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ON THE INVERSE MAPPING CLASS MONOIDS

R. KAROUI AND V. V. VERSHININ

Abstract. Braid groups and mapping class groups have many features in common. Similarly

to the notion of inverse braid monoid inverse mapping class monoid is defined. It concerns

surfaces with punctures, but among given n punctures several can be omitted. This corresponds

to braids where the number of strings is not fixed. In the paper we give the analogue of the

Dehn-Nilsen-Baer theorem, propose a presentation of the inverse mapping class monoid for a

punctured sphere and study the word problem. This shows that certain properties and objects

based on mapping class groups may be extended to the inverse mapping class monoids. We

also give an analogues of Artin presentation with two generators.
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1. Introduction

Mapping class group is an important object in Topology, Complex Analysis, Algebraic Ge-
ometry and other domains. It is a lucky case when the method of Algebraic Topology works
perfectly well, the application of the functor of fundamental group completely solves the topo-
logical problem: group of isotopy classes of homeomorphisms is described in terms of automor-
phisms of the fundamental group of the corresponding surface, as states the Dehn-Nilsen-Baer
theorem, see [11], for example.

Let Sg,b,n be an oriented surface of the genus g with b boundary components and a set Qn of n
fixed points. Consider the group Homeo(Sg,b,n) of orientation preserving self-homeomorphisms
of Sg,b,n which fix pointwise the boundary (if it exists) and map the setQn into itself. Orientation
reversing homeomorphisms also possible to consider, see [4], for example, but for the simplicity
of exposition we restrict ourselves to orientation preserving case. Let Homeo0(Sg,b,n) be the
normal subgroup of self-homeomorphisms of Sg,b,n which are isotopic to identity. Then the
mapping class group Mg,b,n is defined as a quotient group
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Figure 2.1

Mg,b,n = Homeo(Sg,b,n)/Homeo0(Sg,b,n)

These groups are connected closely with braid groups. In [16] W. Magnus interpreted the
braid group as the mapping class group of a punctured disc with the fixed boundary. Braid
groups have a variety of generalizations, see [25], for example. One of generalizations is the
inverse braid monoid IBn constructed by D. Easdown and T. G. Lavers [5].

The notion of inverse semigroup was introduced by V. V. Wagner in 1952 [27]. By definition
it means that for any element a of a semigroup (monoid) M there exists a unique element b
(which is called inverse) such that

a = aba

and
b = bab.

The typical example of an inverse monoid is a monoid of partial (defined on a subset) in-
jections of a set. For a finite set this gives us the notion of a symmetric inverse monoid In
which generalizes and includes the classical symmetric group Σn. A presentation of symmetric
inverse monoid was obtained by L. M. Popova [22], see also formulas (2.1), (2.3 -2.4) below.

2. Inverse braid monoids and inverse mapping class monoids

Inverse braid monoid arises from a very natural operation on braids: deleting several strands.
By the application of this procedure to braids in Brn we get partial braids [5]. Applying the
standard procedure of multiplication of braids (concatenation) to partial braids we need to
eliminate all not complete strands, as it is shown at Figure 2.1. If all strands are eliminated
we get an empty braid. The set of all partial braids with this operation forms an inverse braid
monoid IBn.

Usually the braid group Brn is given by the following Artin presentation [1]. It has the
generators σi, i = 1, ..., n− 1, and two types of relations:

(2.1)

{

σiσj = σj σi, if |i− j| > 1,

σiσi+1σi = σi+1σiσi+1 .

There exist other presentations of the braid group. Let

σ = σ1σ2 . . . σn−1,
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then the group Brn is generated by σ1 and σ because

σi+1 = σiσ1σ
−i, i = 1, . . . n− 2.

The relations for the generators σ1 and σ are the following

(2.2)

{

σ1σ
iσ1σ

−i = σiσ1σ
−iσ1 for 2 ≤ i ≤ n/2,

σn = (σσ1)
n−1.

The presentation (2.2) was given by Artin in the initial paper [1]. This presentation was also
mentioned in the books by F. Klein [13] and by H. S. M. Coxeter and W. O. J. Moser [3].

Classical braid group Brn can be defined also as the mapping class group of a disc D2 with n
points deleted (or fixed) and with its boundary fixed, or as the subgroup of the automorphism
group of a free group AutFn, generated by the following automorphisms:











xi 7→ xi+1,

xi+1 7→ x−1
i+1xixi+1,

xj 7→ xj, j 6= i, i+ 1.

