
1 on T (α2) that satis�es:

There are open subsets U1 ⊃ ∂1T (α2) and U2 ⊃ ∂1T (α2) of U , suh that

F ′
1|U1 = 0, F ′

1|U2 = 1 and E(F ′
1)− ǫ = E(F ) = cap(T (α2)),

where ǫ > 0 is a positive real number whih an be hosen arbitrarily lose to zero. We obtain a

losed 1-form σ′1 setting

σ′1 =

{

0
dF ′

1
on

S\{T (α2)}
T (α2)

.

Now, due to Stokes theorem, σ′1 is losed 1-form, that satis�es Equation (6). Hene

E(σ1) ≤ E(σ′1) = cap(T (α2)) + ǫ,

where ǫ an be hosen arbitrarily small. The above inequality is also used in [BS℄, where T (α2) =
C(α2) is an embedded ylinder, but the method is not desribed as expliitly there.

Setting T (α2) = S2, we obtain that the apaity cap(S2) of S2 ⊂ C provides an upper bound

on the energy of σ1. We obtain an upper bound on cap(S2) by evaluating the energy of any

test funtion F1t, that is a Lipshitz funtion on S2 and satis�es the boundary onditions of the

apaity problem (see [GT℄). As S2 ⊂ C is an annulus that satis�es the onditions of Theorem

2.1, suh a funtion F1t is provided there:

E(F1t) ≥ cap(S2) ≥ E(σ1) = p11. (7)

3.1.2 Lower bound

We obtain a lower bound on p11 = E(F1) as explained next. Consider the set Sred2 . Remember

that in eah onneted subset of Sred2 there are boundary points p1 and p2 on opposite sides,

suh that F1(p2)− F1(p1) = 1. We get:

E(σ1) = E(F1) ≥

∫

Sred
2

‖DF1‖
2
2.
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Let I be a disjoint union of intervals in R and

ϕ : I × [a1, a2] → Sred2 , ϕ : (t, s) 7→ ϕ(t, s)

a bijetive funtion that parametrizes Sred2 as follows:

ϕ(I × {a1}) = Sred2 ∩ ∂1S2 and ϕ(I × {a2}) = Sred2 ∩ ∂2S2

and for a �xed c ∈ I, ϕ({c} × [a1, a2]) is a di�erentiable urve in Sred2 , suh that

F1(ϕ(c, a2))− F1(ϕ(c, a1)) = 1.

Denote by F1 the set of funtions

F1 = {f : Sred2 → R | f ∈ Lip(Sred2 ) and f(ϕ(c, a2))− f(ϕ(c, a1)) = 1 ∀ c ∈ I}.

We an obtain a lower bound on p11 = E(σ1) = E(F1) if we �nd a funtion f̃1, suh that

∫

Sred
2

‖Df̃1‖
2
2 = min

f∈F1

∫

Sred
2

‖Df‖22. (8)

We all this problem the free boundary problem for Sred2 .

Though this problem is quite interesting in its own right, we ould not �nd an expliit solution.

To obtain an expliit result, we onstrut another lower bound based on projetion of tangent

vetors on urves. For a x = ϕ(c, a) ∈ Sred2 denote by pϕ : Tx(S
red
2 ) → {λ · ∂ϕ(c,a)

∂s
| λ ∈ R} the

orthogonal projetion of a tangent vetor in x onto the subspae spanned by

∂ϕ(c,a)
∂s

. Then we

have:

E(F1) ≥

∫

Sred
2

‖DF1‖
2
2 ≥

∫

Sred
2

‖pϕ(DF1)‖
2
2 ≥ min

f∈F1

∫

Sred
2

‖pϕ(Df)‖
2
2 =

∫

Sred
2

‖pϕ(Df1)‖
2
2. (9)

Here, f1 is a funtion that realizes the minimum. We have

∫

Sred
2

‖DF1‖
2
2 =

∫

Sred
2

‖pϕ(DF1)‖
2
2, if

and only if in every point ϕ(t, s) = x ∈ Sred2 , ϕ(t, ·) is orthogonal to the level set of F1 passing

through x. Note that the problem of �nding the funtion f1 is in general easier than �nding the

funtion F1 or f̃1. We will apply these ideas to Q-piees in Setion 4. To this end we will use

results from the alulus of variations.

Summarizing the inequalities (7)-(9), we obtain the following estimates for p11 = E(σ1):

E(F1t) ≥ cap(Sα2) ≥ E(σ1) = E(F1) ≥ min
f∈F1

∫

Sred
2

‖Df‖22 ≥ min
f∈F1

∫

Sred
2

‖pϕ(Df)‖
2
2. (10)

Note that the upper bound di�ers from the lower bound. One reason for this di�erene is that the

test funtion whose energy provides our upper bound has positive energy on S2\S
red
2 , whereas

the energy is zero in the estimate providing the lower bound. Another di�erene is due to the use

of the projetion along lines in the onstrution of the lower bound. In Setion 4, we will apply

these methods to a deomposition of the Riemann surfae, where the elements of the anonial

basis are ontained in Q-piees. There, we will see these two e�ets expliitly.
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3.2 Estimates for the non-diagonal entries of PS

We now show, how we an estimate the remaining entries of the period Gram matrix PS . Sine
∫

S

· ∧ ∗· is a salar produt, for i 6= j we have:

|pij| ≤
1

2
(E(σi) + E(σj)) , (11)

pij =
1

2
(E(σi + σj)− E(σi)− E(σj)) , and (12)

pij =
1

2
(E(σi) + E(σj)− E(σi − σj)) . (13)

We have shown how to �nd upper and lower bounds on E(σi) and E(σj). We obtain a diret

estimate of pij from inequality (11). However, to obtain a sharp estimate, both E(σi) and E(σj)
must be small. We will show how to obtain better estimates of pij from the following two

equations. If we an �nd upper and lower bounds on either E(σi + σj) or E(σi − σj), we will

obtain an estimate for pij .

Now σi + σj and σi − σj satisfy the following equations on the yles:

∫

[αk]

σi + σj = δik + δjk and

∫

[αk]

σi − σj = δik − δjk for all k ∈ {1, .., 2g}. (14)

There is a geodesi α in the free homotopy lass of either ατ(i) · ατ(j) or ατ(i)(ατ(j))
−1

whih is

a simple losed urve. Applying a base hange of the anonial basis, we an inorporate α into

a new basis. This an be done, suh that one of the two 1-forms σi + σj and σi − σj beomes

an element of the new dual basis. Hene we an obtain upper and lower bounds for the energy

of one of these harmoni forms using the methods from the previous subsetion.

Sine it is often di�ult to expliitly determine the geodesi α, we will present this approah

only for the ase αj = ατ(i). We present these estimates in Setion 3.2.1. If αj 6= ατ(i), we will

present an alternative approah in Setion 3.2.2. We will make use of both methods in Setion

4.

3.2.1 Estimates for a non-diagonal entry piτ(i)

Consider without loss of generality p12. Let α12 be the simple losed geodesi in the free homotopy

lass of α1 α2
−1
. We apply the base hange

A = (α1, α2, ..., α2g) → (α12, α2, ..., α2g) = A′.

This way we obtain the dual basis (σ′k)k=1,...,2g for A
′
, where

(σ1, σ1 + σ2, σ3, ..., σ2g) = (σ′1, σ
′
2, σ

′
3, ..., σ

′
2g).

Let F12 = F ′
2 be a primitive of σ1+σ2 = σ′2 on Sα12 = S12. We embed S12 into a ylinder C and

denote this surfae also by S12. Proeeding as in the previous subsetion, we obtain upper and

lower bounds on E(σ1 + σ2) = E(σ′2) from the geometry of S12:

E(F12t) ≥ cap(S12) ≥ E(σ1 + σ2) ≥ ESred
12

(pϕ(Df12)).
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Here F12t is the test funtion provided by Theorem 2.1, whose energy provides an upper bound

for cap(S12) and f12 is the funtion onstruted analogously to f1 (see inequality (9)).

Substituting the estimates of E(σ1+σ2), E(σ1), and E(σ2) in Equation (12), we obtain an upper

and lower bound on p12.

3.2.2 Estimates for a non-diagonal entry pij, where j 6= τ(i)

In this ase αi and αj do not interset. Consider without loss of generality p13. For ατ(1) = α2

and ατ(3) = α4 onsider Sα2 ∪α4 = S24. S24 onsists out of two onneted parts. Let S1
24 ⊂ Sα2

be the part that ontains α2 and let S3
24 ⊂ Sα4 be the part that ontains α4. We embed S1

24

into a ylinder C1 around α2 and S3
24 into a ylinder C3 around α4, and denote the embedded

surfaes by the same name. Due to the relationships in Equation (14), σ1 + σ3 has a primitive

on both S1
24 ⊂ C1 and S

3
24 ⊂ C3. Suh a deomposition is shown in Figure 5.

S1
24 α2

α1

S3
24

α3

α4

C1

α2

α1

C3

α3

α4

Figure 5: Embedding of Si24 in a ylinder Ci around ατ(i) for i ∈ {1, 3}

For i ∈ {1, 3}, let F̃i on Si24 be a funtion that satis�es boundary onditions for the apaity

problem on Si24. Together, these funtions naturally de�ne a funtion F̃13 on S24. By smoothing

F̃13 in an inner environment of the boundary of S24, we obtain a funtion f̃13 on S, whose

derivative df̃13 is a losed di�erential form that satis�es the same integral onditions on the

yles as σ1 + σ3. Due to the energy-minimizing property of σ1 + σ3, E(f̃13) ≥ E(σ1 + σ3).
Hene, the sum of the apaities of S1

24 and S
3
24 provides an upper bound for E(σ1 + σ3):

cap(S1
24) + cap(S3

24) ≥ E(σ1 + σ3).

We obtain a lower bound for E(σ1 + σ3) by applying the same methods used to obtain a lower

bound on E(σ1) on S2 (see Setion 3.1.2). Below, we obtain estimates from the red-blue deom-

positions indued by a primitive F13 of σ1+σ3 on the boundary of S1
24 in C1 and S

3
24 in C3. The

only di�erene is that we have some segments of the boundary, where the red-blue deomposition
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does not apply. Here we disregard these piees in the onstrution of S1red
24 and S3red

24 . As these

sets are disjoint, we need a ertain funtion f13 that satis�es

f13(p2)− f13(p1) = F13(p2)− F13(p1) = 1

for all points p1, p2 in ∂S
1red
24 or ∂S3red

24 . Let pϕ be the projetion of a vetor �eld in the tangent

spae onto lines of a suitable parametrization ϕ of S1red
24 and S3red

24 . Let f13 furthermore be a

funtion that minimizes the projeted energy E(pϕ(D·)). With Sr24 = S1red
24 ∪ S3red

24 , we have:

E(σ1 + σ3) ≥ ESr
24
(pϕ(Df13)).

Substituting the estimates for E(σ1 + σ3), E(σ1), and E(σ3) in Equation (12), we obtain upper

and lower bounds on p13:

p13 ≤
1

2

(

cap(S1
24) + cap(S3

24)− ESred
α2

(pϕ(Df1))− ESred
α4

(pϕ(Df3))
)

> 0 and (15)

p13 ≥
1

2

(

ESr
24
(pϕ(Df13))− cap(Sα2)− cap(Sα4)

)

< 0. (16)

In the above equation, f3 is the minimizing funtion orresponding to a primitive F3 of σ3 on

Sredα4
, onstruted analogously to f1 in Setion 3.1.2 (see inequality (9)). That our estimate for

p13 in the �rst inequality is bigger than zero an be seen as follows. By onstrution, we have

S1
24 ⊂ Sα2 and S3

24 ⊂ Sα4 .

Now, if an annulus R1 is ontained in an annulus R2, then cap(R1) ≥ cap(R2). Hene

cap(S1
24) ≥ cap(Sα2) > ESred

α2
(pϕ(Df1)) and cap(S3

24) ≥ cap(Sα4) > ESred
α4

(pϕ(Df3)),

from whih follows the last inequality in (15).

It follows furthermore from the boundary onditions of the funtions F1, F3, and F13 that

∂S1red
24 ⊂ ∂Sredα2

and ∂S3red
24 ⊂ ∂Sredα4

.

Hene

ESr
24
(pϕ(Df13)) = ES1red

24
(pϕ(Df13)) + ES3red

24
(pϕ(Df13)) ≤ ESred

α2
(pϕ(Df1)) + ESred

α4
(pϕ(Df3)).

Now the seond inequality in (16) follows from this inequality and the fat that ESred
α2

(pϕ(Df1)) <

cap(Sα2) and ESred
α4

(pϕ(Df3)) < cap(Sα4).

Using this approah, we an only obtain optimal estimates if p13 is lose to zero. This is due

to the fat that we do not have full information of the boundary values on our tubes S3
24 and

S1
24. This estimate is however better than the one obtained from Equation (11). Note that by

Example 1.3 the value of p13 is lose to zero, if α2 and α4 are separated by a small separating

simple losed geodesi γ.
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N

Ri−1

C(γi) C(γi+1)

ηi

η′i

Ri

Ri+1

L

α2

Ri−1

γi γi+1

ηi

η′i

νbi
νri νri+1

Ri

Ri+1

Figure 6: Building bloks for the surfaes N and L of genus g

3.3 Examples

We now give two examples to demonstrate the weaknesses and strengths of our method. We �rst

show that the energy of a dual harmoni form an be lower than the apaity of a ylinder of

even in�nite length. The upper bound on p22 in the following example is due to Peter Buser.

Example 3.1 For omparison we brie�y review the example of the neklae surfae given in

[BSe1℄. Let Y be a Y-piee, a surfae of signature (0, 3). Let γ, η and η′ be its boundary

geodesis, suh that η and η′ have equal length. We paste two opies of Y along η and η′ to

obtain R of signature (1, 2). As shown in Figure 6, the neklae surfae N of genus g is obtained

by pasting together g − 1 opies R1, ...,Rg−1 of a building blok R. The free boundary of Rg−1

is pasted along γ1 of R1 to obtain a ring. In this example, the twist parameter for any pasting

an be hosen arbitrarily.

By the ollar lemma (see [Bu℄, p. 106), eah γi has a ollar of width wγ , where

wγ ≥ arcsinh

(

1

sinh( ℓ(γ)2 )

)

.

Let A = (αi)i=1,...,2g be a anonial basis, suh that α1 = γ1 and ατ(1) = α2 is a simple losed

geodesi that intersets all (γi)i=1,...,g−1 exatly one. Let PS be the orresponding period Gram

matrix. We will examine the upper bound on the entry p22 = E(σ2).
Following our method, we have to embed N1 = Nα1 into a ylinder C1 and have to evaluate

cap(N1). Now if an annulus R1 is ontained in an annulus R2, then cap(R1) ≥ cap(R2), and
hene cap(N1) ≥ cap(C1). From Equation (3), it follows that the apaity of the ylinder C1

with baseline of length ℓ(α1) = ℓ(γ) of in�nite width is not zero. We obtain

cap(N1) ≥ cap(C1) =
ℓ(γ)

π
. (17)
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We now give another estimate for the energy of σ2 with the help of a test form s2. This approah

applies only to this example. To this end onsider the ollar C(γi) of a γi. On eah C(γi) set
s2 = dF2 , where F2 is the real harmoni funtion that has value 0 on one boundary of C(γi)

and

1
g−1 on the other. We set s2 = 0 on S\

g−1
⋃

i=1
C(γi). Then s2 is arbitrarily lose to a losed

form that satis�es the same onditions on the elements of A as σ2 and we have

E(σ2) < E(s2) ≤ (g − 1) ·
(g − 1)−2 · ℓ(γ)

π − 2 arcsin
(

1
cosh(wγ)

) , (18)

where wγ is bounded from below by the ollar lemma. Summing up the inequalities (17) and

(18), we obtain the �rst inequality for p22 in Example 1.1.

Hene, E(σ2) is at most of order

1
g
and goes to zero as g goes to in�nity. Our upper bound,

on the ontrary, is always bigger than the onstant

ℓ(γ)
π
. This shows that there exist examples

where our upper bound an not be of the right order. This might be due to the fat that the

projetion of CLblue(α1) onto α1 an attain almost the length of α1. Hene, as CLblue(α1) is
large, E(σ2) might be small.

Example 3.2 For our seond example we onstrut a linear surfae L of genus g. This ex-

ample belongs to the lass of M-urves desribed in [BSi℄. In this onstrution, we use Y-piees

Y, where the length of η and η′ is large. We onstrut R from two opies of these Y-piees

as in the previous example, however, here the twist parameter in the two pastings is zero. To

onstrut a surfae L of genus g, we paste together g − 2 opies R2, ...,Rg−1 along the γi (see

Figure 6). Then, we take two opies of Y, Y1, and Yg and paste eah together along η and η′

to obtain Q1, and Qg, respetively. For i ∈ {1, g}, let ηi denote the image of η in Qi. Then we

paste Q1 and Qg on eah side of R2 and Rg−1, respetively. Again, the twist parameter for any

pasting is zero.