Geometrically this action is depicted in Figure 2.2, where xi correspond to the canonical loops
on D2 which form the generators of the fundamental group of the punctured disc.

This topological interpretation of the braid group was continued in [26] for the inverse braid
monoid. Let Qn the set of n fixed points of a disc D2. The fundamental group of D2 with these
points deleted is isomorphic to Fn. Consider homeomorphisms of D2 onto a copy of the same
disc with the condition that only k points of Qn, k ≤ n (say i1, . . . , ik) are mapped bijectively
onto the k points (say j1, . . . , jk) of the second copy of D2, k varies from 0 to n and n is fixed.
Consider the isotopy classes of such homeomorphisms and denote the set of them by IMn(D2).
Evidently it is a monoid.

Theorem 2.1. [26] The monoids IBn and IMn(D2) are isomorphic.

The following presentation for the inverse braid monoid was obtained in [5]. It has the
generators σi, σ

−1
i , i = 1, . . . , n− 1, ǫ, and relations

(2.3)























σiσ
−1
i = σ−1

i σi = 1, for all i,

ǫσi = σiǫ for i ≥ 2,

ǫσ1ǫ = σ1ǫσ1ǫ = ǫσ1ǫσ1,

ǫ = ǫ2 = ǫσ2
1 = σ2

1ǫ

and the braid relations (2.1).
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Geometrically the generator ǫ means that the first strand in the trivial braid is absent.
If we replace the first relation in (2.3) by the following set of relations

(2.4) σ2
i = 1, for all i,

and delete the superfluous relations

ǫ = ǫσ2
1 = σ2

1ǫ,

we get a presentation of the symmetric inverse monoid In [22] . We also can simply add the
relations (2.4) if we do not worry about redundant relations. We get a canonical map [5]

(2.5) τn : IBn → In,

which is a natural extension of the corresponding map for the braid and symmetric groups.
More balanced relations for the inverse braid monoid were obtained in [9]. Let ǫi denote the

trivial braid with ith strand deleted, formally:
{

ǫ1 = ǫ,

ǫi+1 = σ±1
i ǫiσ

±1
i .

The generators are: σi, σ
−1
i , i = 1, . . . , n− 1, ǫi, i = 1, . . . , n, and relations are the following:

(2.6)



















































σiσ
−1
i = σ−1

i σi = 1, for all i,

ǫjσi = σiǫj, for j 6= i, i+ 1,

ǫiσi = σiǫi+1,

ǫi+1σi = σiǫi,

ǫi = ǫ2i ,

ǫi+1σ
2
i = σ2

i ǫi+1 = ǫi+1,

ǫiǫi+1σi = σiǫiǫi+1 = ǫiǫi+1,

plus the braid relations (2.1).
If we take the presentation (2.2) for the braid group we get a presentation of the inverse

braid monoid with generators σ1, σ
−1
1 , σ, σ−1, ǫ, and relations [26]:

(2.7)































σ1σ
−1
1 = σ−1

1 σ1 = 1,

σσ−1 = σ−1σ = 1,

ǫσiσ1σ
−i = σiσ1σ

−iǫ for 1 ≤ i ≤ n− 2,

ǫσ1ǫ = σ1ǫσ1ǫ = ǫσ1ǫσ1,

ǫ = ǫ2 = ǫσ2
1 = σ2

1ǫ,

plus (2.2).
Similar to braids the notion of mapping class monoid was introduced in [26]. The definition

is as follows.
It is convenient to consider the surface Sg,b,n, sometimes with n points fixed, sometimes

deleted. Let f be a homeomorphism of Sg,b,n which maps k points, k ≤ n, from Qn: {i1, . . . , ik}
to k points {j1, . . . , jk} also from Qn. The same way let h be a homeomorphism of Sg,b,n

which maps l points, l ≤ n, from Qn, say {s1, . . . , sl} to l points {t1, . . . , tl} again from Qn.
Consider the intersection of the sets {j1, . . . , jk} and {s1, . . . , sl}, let it be the set of cardinality
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m, (m ≤ k), it may be empty. Then the composition of f and h maps m points of Qn to m
points (may be different) of Qn. For example, suppose for the simplicity of notations that