Let A = (αi)i=1,...,2g be a anonial basis, suh that α1 = η1 and α2 is the unique simple losed

geodesi in Q1 that intersets α1 perpendiularly. Let PL be the orresponding period matrix.

We now show that in this ase, the upper bound for p22 = E(σ2) is optimal. Therefore we use

the symmetries of the surfae L.

To this end, we �rst determine the ut lous CL(α1) of α1. For i ∈ {2, ..., g} let νri be the

simple losed geodesi that intersets the geodesi γi perpendiularly. Set νb1 = α2 and for

i ∈ {2, ..., g − 1} let νbi ⊂ Ri be the simple losed geodesi that interset ηi and η
′
i perpendi-

ularly (see Figure 6). Set νrg+1 = ηg and let νbg be the simple losed geodesi interseting ηg
perpendiularly. We make the following laim:

Claim. The ut lous CL(α1) = CL(α1)
red ∪ CL(α1)

blue
of α1 in L onsists of the sets

CL(α1)
red = {νr2 , ..., ν

r
g+1} and CL(α1)

blue = {νb2, ..., ν
b
g}.

Proof. Set

CL1 = {νr2 , ..., ν
r
g+1} ∪ {νb2, ..., ν

b
g}.

We have to show that CL1 is indeed CL(α1). To this end, we show that for any point q in

L\{CL1} there exists exatly one geodesi ar realizing the distane between q and α1. It

follows from the de�nition of the ut lous (see (4)), that q does not belong to CL(α1). Hene
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CL(α1) ⊂ CL1. We reall that utting L along CL(α1) we obtain a tube. Now utting L along

CL1 we obtain a topologial tube and if only if we ut along all points of CL1. Hene it follows

that CL1 = CL(α1). The deomposition of CL(α1) into CL(α1)
red

and CL(α1)
blue

then follows

from the de�nition of the red-blue deomposition of CL(α1).
Let q be a point in L\{CL1 ∪ ν

b
1}. We �rst show that any geodesi ar realizing the distane

dist(q, α1) between q and α1 does not interset {CL1 ∪ νb1}. To this end we make use of the

isometries of L.

- Let φ1 ∈ Isom(L) be the hyperellipti involution that �xes CL1 as a set, suh that for all

i ∈ {2, .., g − 1}: φ1(ηi) = η′i.

- Let φ2 ∈ Isom(L) be the isometry that �xes CL1 as a set and all νbi point-wise.

- Set φ = φ1 ◦ φ2.

Now assume that there is a geodesi ar δ, suh that

dist(q, α1) = ℓ(δ),

with δ interseting {CL1 ∪ ν
b
1} transversally. We onsider two ases - either δ intersets one of

the (νbi )i=1,..,g or δ intersets one of the (νri )i=2,..,g+1.

In the �rst ase, we assume that δ intersets without loss of generality νb1 in a point s. Now, s

divides δ into two ars, δ1 onneting α1 and s and δ2 onneting s with q. Consider the point

φ2(q) and the geodesi ar φ2(δ). Sine φ2(α1) = α1, this is a geodesi ar, suh that

ℓ(φ2(δ)) = dist(φ2(q), φ2(α1)) = dist(φ2(q), α1) = ℓ(δ).

Sine φ2(s) = s, the urve d = φ2(δ
1) ∪ δ2 onnets α1 with q. Sine φ2 is an isometry, we

have ℓ(d) = ℓ(δ). But d intersets the geodesi νb1 under an angle θ. Hene, by applying a small

deformation to d, we an deform d into a urve d′, suh that

ℓ(d′) < ℓ(d) = ℓ(δ) = dist(q, α1),

whih ontradits the de�nition of δ. Hene δ does not interset {CL1 ∪ ν
b
1}.

If δ intersets one of the simple losed geodesi in the set (νri )i=2,..,g+1 then we obtain a on-

tradition in a similar fashion. In that ase we use the isometry φ instead of φ2 to obtain our

statement.

We now show that for any point in L\{CL1} there exists exatly one geodesi ar realizing the

distane between this point and α1, from whih follows that CL1 = CL(α1).
Assume to the ontrary and let q ∈ L\{CL1} be a point for whih there exist two geodesi ars

δ1 and δ2, suh that

dist(q, α1) = ℓ(δ1) = ℓ(δ2).

We �rst treat the ase where q 6∈ νb1. Consider the set {CL1 ∪ νb1 ∪ α1}. This set divides L

into two parts. Note that utting along {CL1 ∪ νb1 ∪ α1} eah embedded Y-piee from whih

L is built deomposes into two isometri right-angled hexagons. Let L1
and L2

be the surfaes

whih we obtain by utting L along CL1 ∪ ν
b
1 ∪ α1. Without loss of generality, let L1

be the

surfae ontaining q. L1
lifts to a hyperboli 4g-gon P4g in the universal overing, whih an be

tesselated by the aforementioned hexagons. Sine all angles at the verties are

π
2 , P4g is onvex.
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Let α′
1 be the smooth boundary line of P4g that maps to α1 under the overing map, and let

q′ ∈ P4g be a lift of q. Let δ′1 and δ′2 be a lift of δ1 and δ2, respetively, with endpoint q′.

As both δ1 and δ2 are ontained in L1
, δ′1 and δ′2 are ontained in P4g. Furthermore, sine δ1

and δ2 realize the distane between α1 and q, they meet α1 perpendiularly at their respetive

endpoints. Hene, δ′1 and δ
′
2 meet α′

1 perpendiularly at their endpoints. Let α′
be the ar of α′

1

onneting these two endpoints. Then α′
, δ′1, and δ

′
2 form a triangle where two interior angles

are

π
2 . But suh a triangle does not exist in the hyperboli plane. This is a ontradition. Hene,

for q ∈ L\{CL1 ∪ ν
b
1} there is only one geodesi ar in L realizing the distane between q and

α1 and therefore q 6∈ CL(α1).
Now, if q ∈ νb1, it follows from the geometry of Q1 that only the intersetion point of νb1 with ν

r
2

is part of CL(α1). To summarize, we obtain that CL1 = CL(α1). This settles our laim.

We now show that our apaity estimate for p22 = E(σ2) is almost sharp. To this end we

onsider again the isometries φ1, φ2 and φ in Isom(L). φ is the isometry that maps any point p

in CL(α1)
red ⊂ S1 to the orresponding point p′ in the red-blue omposition indued by σ2.

Consider now a primitive F2 of σ2 on Lα1 = L1. F2 ◦φ2 is a harmoni funtion, whose derivative

d(F2 ◦ φ2) de�nes a 1-form σ′2 on L. σ
′
2 satis�es the same onditions on the yles as σ2. Due to

the uniqueness of σ2, σ
′
2 = σ2. In the same way 1−F2 ◦φ1 is a harmoni form, whose derivative

−d(F2 ◦ φ1) de�nes a 1-form σ′′2 on L that satis�es the same integral onditions on the yles as

σ2. This leads to σ
′′
2 = σ2. By hoosing an appropriate additive onstant, we obtain:

F2 ◦ φ2 = F2 and

1− F2 ◦ φ1 = F2 ⇒ 1− F2 = F2 ◦ φ1.

Now, for any p on one side of CL(α1)
red ⊂ L1, we have

F2(p)− F2(φ(p)) = F2(p)− F2((φ1 ◦ φ2)(p))) = 1.

Using the two equations above this yields F2(p) − (1 − F2(φ2(p))) = 1 or likewise 2F2(p) = 2,
hene F2(p) = 1. As F2(p)− F2(φ(p)) = 1 it follows that F2(φ(p)) = 0. In total we obtain:

F2(φ(p)) = 0 and F2(p) = 1.

Hene, the red parts of the boundary satisfy the onditions for the apaity problem. Consider

the two boundary geodesis η and η′ of our building blok Y. If ℓ(η) = ℓ(η′) is large, then it

follows from hyperboli geometry that the urves (νbi )i=1,..,g are arbitrarily small. Hene in this

ase we obtain

p22 = E(σ2) = cap(L1)− ǫL,

where ǫL > 0 depends on the geometry of L and may beome arbitrarily small. Hene our upper

bound for a diagonal entry of PL is sharp. This is the inequality in Example 1.2.

4 Estimates for the period Gram matrix based on Q-piees

In this setion we present pratial estimates for the period Gram matrix, based on the Fenhel-

Nielsen oordinates of Q-piees ontaining the paired urves of a anonial basis. Under this

ondition, the ut loi of these urves an be (at least partially) alulated.
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More preisely, let S be a Riemann surfae of genus g ≥ 2. Let (Qi)i=1,3,..,2g−1 ⊂ S be a

set of Q-piees, whose interiors are pairwise disjoint. Let βi be the boundary geodesi of Qi, αi
an interior simple losed geodesi, and twi ∈ (−1

2 ,
1
2 ] the twist parameter at αi. The geometry

of Qi is determined by the triplet (ℓ(βi), ℓ(αi), twi).
Now �x an i ∈ {1, 3, .., 2g − 1}. Let ατ(i) ⊂ Qi be a simple losed geodesi that intersets αi
exatly one, and αiτ(i) ⊂ Qi the simple losed geodesi in the free homotopy lass of αi(ατ(i))

−1
.

For j ∈ {i, τ(i), iτ(i)}, let

- βj = βi be the boundary geodesi

- twj the twist parameter at αj

- FNj := (ℓ(βj), ℓ(αj), twj) the orresponding Fenhel-Nielsen oordinates of Qi.

In Lemma 4.2 we show how to �nd a suitable geodesi ατ(i) that intersets αi one and how to

alulate FNτ(i) and FNiτ(i) from FNi. This enables us to state estimates for all entries of the

period Gram matrix PS of S based on the 3g Fenhel-Nielsen oordinates (FNi)i=1,3,..,2g−1:

Theorem 4.1. Let S be a Riemann surfae of genus g ≥ 2 and (Qi)i=1,3,..,2g−1 ⊂ S be a set

of Q-piees, whose interiors do not mutually interset. If Qi is given in the Fenhel-Nielsen

oordinates FNi = (ℓ(βi), ℓ(αi), twi), where αi is an interior simple losed geodesi, suh that

cosh( ℓ(αi)
2 ) ≤ cosh( ℓ(βi)6 ) + 1

2 .

Then there is a simple losed geodesi ατ(i) ⊂ Qi, and a simple losed geodesi αiτ(i) in the free

homotopy lass of αi(ατ(i))
−1

, and the following funtions

fu, f l : R
+ × R

+ × (−
1

2
,
1

2
] → R

+
(see Setion 4.4)

fu : FNj 7→ fu(FNj) and f l : FNj 7→ f l(FNj),

that provide upper and lower bounds for all entries of the orresponding period Gram matrix

PS = (pij)i,j as follows:
For a diagonal entry pii, we have:

f l(FNτ(i)) ≤ pii ≤ fu(FNτ(i)).

For a non-diagonal entry piτ(i), we have:

pi,τ(i) ≤
1

2

(

fu(FNiτ(i))− f l(FNτ(i))− f l(FNi)
)

and

pi,τ(i) ≥
1

2

(

f l(FNiτ(i))− fu(FNτ(i))− fu(FNi)
)

.

For a non-diagonal entry pik, where k 6= τ(i), we have:

0 ≤ |pi,k| ≤
1

2

(

fu(FNτ(i)) + fu(FNτ(k))− f l(FNτ(i))− f l(FNτ(k))
)

.

The ondition on the length ℓ(αi) of αi in Theorem 4.1 is due to tehnial reasons. Suh a pair

(αi, βi) always exists by [Pa℄, Proposition 5.4. Though this assumption is not mandatory, it

will simplify the alulations in Setion 4.1.

In Setions 4.2 and 4.3, we develop the funtions fu and f l expliitly. In Setion 4.4, we

summarize these formulas and give a summary of our estimates in Table 1 and 2. Lastly, we give

a good example for our estimates in Example 4.3.
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4.1 Conversion of Fenhel-Nielsen oordinates for a Q-piee

Lemma 4.2. Let Q1 be a Q-piee given in the Fenhel-Nielsen oordinates (ℓ(β1), ℓ(α1), tw1),
where

- β1 is the boundary geodesi

- α1 an interior simple losed geodesi, suh that cosh( ℓ(α1)
2 ) ≤ cosh( ℓ(β1)6 ) + 1

2

- tw1 the twist parameter at α1.

Then, there is a simple losed geodesi α2 ⊂ Q1, and a simple losed geodesi α12 in the free

homotopy lass of α1(α2)
−1
, suh that

cosh(
ℓ(αk)

2
) = cosh

(

ℓ(α1)|t
′
k|

2

)

√

√

√

√

(

cosh( ℓ(β1)4 )

sinh( ℓ(α1)
2 )

)2

+ 1, where |t′k| =

{

|tw1|
1− |tw1|

if

k = 2
k = 12.

Furthermore, for k ∈ {2, 12}, let twk be the twist parameter at αk, then

|twk| = min{
2rk
ℓ(αk)

, 1−
2rk
ℓ(αk)

}, where rk = arctanh

(

tanh( ℓ(α1)|tw1|
2 ) tanh( ℓ(α1)

2 )

tanh( ℓ(αk)
2 )

)

.

α1
′ α1

∗

s′

θ

θ

r1

r2

η′1

η′2

α2
′

s∗

Figure 7: Two lifts of α1 in the universal overing

Proof. In Q1 there exists a unique shortest geodesi ar η1 meeting α1 perpendiularly on both

sides of α1. Figure 7 shows a lift of α1 and η1 in the universal overing, α1 lifts to α1
′
and α1

∗
and

η1 to η′1. Note that α1
′
and α1

∗
have the same orientations with respet to η′1. In the overing

there exist two points, s′ ∈ α1
′
and s∗ ∈ α1

∗
, on opposite sites of η′1 and at the same distane

from η′1, suh that s′ and s∗ are mapped to the same point s ∈ α1 by the overing map. Observe

that s′ and s∗ an always be found, suh that the distane r1 from η′1 is equal to
ℓ(α1)·|tw1|

2 . Let

α2
′
denote the geodesi from s′ to s∗. Using α2

′
we obtain two isometri right-angled geodesi

triangles. Sine α2
′
intersets s′ and s∗ under the same angle θ, the image α2 of α2

′
under the

universal overing map is a smooth simple losed geodesi, whih intersets α1 exatly one.
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Hene we an inorporate α2 into our anonial basis for S. Applying the osine formula to one

of the isometri triangles (see Setion 2.2), we obtain:

cosh(
ℓ(α2)

2
) = cosh(r1) cosh(

ℓ(η1)

2
), where r1 =

ℓ(α1) · |tw1|

2
.

The length ℓ(η1) of η1 an be alulated from a deomposition of Q1 into a Y-piee (see Equation

(20)), leading to

sinh(
ℓ(η1)

2
) =

cosh( ℓ(β1)4 )

sinh( ℓ(α1)
2 )

thus cosh(
ℓ(η1)

2
) =

√

√

√

√

(

cosh( ℓ(β1)4 )

sinh( ℓ(α1)
2 )

)2

+ 1.

For further alulations we also need the angle θ. From hyperboli geometry we obtain:

cos(θ) = tanh(
ℓ(α1) · |tw1|

2
) coth(

ℓ(α2)

2
) (19)

In Q1, there exists likewise a unique shortest geodesi ar η2 meeting α2 perpendiularly on both

sides of α2. This ar an be seen in Figure 7. Now α2 and α1 interset exatly one under

the angle θ. Consider a right-angled triangle with sides of length ℓ(α1
2 ), r2 and ℓ(η22 ). Here r2

ontains information about the twist parameter tw2 with respet to α2. We get:

cos(θ) = tanh(r2) coth(
ℓ(α1)

2
).

Together with Equation (19), we obtain:

tanh(r2) =
tanh( ℓ(α1)·|tw1|

2 ) coth( ℓ(α2)
2 )

coth( ℓ(α1)
2 )

and |tw2| = min(
2r2
ℓ(α2)

, 1 −
2r2
ℓ(α2)

).

We will now look for a suitable α12. Consider again the lifts of α1 in Figure 7. Consider the two

points, q′ ∈ α1
′
and q∗ ∈ α1

∗
on the opposite side of s′ and s∗ with respet to the intersetion

point with η1 and at distane ℓ(α1)− r1 from η′1. q
′
and q∗ are mapped to the same point q ∈ Q1

by the overing map. Conneting these points we obtain a geodesi ar α′
12, whih maps to a

simple losed geodesi α12 in Q1. It follows from its intersetion properties with α1 and α2 that

α12 is in the free homotopy lass α1(α2)
−1
. Using the same reasoning as for α2, we an �nd its

length and the twist parameter tw12, whih leads to Lemma 4.2.