{j1, . . . , jk} ∩ {s1, . . . , sl} = {j1, . . . , jm} = {s1, . . . , sm},

then the composition h ◦ f maps the points {i1, . . . , im} to {t1, . . . , tm}. If m = 0 then the
composition has no relation to the set Qn. Denote the set of isotopy classes of such maps by
IMg,b,n. Composition defines a structure of monoid on IMg,b,n. It is evident that the monoid
IMg,b,n is inverse, so we call it the inverse mapping class monoid. If g = 0 and b = 1 we get
the inverse braid monoid. In the general case of IMg,b,n the role of the empty braid plays the
mapping class group Mg,b (without fixed points). Each element f ∈ IMg,b,n corresponds a
(partial) bijection

{i1, . . . , ik} → {j1, . . . , jk}.

This defines a canonical homomorphism to the symmetric inverse monoid:

(2.8) τg,b,n : IMg,b,n → In.

We recall that a monoid M is factorisable if M = EG where E is a set of idempotents of M
and G is a subgroup of M .

Proposition 2.1. [26] The monoid IMg,b,n can be written in the form

IMg,b,n = EMg,b,n,

where E is a set of idempotents of IMg,b,n and Mg,b,n is the corresponding mapping class group.
So, this monoid is factorisable.

Similar to braids we introduce the idempotent elements ǫi ∈ IMg,b,n as isotopy classes of
identity map

Id : Sg,b → Sg,b,

where during isotopy all points of the set Qn are fixed with the exception of the point with
number i. The element ǫ1 is denoted by ǫ.

We call an element m of the mapping class monoid IMg,b,n i-Makanin or i-Brunnian if it
satisfies the equation:

(2.9) ǫim = ǫi.

Geometrically this means that if we fill the deleted point i at the surface, then a homeomorphism
h lying in the class m

h : Sg,b → Sg,b,

becomes isotopical to the identity map

Id : Sg,b \ {1, . . . , î, . . . , n} → Sg,b \ {1, . . . , î, . . . , n}.

The condition (2.9) is equivalent to the condition

mǫτ(m)(i) = ǫτ(m)(i),

where τ is the canonical map to the symmetric inverse monoid (2.8). With the exception of
ǫi itself all such elements belong to the mapping class group Mg,b,n. We denote the subgroup
of i -Makanin elements of the mapping class group by Ai. The subgroups Ai, i = 1, . . . , n,
are conjugate. The intersection of all subgroups of i -Makanin elements is the of Makanin or
Brunnian subgroup of the mapping class group

Makg,b,n = ∩n
i=1Ai.
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That is the same as m ∈ Makg,b,n if and only if the equation (2.9) holds for all i. Certain
properties of Makanin subgroups of the mapping class groups are studied in the work Benson
Farb, Christopher J. Leininger and Dan Margalit [7]

The purpose of this paper is to develop further the theory of inverse mapping class monoids,
to demonstrate that canonical properties of mapping class groups often have there smooth
continuation for the inverse mapping class monoid IMg,b,n.

3. Properties of inverse mapping class monoids

Following the ideology of considering partial symmetries instead of global ones [15] we can
define the monoid of partial automorphisms of a group as follows. For a group G consider a
set of partial isomorphisms

f : H → K,

where H,K are subgroups of G. The composition of f with the isomorphism

g : L→M,

(L,M are subgroups of G) is a superposition of f and g which is defined on (K ∩ L)f−1:

fg : (K ∩ L)f−1 → (K ∩ L)g,

The set of all such partial isomorphisms with this operation form a monoid which is evidently
inverse and which we call the inverse partial automorphism monoid of a group G and denote
by IPA(G).

In the case when the group G is a finitely generated free group Fn the following submonoid
EFn of IPA(Fn) was defined in [26]. Let a be an element of the symmetric inverse monoid In,
a ∈ In, so a is a partial injection with the elements i1, . . . , ik as its domain of the definition.
Denote by Jk = {j1, . . . , jk} the image of a. The monoid EFn consists of isomorphisms

< xi1 , . . . , xik >→ < xj1 , . . . , xjk
>

expressed by

fa : xi 7→ w−1
i xa(i)wi,

if i is among i1, . . . , ik and not defined otherwise and wi is a word on xj1 , . . . , xjk
. The compo-

sition of fa and gb, a, b ∈ In, is defined for xi belonging to the domain of a ◦ b. We put xjm
= 1

in a word wi if xjm
does not belong to the domain of definition of g. We define a map φn from

IBn to EFn expanding the canonical inclusion

Brn → AutFn

by the condition that φn(ǫ) as a partial isomorphism of Fn is given by the formula

φn(ǫ)(xi) =

{

xi if i ≥ 2,

undefined, if i = 1.