4.2 Upper bounds for the energy of dual harmoni forms based on Q-piees

We will establish estimates for all entries of the period Gram matrix based on the geometry of the

Q-piees (Qi)i=1,3,..,2g−1. Following the approah given in Setion 3, it is su�ient to onstrut

suitable funtions on

Sγ ∩ Qi, where γ ∈ {αi, ατ(i), αiτ(i)}, for i ∈ {1, 3, .., 2g − 1}.

In this and the following subsetion, we will only show how to obtain estimates for E(σ1) = p11
based on the geometry of Q1. These estimates will only depend on the Fenhel-Nielsen oordi-

nates (ℓ(β1), ℓ(α2), tw2) ofQ1. In the same way, we obtain estimates for E(σ2) = p22 based on the
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oordinates (ℓ(β1), ℓ(α1), tw1), and for E(σ1+σ2) based on the oordinates (ℓ(β1), ℓ(α12), tw12).
Proeeding the same way on the remaining Q-piees and ombining these estimates as desribed

in Setion 3.2 (see Equations (12),(15) and (16)) we �nally obtain estimates for all entries of the

period matrix.

To obtain an upper bound for p11, we embed Sα2 ∩Q1 into a hyperboli ylinder C with baseline

α2 and denote this embedding by the same name. To obtain an estimate on E(σ1), we will give
a parametrization of

Sα2 ∩ Q1 ⊂ C

based on a deomposition into triretangles. To obtain this parametrization, we �rst ut open

Q1 along α2 to obtain the Y-piee Y1 with boundary geodesis β = β1, α2
1
and α2

2
. Both α2

1

and α2
2
have length ℓ(α2) (see Figure 8).

Denote by b the shortest geodesi ar onneting α2
1
and α2

2
. We ut open Y1 along the shortest

geodesi ars onneting β and the other two boundary geodesis. We all O1 the otagon, whih

we obtain by utting open Y1 along these lines. By abuse of notation, we denote the geodesi

ars in O1 by the same letter as in Y1. The geodesi ar b divides O1 into two isometri hexagons

H1 and H2. This deomposition is also shown in Figure 8.

Y1

β δ

α2
2

α2
1

b

O1

H1 H2

β
2

δ1 δ2

α2
2

α2
1

b

a1 a2

c

P1

β
4

b
2

a1

α1 α2

c

δ1

T1

T2

Figure 8: Deomposition of Y1 into isometri hexagons H1 and H2

In H1 b is the boundary geodesi onneting

α2
1

2 and

α2
2

2 . Denote by δ1 the shortest geodesi ar

in H1 onneting b and the side opposite of b of length ℓ(β2 ). By abuse of notation, we denote

this side by

β
2 . We denote by δ2 the ar in H2 orresponding to δ1 in H1. Let δ = δ1 ∪ δ2 be the

geodesi ar in O1 formed by δ1 and δ2. By abuse of notation, we denote the orresponding ar

in Q1 and Y1 that maps to δ1 ∪ δ2 in O1 also by δ. It follows from the symmetry of Y1 that δ

onstitutes the intersetion of the ut lous of α2 with Q1:

δ = CL(α2) ∩ Q1.

Let a1 denote the geodesi ar onneting α2
1

2 and

β
2 in H1, and a

2
the orresponding ar in H2

of the same length ℓ(a1) = ℓ(a2) = a. δ1 divides H1 into two isometri right-angled pentagons P1
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and P2. Let P1 be the pentagon that has

α2
1

2 as a boundary. To establish the parametrization

for Sα2 ∩Q1, we divide P1 into two triretangles. Let c be the geodesi ar in P1 that emanates

from the vertex, where

β
2 and δ1 interset and that meets

α2
1

2 perpendiularly. It divides

α2
1

2
into two parts, α1

and α2
(see Figure 8). c divides P1 into two triretangles T1 and T2, that have

boundaries α1
and α2

, respetively.

To obtain an upper bound for p11, we need to know the geometry of T1 and T2. Hene, we need
to know the lengths a, ℓ(α1), ℓ(α2), and ℓ(b)

2 . In the following subsetion we will also need the

length ℓ(c) of c, whih we will alulate here. To obtain these lengths, we will use the geometry

of H1, P1, T1 and T2. All formulas for the geometry of hyperboli polygons are given in Setion

2.2.

From the geometry of the hyperboli pentagon P1 we have:

sinh(
ℓ(b)

2
) =

cosh( ℓ(β)4 )

sinh( ℓ(α2)
2 )

(20)

cosh(ℓ(δ1)) = sinh(
ℓ(α2)

2
) sinh(a). (21)

Hene, we an express ℓ(b) in terms of ℓ(α2) and ℓ(β).
We obtain a, in terms of ℓ(b) and ℓ(α2), from the geometry of the hyperboli hexagon H1 and

ℓ(δ1) = ℓ(δ)
2 in terms of a and ℓ(α2) from Equation (21).

Finally, we an express ℓ(α2) and ℓ(c) in terms of ℓ(δ1) and ℓ( ℓ(b)2 ) using the geometry of the

hyperboli triretangles T1 and T2.
In total, we an express the lengths ℓ(b), a, ℓ(α2) and ℓ(α1) = ℓ(α2)

2 − ℓ(α2) in terms of ℓ(α2) and
ℓ(β). These formulas are simpli�ed and summarized in Equations (27)-(29).

With these formulas we an obtain a desription of the boundary of Sα2 ∩ Q1 ⊂ C. Consider

now δ ⊂ O1. δ divides O1 into two isometri hexagons. Let G1 be the hexagon that ontains

α2
1
as a boundary geodesi and G2 be the hexagon that ontains α2

2
as a boundary geodesi.

δ forms the ut lous of α2 in Q1. Denote by C2 the surfae that we obtain if we ut open Q1

along δ. C2 is a topologial ylinder around α2. A lift of C2 in the universal overing is depited

in Figure 9.

Let G′
1 and G′

2 denote two hexagons in this lift, that are isometri to the hexagons G1 and G2 in

O1, and that are adjaent along the lift α̃2 of α2. We denote by δ′ ⊂ G′
1 and δ′′ ⊂ G′

2 the two

sides orresponding to δ in O1. We keep the notation from O1, but denote all orresponding

geodesi ars in the overing spae with prime, i.e. a lift of α1
is denoted by α′1

et.

In the lift of C2 the two hexagons G
′
1 and G′

2 are shifted against eah other by the length |tw2|·ℓ(α2).
It an be seen from Figure 9, how to parametrize Sα2 ∩ Q1 in a ylinder C around α2. Here

all boundaries are boundaries of triretangles, whih are isometri to either T1 or T2, whih an

be parametrized in Fermi oordinates. Using these formulas in Theorem 2.1, we an �nd an

upper bound fu(FN2) for E(σ1):

fu(FN2) ≥ cap(Sα2 ∩ Q1) ≥ E(σ1) = p11.

These formulas are summarized in Setion 4.4 and the results are summarized in Table 1 and 2.
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G′
1

G′
2

δ′

δ′′

α′1 α′2

β′

2
b′

2c′

a′1 a′2

α̃2

Figure 9: Lift of C2 into the universal overing

4.3 Lower bounds for the energy of dual harmoni forms based on Q-piees

Consider a primitive F1 of σ1 in C2 = Sα2∩Q1 ⊂ C. The two geodesi ars δ′ and δ′′ orresponding

to δ ⊂ Q1 onstitute CL(α2)
red ∩ ∂C2. We will use the theoretial approah from Setion 3 to

obtain a onrete lower bound f l(FN2) for

p11 = ES(F1) > EB(F1) ≥ f l(FN2), where B = B2 = Sred2 ∩ C2.

We will give a suitable onstrution for B = Sred2 ∩C2 in Setion 4.3.1. To this end, we lift C2 into
the universal overing as in the previous subsetion (see Figure 9). We use the same notation

for the geodesi ars that our. The important ut-out from Figure 9 is depited in Figure 10.

B

V ′
λ

m

δ′

δ′′

α̃2

γ2p

γp

γ1p

D

µ1

µ2η
ν
m

λ

a′n

b′

2

Figure 10: The area B (grey) and the onstrution of skewed Fermi oordinates ψν

Let B be the grey hathed subset in the lift of C2 in Figure 10. We will now give an exat

desription and parametrization of B.
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4.3.1 Parametrization of B = Sred2 ∩ C2

The boundary of B ontains the lines δ′ and δ′′. For eah point p1 ∈ δ′, there exists a point

p2 ∈ δ′′, suh that p1 and p2 map to the same point p on δ ⊂ Q1. We may assume, without loss

of generality, that

F1(p2)− F1(p1) = 1 for all p1 ∈ δ
′.