Using the presentation (2.3) we see that φn is a well defined homomorphism of monoids

φn : IBn → EFn.

The following statement was proved in [26].

Theorem 3.1. The homomorphism φn is a monomorphism.
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As usual, we define the (g, b, n)-surface group as a group with the presentation

πg,b,n =< a1, c1, . . . , ag, cg, v1, . . . , vb, u1, . . . , un |
n

∏

i=1

ui

b
∏

l=1

vl

g
∏

m=1

[am, cm] > .

It is the fundamental group of a surface of genus g with b components of a boundary and
n punctures. The generators ai, ci correspond to the genus of a surface, the generators vj

correspond to boundary components and the generators uk correspond to punctures.
In our construction of the inverse mapping class monoid IMg,b,n we are passing from maps

which are fixing a set of n points to maps which are fixing the set with a smaller number of
points. If we consider these points deleted it means we are filling the holes. On the level of
fundamental groups this means passing to quotient group.

Let H be a quotient group of πg,b,n, defined by the conditions

ui = 1 for all i 6∈ {i1, . . . , ik},

and let K be a quotient group of πg,b,n, defined by the conditions

uj = 1 for all j 6∈ {j1, . . . , jk}.

Let t be an element of the symmetric inverse monoid In, t ∈ In, so t is an injection with
elements i1, . . . , ik constituting the domain of the definition of t. Let Jk = {j1, . . . , jk} be the
image of t. Let wi be a word on letters a1, c1, . . . , ag, cg, v1, . . . , vb, uj1 , . . . , ujk

. Let IAut πg,b,n

be the monoid consisting of isomorphisms

ft : H → K,

such that
{

ft(vm) = vm for m = 1, . . . , b,

ft(ui) = w−1
i u(i)twi, if i is among i1, . . . , ik,

for all subgroups H and K of the type defined above, for all k = 0, 1, . . . , n. Here the index
(i)t of the element u(i)t means the image of the element i by the action of the injection t, so
(i)t ∈ Jk.

The composition of ft and gs, t, s ∈ In, is defined for ui belonging to the domain of t ◦ s. We
put ujm

= 1 in a word wi if ujm
does not belong to the domain of definition of gs.

By our construction to each element of ft ∈ IAut πg,b,n the element t ∈ In is associated. This
gives a canonical homomorphism

(3.1) τg,b,n : IAut πg,b,n → In.

For the simplicity of exposition we restrict ourselves to the case of empty boundary which
was described in the book of W. Magnus, A. Karrass and D. Solitar [18, Sec. 3.7], and we
denote πg,0,n by πg,n. Let us define an equivalence relation in IAut πg,n: for f1 and f2

f1, f2 : H → K.

Such isomorphisms f1 and f2 are equivalent if they differ by an inner automorphism of the
group H, their domain of definition, i.e. if there exists an element q ∈ H such that

f1(q
−1xq) = f2(x).

This equivalence is in fact a congruence on the monoid IAut πg,n and we denote the corre-
sponding quotient monoid by IOut πg,n. This is similar to the classical case of groups when a
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homomorphism is defined from a mapping class group of a surface to the group of outer auto-
morphisms of the fundamental group of the surface. The homomorphism τg,b,n : IAut πg,b,n → In
of (3.1) factors through IOut πg,n and we have a homomorphism

(3.2) τg,b,n : IOut πg,b,n → In.

Let us take an arbitrary element η of IMg,n. It is represented by a homeomorphism of a surface
with k points deleted (among our n fixed points) onto another copy of the surface with (may
be) different k points deleted

h : Sg,n \ {i1, . . . , ik} → Sg,n \ {j1, . . . , jk}.

It defines the bijection ĥ between the conjugacy classes of π1(Sg,n \ {i1, . . . , ik}) and π1(Sg,n \

{j1, . . . , jk}). We define ĥ as an algebraic image of η in IOut πg,n. Formally a homomorphism
of monoids

ψg,n : IMg,n → IOut πg,n.

is defined by the formula
ψg,n(η) = ĥ.

This homomorphism is compatible with homomorphisms τg,b,n of (2.8) and (3.2).

Theorem 3.2. The homomorphism ψn is an isomorphism of monoids.

Proof. The monoid IMg,n as a set is a disjoint union of copies of mapping class groups Mg,k,
for k = 0, . . . n, namely, Ck

n copies of Mg,k for each k. Our constructions are done so that for
each copy of Mg,k the map ψg,n is a bijection because of the Dehn-Nilsen-Baer theorem. �

4. Inverse mapping class monoids for punctured sphere

The following presentation for the mapping class group of a punctured sphere M0,n was ob-
tained by W. Magnus [16], see also[18]. Let σ1, . . . , σn−1, denote the classes of homeomorphisms
such that σi locally interchanges, say clockwise, the punctures with numbers i and i+ 1. Then
the presentation has generators σ1, . . . , σn−1, which satisfy the braid relations (2.1), the sphere
relation

(4.1) σ1σ2 . . . σn−2σ
2
n−1σn−2 . . . σ2σ1 = 1

and the following relation

(4.2) (σ1σ2 . . . σn−2σn−1)
n = 1.

Let ∆ be the Garside’s fundamental word in the braid group Brn [8]. It can be in particular
defined by the formula:

∆ = σ1 . . . σn−1σ1 . . . σn−2 . . . σ1σ2σ1.

If we use Garside’s notation Πt ≡ σ1 . . . σt, then ∆ ≡ Πn−1 . . .Π1. If the generators σ1, σ2, . . . ,
σn−2, σn−1, are subject to the braid relations (2.1), then the condition (4.2) is equivalent to the
following

∆2 = 1.

If we consider the presentation of the braid group with two generators the sphere relation
has the form

σn(σ−1
1 σ)1−n = 1,
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and the sphere mapping class relation is

σn = 1.

So, the mapping class group M0,n in two generators is described by the braid relations and the
following two relations

(4.3)

{

σn = 1,

(σ−1
1 σ)n−1 = 1.

Theorem 4.1. We get a presentation of the inverse mapping class monoid for punctured sphere
IM0,n if we take the generators σ1, σ2, . . . , σn−2, σn−1, σ

−1
1 , σ−1

2 , . . . , σ−1
n−2, σ

−1
n−1, ǫ (or ǫ1,

ǫ2, . . . , ǫn−1, ǫn instead of one ǫ) subject to the sphere braid relations (2.1), (4.1), the sphere
mapping class relation (4.2) and the inverse braid relations (2.3) (or (2.6)).

Proof. We use the fact that the mapping class group M0,0,n is a quotient group of the n-strand
braid group for sphere and the ideas of the proof of the presentation (2.3) for the inverse braid
monoid IBn in the work [5].

Denote temporarily by Pn the monoid defined by the presentation by the generators σ1, σ2,
. . . , σn−2, σn−1, σ

−1
1 , σ−1

2 , . . . , σ−1
n−2, σ

−1
n−1, ǫ the sphere braid relations (2.1), (4.1), the sphere

mapping class relation (4.2) and the inverse braid relations (2.3). To define a map

Θ : Pn → M0,n

we associate to each word in the alphabet on letters σ1, σ2, . . . , σn−2, σn−1, σ
−1
1 , σ−1

2 , . . . , σ−1
n−2,

σ−1
n−1, ǫ the corresponding composition of (classes of) homeomorphisms. To juxtaposition of

words there evidently corresponds the composition of (classes of) homeomorphisms. The fact
that Θ is well defined (respects the relations) for some relations are classical facts, for others
it is evident, probably, with the exception of the third relation in (2.3). The equalities of this
relation follow from the fact that all three given classes (containing identity) ignore the first
two points.

Let ǫk+1,n denote the the isotopy class of of a homeomorphism that fixes the first k points
and does not care about the remaining n − k points. On the level of braids (on a sphere) it
corresponds to the partial braid with the trivial first k strands and the absent rest n−k strands.
The element ǫk+1,n can be expressed using the generator ǫ or the generators ǫi as follows

(4.4) ǫk+1,n = ǫσn−1 . . . σk+1ǫσn−1 . . . σk+2ǫ . . . ǫσn−1σn−2ǫσn−1ǫ,

ǫk+1,n = ǫk+1ǫk+2 . . . ǫn,

From our construction of the inverse mapping class monoid it follows that every element of
IM0,n represented by a homeomorphism h of Sg,b,n which maps k points, k ≤ n, from Qn:
{i1, . . . , ik} to k points {j1, . . . , jk} from Qn can be expressed in the form

(4.5) (σi1 . . . σ1) . . . (σik . . . σk) ǫk+1,n x ǫk+1,n (σk . . . σjk
) . . . (σ1 . . . σj1),

k ∈ {0, . . . , n}, x ∈ M0,k, 0 ≤ i1 < · · · < ik ≤ n− 1 and 0 ≤ j1 < · · · < jk ≤ n− 1.