We will desribe B as a union of lines, where eah line lp onnets p1 and p2. The line lp is

de�ned as follows. From p1 we go along the geodesi that meets α̃2 perpendiularly until we

meet ∂Z ℓ(b)
2

(α̃2), the boundary of the ollar Z ℓ(b)
2

(α̃2) (see de�nition (5)). We all this intersetion

point p′1 and the geodesi ar that forms γ1p . Let p′2 be the point on ∂Z ℓ(b)
2

(α̃2) on the other

side of α̃2 that an be reahed analogously, starting from p2. We now go along the geodesi ar

that onnets p′1 and p′2. We all this ar γp. Then from p′2, we move along the geodesi ar

onneting p′2 and p2. We all this ar γ2p . We de�ne lp as the line traversed in this way. Let B

be the disjoint union of these lines:

B =
⊎

p∈δ

{lp}

Let λ be the geodesi ar onneting the midpoints of δ′ and δ′′, and let m be the midpoint of

λ. We will use a bijetive parametrization ϕ of B:

ϕ : (t, s) 7→ ϕ(t, s), suh that

- ϕ(0, 0) = m

- for all t ∈ [−ℓ(α2), ℓ(α2)], ϕ(t, 0) ∈ α̃2 has direted distane t from m

- for a �xed t0 ∈ [−ℓ(α2), ℓ(α2)], ϕ(t0, ·) parametrizes the line lp that traverses α̃2 in a point

with direted distane t0 from m by ar length.

We parametrize the sets

⋃

p∈δ

{γ1p} and
⋃

p∈δ

{γ2p} in Fermi oordinates with baseline α̃2. The proper

parametrization an be dedued from the geometry of the triretangle T2.

We will parametrize Z ℓ(b)
2

(α̃2) ∩ B =
⋃

p∈δ

{γp} using skewed Fermi oordinates ψν , with angle

ν and baseline α̃2. These are de�ned in the same way as the usual Fermi oordinates ψ (see

Setion 2.1), but instead of moving along geodesis emanating perpendiularly from the base-

line, we move along geodesis that meet the baseline under the angle ν. We will not give these

oordinates expliitly, but will derive the essential information from the usual Fermi oordinates

ψ.

We remind the reader that λ is the geodesi ar onneting the midpoints of δ′ and δ′′. Its

midpoint m and the endpoints of

b′

2 are the verties of a right-angled triangle D (see Figure 10).

In our ase the angle ν for the oordinates ψν is the angle of D at the midpoint m. It follows

from the geometry of right-angled triangles that

cosh(
ℓ(λ)

2
) = cosh(

ℓ(b)

2
) cosh(

ℓ(α2)|tw2|

2
), (22)

where we assume, without loss of generality, that the twist parameter tw2 is in the interval [0, 12 ].
Otherwise the situation is symmetri to the depited one. Using the geometry of the right-angled
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triangle D we have:

sin(ν) =
sinh( ℓ(b)2 )

√

cosh( ℓ(b)2 )2 cosh( ℓ(α2)|tw2|
2 )2 − 1

. (23)

Consider the following geodesi ars in Z ℓ(b)
2

(α̃2) ∩ B. For a n ∈ N, let a′n be a geodesi ar of

length

2α2

n
on α̃2 with midpoint m. λ intersets a′n in m under the angle ν. This is depited in

Figure 10.

Let η′ be a geodesi interseting λ perpendiularly in m. Let µ1 and µ2 be two geodesi ars

with endpoints on Z ℓ(b)
2

(α̃2) that interset η
′
perpendiularly, suh that eah of the ars passes

through an endpoint of a′n on eah side of λ. Let η be the geodesi ar on η′ with endpoints on

µ1 and µ2. For �xed n ∈ N, we denote by ηn the length of η and by µn the length of µ1 and µ2:

ηn = ℓ(η) and µn = ℓ(µ1) = ℓ(µ2).

By hoosing usual Fermi oordinates with baseline η, we an parametrize the strip, whose bound-

ary lines are µ1 and µ2 and two segments of ∂Z ℓ(b)
2

(α̃2) (see Figure 10).

n suh strips an be aligned next to eah other to obtain a parametrization of Z ℓ(b)
2

(α̃2)∩B. For

n→ ∞ we obtain a parametrization ψν of Z ℓ(b)
2

(α̃2) ∩B. We get:

lim
n→∞

n · ηn = sin(ν)2ℓ(α2) and lim
n→∞

µn = ℓ(λ).

Combining the parametrizations for the several piees of B, we may assume that we have a

parametrization ϕ that satis�es our onditions. For pratial purposes, we extend the parametriza-

tion ϕ to the geodesis meeting ∂Z ℓ(b)
2

∩B perpendiularly in the diretion opposite of α̃2.

4.3.2 Evaluating the lower bound for p11 = ES(F1)

Consider a point p1 = ϕ(t0,−x) ∈ δ′ and p2 = ϕ(t0, x) ∈ δ′′. The funtion F1 satis�es the

boundary onditions F1(p2) = 1 + c̃ and F1(p2) = c̃, where c̃ is a onstant. As we will see in the

following, the onstant c̃ is not important for our estimate and we assume that c̃ = 0.
We onsider the strip V , where

V = ϕ([t0 − ǫ, t0]× [−x, x]), where ǫ > 0 if t0 < 0 and ǫ < 0 if t0 > 0.

We will show how to obtain a lower bound for the energy of F1|V , EV (F1) for a su�iently small

ǫ. We an align these strips to obtain a lower bound for EB(F1) ≤ E(F1). We derive a lower

bound for the energy of F1|V , assuming that

F1|ϕ([t0−ǫ,t0]×{−x}) = F1(p1) = 0 and F1|ϕ([t0−ǫ,t0]×{x}) = F1(p2) = 1 and

F1|ϕ([t0−ǫ,t0]×{−ℓ(λ)
2

})
= F1(p

′
1) = a′1 and F1|ϕ([t0−ǫ,t0]×{ ℓ(λ)

2
})

= F1(p
′
2) = a′2.

Consider the subset V ′
of V given by

V ′ = ϕ([t0 − ǫ, t0]× [
−ℓ(λ)

2
,
ℓ(λ)

2
]).
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Let Ft0 = ft0 ◦ ψ
ν
be a funtion de�ned on V ′

that realizes the minimum

min{

∫

V ′

‖pϕ(Df)‖
2
2 | f ∈ Lip(V ′), f |

ϕ([t0−ǫ,t0]×{−ℓ(λ)
2

}
= a1 and f |ϕ([t0−ǫ,t0]×{ ℓ(λ)

2
}
= a2} (see (9)).

Considering skewed Fermi oordinates as a limit ase of Fermi oordinates with respet to an

imaginary baseline η, and by applying the alulus of variations (see [Ge℄, p. 14-16) to the last

integral in Equation (2), we obtain ft0 as follows:

ft0(t, s) =
a2 − a1

H( ℓ(λ)2 )−H(− ℓ(λ)
2 )

H(s) +
a1H( ℓ(λ)2 )− a2H(− ℓ(λ)

2 )

H( ℓ(λ)2 )−H(− ℓ(λ)
2 )

,

where H(s) = 2 arctanh(exp(s)). The energy EV ′(pϕ(DFt0)) is

EV ′(pϕ(DFt0)) =
(a2 − a1)

2 sin(ν)|ǫ|

2(arctan(exp( ℓ(λ)2 ))− arctan(exp(− ℓ(λ)
2 )))

= k1(a2 − a1)
2|ǫ|. (24)

We an extend Ft0 to a funtion on V that satis�es the boundary onditions

Ft0 |ϕ([t0−ǫ,t0]×{±x}) = F1|ϕ([t0−ǫ,t0]×{±x}).

As before, we hoose Ft0 suh that it minimizes EV \V ′(pϕ(D(·))) with the given boundary on-

ditions. We have with EV \V ′(pϕ(DFt0)) = EV \V ′(Ft0):

EV \V ′(Ft0) =
(a21 + (1− a2)

2)|ǫ|

2(arctan(exp(x(t0)))− arctan(exp( ℓ(b)2 )))
= k2(t0)(a

2
1 + (1− a2)

2)|ǫ|, (25)

where x(t0) = ℓ(γ1p) +
ℓ(b)
2 , suh that ϕ(t0, ·) parametrizes the line lp. For a1 = a′1 = F1(p

′
1) and

a2 = a′2 = F1(p
′
2), we have by onstrution EV (F1) ≥ EV (pϕ(DFt0)).

Though we do not know the values a′1 and a′2, we obtain a lower bound of the energy of F1 on

V , if we determine the values Ft0(p
′
1) = c1 = c1(t0) and Ft0(p

′
2) = c2 = c2(t0), respetively, suh

that these values are minimizing the total energy EV (pϕ(Ft0)). As the two ars γ1p and γ2p have

the same length, we have to solve the following problem:

Find c1, c2, suh that 1− c2 = c1 ⇔ (c2 − c1) = 1− 2c1, and

EV (pϕ(DFt0)) = EV ′(pϕ(DFt0)) + EV \V ′(Ft0)

is minimal. We obtain from Equations (24) and (25) that c1 =
k1

k2(t0)+2k1
. We an over B with

a set of suh strips Vt0 = V , suh that these interset only on the boundary and ombine the

Ft0 |Vt0 to a funtion f1 on B. We have EV (F1) ≥ EV (pϕ(Df1)).
As we onsider only the energy EB(pϕ(Df1)) of the projetion, the approximation is true in

the limit ase, where ǫ → 0. Due to the symmetry of the area B we obtain in total with c1 in

Equations (24) and (25):

p11 = E(F1) ≥ EB(pϕ(Df1)) = 2

ℓ(α2)
∫

t=0

k1k2(t)

k2(t) + 2k1
dt = f l(ℓ(β1), ℓ(α2), tw2). (26)
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EV \V ′(pϕ(DFt0)) is monotonously dereasing if x(t0)−
ℓ(b)
2 in Equation (25) is inreasing. Hene

we �nd a simpler approximation for E(F1), setting x(t0) := ℓ(c′) = ℓ(c) (see Figure 9). In this

ase, we an set k2(t) = k2(ℓ(α
2)) for all t. We obtain furthermore a simpli�ed upper bound, if

we de�ne our test funtion only on Zw′(α2), where w
′ = min{a, ℓ(b)2 }. This upper bound fusimp

orresponds to the method from [BS℄ applied to a Q-piee. The expliit formulas for f lsimp and

fusimp are summarized in inequality (30).

To obtain the lower bound f l that depends only on ℓ(α2), |tw2|, and ℓ(β1) we �rst have to

express

ℓ(b)
2 and ℓ(λ) and ν in terms of these variables (see Equations (20),(22) and (23)). Using

the parametrization of T2 in Equation (25), we an then express f l in terms of ℓ(α2), |tw2| and
ℓ(β1). This way we obtain expliit values in Equation (26). These formulas are summarized in

the following subsetion.

4.4 Summary

In this setion, we summarize the formulas from the previous subsetions and outline our esti-

mates in Table 1 and 2. We also give an example for our estimates in Example 4.3. First, we

give a desription of fu and f l from Theorem 4.1.

4.4.1 Upper bound fu from Theorem 4.1

In the remaining part of this paper we �x the notation in the following way.

For j ∈ {i, τ(i), iτ(i)}, let Qi be a Q-piee given in Fenhel-Nielsen oordinates

FNj = (ℓ(βj), ℓ(αj), twj), where βj = βi is the boundary geodesi of Qi, and twj ∈ (−1
2 ,

1
2 ] be

the twist parameter at an interior simple losed geodesi αj . We have from Setion 4.2:

sinh(
ℓ(b)

2
) =

cosh(
ℓ(βj)
4 )

sinh(
ℓ(αj)
2 )

(27)

coth(a) = tanh(
ℓ(b)

2
) cosh(

ℓ(αj)

2
) and sinh(ℓ(c)) =

cosh( ℓ(β)4 )
√

tanh( ℓ(b)2 )2 cosh(
ℓ(αj )
2 )2 − 1

.(28)

coth(ℓ(α2)) = cosh(
ℓ(b)

2
)2 tanh(

ℓ(αj)

2
) and ℓ(α1) =

ℓ(αj)

2
− ℓ(α2). (29)

Using the above, we obtain a desription of the ut lous CL(αj) ∩Qi in a ylinder Cj in Fermi

oordinates. Set S
1
αj

= R mod (t 7→ t+ ℓ(αj)). For l ∈ {1, 2} let

al : S
1
αj

→ R, al : t 7→ al(t)

be a parametrization of the two onneted omponents of CL(αj) ∩ Qi in Cj . Then

a2(t) : =

{

arctanh(cosh(t− ℓ(α2)) tanh( ℓ(b)2 ))
arctanh(cosh(t− (2ℓ(α2) + ℓ(α1))) tanh(a2 ))

if

t ∈ (0, 2ℓ(α2)]
t ∈ (2ℓ(α2), ℓ(αj)]

a1(t) : = −a2(t+ |twj |)
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Applying Theorem 2.1 to estimate the apaity of Sαj
∩ Qi with boundary CL(αj) ∩ Qi, we

obtain:

fu(Nj) :=

ℓ(αj)
∫

t=0

1 + 1
3 ·
(

(a′1(t))
2

cosh2(a1(t))
+

a′1(t)
cosh(a1(t))

·
a′2(t)

cosh(a2(t))
+

(a′2(t))
2

cosh2(a2(t))

)

2(arctan(exp(a2(t)))− arctan(exp(a1(t))))
dt ≥

cap(Sαj
∩ Qi) ≥

ℓ(αj )
∫

t=0

1

2(arctan(exp(a2(t)))− arctan(exp(a1(t))))
dt := fulow(FNj),

where fulow(FNj) is a lower bound for the apaity of Sαj
∩ Qi.

4.4.2 Lower bound f l from Theorem 4.1

Based on Setion 4.3, we �rst give a suitable onstrution for Sredj ∩Qi, where j ∈ {i, τ(i), iτ(i)}.
From Equations (22) and (23) we obtain (see Figure 10):

cosh(
ℓ(λ)

2
) = cosh(

ℓ(b)

2
) cosh(

ℓ(αj)|twj |

2
) and sin(ν) =

sinh( ℓ(b)2 )
√

cosh( ℓ(b)2 )2 cosh(
ℓ(αj )|twj |

2 )2 − 1
.

Using the above we obtain a desription of the ut lous CL(αj)
red∩Qi in a ylinder Cj in Fermi

oordinates. Let

ared : [0, 2ℓ(α
2)] → R, ared : t 7→ ared(t)

be a parametrization of one of the two onneted omponents of CL(αj)
red ∩ Qi. Then

ared(t) := arctanh(cosh(t− ℓ(α2)) tanh(
ℓ(b)

2
)) for t ∈ [0, 2ℓ(α2)]

From Equation (24) and (25) (see Setion 4.3.2) we have:

k1 =
sin(ν)

2(arctan(exp( ℓ(λ)2 ))− arctan(exp(− ℓ(λ)
2 )))

k2(t) : =
1

2(arctan(exp(ared(t)))− arctan(exp( ℓ(b)2 )))
for t ∈ [0, 2ℓ(α2)].

Finally, we obtain the lower bound f l(FNj) on E(στ(j)), where στ(iτ(i)) = σi+στ(i) from Equation

(26):

E(στ(j)) ≥ 2

ℓ(α2)
∫

t=0

k1k2(t)

k2(t) + 2k1
dt := f l(FNj).
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We also provide here the simpli�ed upper and lower bound fusimp(FNj) and f
l
simp(FNj), respe-

tively. For w′ = min{a, ℓ(b)2 }:

fusimp(FNj) =
ℓ(αj)

2(arctan(ew′)− arctan(e−w′))
≥ E(στ(j)) ≥

2ℓ(α2)k1k2(ℓ(α
2))

k2(ℓ(α2)) + 2k1
= f lsimp(FNj).

(30)

From (fu(FNj))j and (f l(FNj))j all entries of PS an be alulated. This follows from Equa-

tions (12),(15), and (16).

The following two tables provide a omparison of the estimates for the energy of a harmoni

form based on the geometry of a Q-piee Qi, given in Fenhel-Nielsen oordinates FNj =
(ℓ(βj), ℓ(αj), twj) Here twj = 0 in Table 1 and twj =

1
4 in Table 2.

ℓ(βj) ℓ(αj) fusimp(FNj) fu(FNj) fulow(FNj) f l(FNj) f lsimp(FNj)

1 0.45 0.55 0.42 0.40 0.32

2 1.39 1.41 1.14 1.11 0.69

1 5 14.81 8.70 8.17 8.13 1.83

10 359.74 112.46 111.85 111.80 3.71

20 106778.29 16772.11 16771.50 16771.45 7.39

1 0.44 0.47 0.41 0.33 0.29

2 1.31 1.23 1.08 0.95 0.67

2 5 13.57 7.87 7.49 7.30 2.00

10 329.05 102.76 102.30 102.11 4.20

20 97667.22 15340.96 15340.49 15340.22 8.53

1 0.43 0.44 0.40 0.12 0.11

2 1.15 1.10 1.01 0.36 0.33

5 5 8.26 5.41 5.17 3.82 1.81

10 196.51 62.08 61.71 60.30 4.72

20 58319.75 9161.19 9160.80 9159.37 10.46

1 0.46 0.58 0.42 0.01 0.01

2 1.39 1.41 1.14 0.03 0.03

10 5 10.82 6.41 6.13 0.65 0.57

10 60.64 26.06 25.60 17.54 3.59

20 17959.42 2828.11 2827.62 2819.53 9.90

1 0.46 0.69 0.42 0.000068 0.000068

2 1.42 1.86 1.17 0.000212 0.000212

20 5 15.21 9.18 8.41 0.004493 0.004493

10 262.37 82.11 81.71 0.66 0.57

20 1484.09 347.17 346.61 231.58 6.81

Table 1: twj = 0: Comparison of the estimates for the energy of a harmoni form based on

the geometry of a Q-piee Qi, given in Fenhel-Nielsen oordinates FNj = (ℓ(βj), ℓ(αj), 0), for
j ∈ {i, τ(i), iτ(i)}
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ℓ(βj) ℓ(αj) fusimp(FNj) fu(FNj) fulow(FNj) f l(FNj) f lsimp(FNj)

1 0.45 0.55 0.41 0.39 0.32

2 1.39 1.43 1.12 1.00 0.65

1 5 14.81 7.73 7.00 0.90 0.67

10 359.74 61.96 60.94 0.04 0.04

20 106778.29 2750.28 2749.10 0.00011 0.00011

1 0.44 0.47 0.40 0.33 0.29

2 1.31 1.22 1.07 0.87 0.63

2 5 13.57 6.92 6.44 0.91 0.70

10 329.05 56.48 55.76 0.04 0.04

20 97667.22 2515.41 2514.53 0.00012 0.00012

1 0.43 0.44 0.40 0.12 0.11

2 1.15 1.10 1.01 0.34 0.32

5 5 8.26 5.12 4.82 0.92 0.74

10 196.51 35.62 35.11 0.06 0.06

20 58319.75 1504.60 1503.90 0.00018 0.00018

1 0.46 0.59 0.42 0.010 0.010

2 1.39 1.42 1.12 0.032 0.032

10 5 10.82 5.78 5.46 0.41 0.37

10 60.64 19.40 18.75 0.14 0.14

20 17959.42 484.70 483.96 0.14 0.0005

1 0.46 0.72 0.42 0.000068 0.000068

2 1.42 1.83 1.15 0.000205 0.000205

20 5 15.21 8.32 7.21 0.003701 0.003701

10 262.37 45.52 44.96 0.18 0.18

20 1484.09 99.69 98.69 0.0042 0.0042

Table 2: twj = 1
4 : Comparison of the estimates for the energy of a harmoni form based on

the geometry of a Q-piee Qi, given in Fenhel-Nielsen oordinates FNj = (ℓ(βj), ℓ(αj),
1
4), for

j ∈ {i, τ(i), iτ(i)}
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Example 4.3 Let Q1 and Q3 be two isometri Q-piees given in Fenhel-Nielsen oordinates

FN1 and FN3, respetively, where

FNi = (ℓ(βi), ℓ(αi), twi) = (2, 1, 0.1), for i ∈ {1, 3},

where βi is the boundary geodesi, αi an interior simple losed geodesi, and twi the twist

parameter at αi. Let

S = Q1 +Q3

be a Riemann surfae of genus 2, whih we obtain by gluing Q1 and Q3 along β1 and β3 with

arbitrary twist parameter twβ ∈ (−1
2 ,

1
2 ]. Then there exists a anonial basis A = (α1, ..., α4)

and a orresponding period Gram matrix PS , suh that









2.11 −0.46 −0.42 −0.26
−0.46 0.33 −0.26 −0.11
−0.42 −0.26 2.11 −0.46
−0.26 −0.11 −0.46 0.33









≤ PS ≤









2.53 0.20 0.42 0.26
0.20 0.44 0.26 0.11
0.42 0.26 2.53 0.20
0.26 0.11 0.20 0.44









.

This follows from Theorem 4.1. For the Q-piee Q1 we obtain the following Fenhel Nielsen

oordinates FNj from Lemma 4.2 and the orresponding estimates for fu(FNj) and f
l(FNj):

j ℓ(βj) ℓ(αj) |twj | fusimp(FNj) fu(FNj) f l(FNj)

1 2 1 0.1 0.44 0.47 0.33

2 2 3.032 0.017 3.16 2.53 2.11

12 2 3.243 0.132 3.73 2.85 2.05

Table 3: A Q-piee Q1 given in di�erent Fenhel-Nielsen oordinates FNj = (ℓ(βj), ℓ(αj), twj)
and the values of the orresponding funtions fusimp(FNj), f

u(FNj) and f
l(FNj)

Aknowledgement

The presented work was supported by the Alexander von Humboldt foundation. I would like to

thank Peter Buser and Hugo Akrout for helpful disussions and Paman Gujral for proofreading

the manusript.

Referenes

[Ba℄ Bavard, C. : Anneaux extrémaux dans les surfaes de Riemann, Manusripta math-

ematia, 117 (2005), 265�271.

[BL℄ Birkenhake, Ch. and Lange, H. : Complex Abelian varieties, Grundlehren der math-

ematishen Wissenshaften (302), Springer-Verlag, Berlin Heidelberg New York,

(2004).

[BMMS℄ Buser, P., Makover, E., Muetzel, B. and Silhol, R. : The Jaobian of Riemann

surfaes with short simple losed geodesis (2012) (in preparation)

33



[BPS℄ Balahe�, F., Parlier H. and Sabourau, S. : Short loop deompositions of surfaes

and the geometry of Jaobians, Geom. Funt. Anal. 22(1) (2012), 37�73.

[BS℄ Buser, P. and Sarnak, P. : On the Period Matrix of a Riemann Surfae of Large

Genus (with an Appendix by Conway,J.H. And Sloane,N.J.A.), Inventiones Mathe-

matiae 117(1) (1994), 27�56.

[BSe1℄ Buser, P. and Seppälä, M. : Short homology bases and partitions of Riemann sur-

faes, Topology 41(5) (2002), 863�871.

[BSe2℄ Buser, P. and Seppälä, M. : Triangulations and homology of Riemann surfaes,

Pro. Amer. Math. So. 131(2) (2003), 425�432.

[BSi℄ Buser, P. and Silhol, R. : Geodesis, Periods, and equations of real hyperellipti

urves, Duke M. J. 108 (2001), 211�250.

[Bu℄ Buser, P. : Geometry and Spetra of ompat Riemann surfaes, Progress in math-

ematis (106), Birkhäuser Verlag, Boston, (1992).

[FK℄ Farkas, H.M. and Kra, I. : Riemann Surfaes 2nd edition, Springer-Verlag, (1992).

[Ge℄ Gelfand, I.M. : Calulus of variations, Dover Publiations, New York, (2000).

[GT℄ Goldshtein, V. and Troyanov, M. : Capaities in metri spaes, Integral Equations

and Operator Theory 44 (2002), 212�242.

[MM℄ Massart D. and Muetzel B. : On the intersetion form of surfaes, Manusripta

Mathematia 143(1-2) (2014), 19�49.

[Mu1℄ Muetzel, B. : Inequalities for the apaity of non-ontratible annuli on ylinders of

onstant and variable negative urvature, Geom. Dediata 166(1) (2013), 129�145.

[Mu2℄ Muetzel, B. : On the seond suessive minimum of the Jaobian of a Riemann

surfae, Geom. Dediata 161 (1) (2012), 85�107.

[Pa℄ Parlier, H. : On the geometry of simple losed geodesis, PhD thesis, Eole Poly-

tehnique Fédérale de Lausanne, (2004).

[Se℄ Seppälä, M. : Computation of Period Matries of Real Algebrai-Curves, Disrete

and Computational Geometry 11(1) (1994), 65�81.

34