Geometrically this means that we first send the points {i1, . . . , ik} to the points {1, . . . , k},
then apply a homeomorphism from the mapping class group M0,k, and then send the points
{1, . . . , k} to the points {j1, . . . , jk}.

Note that in the formula (4.5) we can remove one of the ǫk+1,n, but we shall use the form
(4.5) because of convenience: two symbols ǫk+1,n serve as markers to distinguish the elements
of M0,k.



10 KAROUI AND VERSHININ

The element x belongs to the mapping class group M0,k, so it can be expressed as a word in
the letters σ1, σ2, . . . , σk−1, σ

−1
1 , σ−1

2 , . . . , σ−1
k−1. This proves that homomorphism Θ is onto.

Let us prove that Θ is a monomorphism. Suppose that for two words W1,W2 ∈ Pn we have

Θ(W1) = Θ(W2).

It means that the corresponding homeomorphisms both map the set of points {i1, . . . , ik} onto
the set of points {j1, . . . , jk} and they are isotopic in the class of homeomorphisms mapping
{i1, . . . , ik} onto {j1, . . . , jk}. Using relations (2.1) and (2.3) the same way as in [5] transform
the words W1,W2 into the form (4.5)

σ(i1, . . . ik; k)ǫk+1,nxǫk+1,nσ(k; j1, . . . jk).

Then the corresponding fragments σ(i1, . . . ik; k) and σ(k, j1, . . . jk; k) for W1 and W2 coincide.
The elements x1 of W1 and x2 of W2 presented in the form 4.5 are the words in σ1, . . . , σk and
σ−1

1 , . . . , σ−1
k , and they correspond after Θ to isotopic homeomorphisms

h1, h2 : S0,k → S0,k.

Hence x1 can be transformed into x2 using relations for the mapping class group M0,k. So, the
words W1 and W2 represent the same element in Pn. �

Proposition 4.1. There is a presentation of the inverse mapping class monoid for punctured
sphere IM0,n with the generators σ1, σ, σ

−1
1 , σ−1, ǫ subject to the relations (2.2), (2.7) and

(4.3) .

�

The generators ǫi commute with ∆ in the following way [26]:

ǫi∆ = ∆ǫn+1−i.

Let E be the monoid generated by one idempotent generator ǫ.

Proposition 4.2. The abelianization of IM0,n, n ≥ 2, is an abelian monoid AM generated
(as an abelian monoid) by elements ǫ and ᾱ subject to the following relations











2ǫ = ǫ,

ǫ+ ᾱ = ǫ

mᾱ = 0, where m = 2(n− 1), if n is even and m = (n− 1), if n is odd.

So, AM is isomorphic to the quotient-monoid of E ⊕ Z/mZ by the relation ǫ + 1̄ = ǫ. The
canonical map of abelianization

a : IM0,n → AM

is given by the formula:
{

a(ǫi) = ǫ,

a(σi) = ᾱ.

Proof. According to the presentation of the monoid IM0,n, given in Theorem 4.1 the homo-
morphism a is well defined. Now let f : IM0,n → B be an arbitrary homomorphism from
IM0,n to an abelian monoid B. Then the braid relations give that f(σi) = f(σj) for any i, j.
Denote this element f(σi) by b and the image of ǫ by ǫ. Then the sphere braid relation and the
sphere mapping class relation give that bm = 1. Two last relations in (2.3) give that

ǫ = ǫ2 = ǫb2 = ǫb.
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This defines a unique map
fa : AM → B,

such that f = faa and so AM is an abelianization of IM0,n. �

Corollary 4.1. The monoid AM as a set consists of the following elements

AM = {0̄, ǫ, ᾱ, 2ᾱ, . . . , (m− 1)ᾱ}.

�

Proposition 4.3. The center of IM0,n for n ≥ 1 is isomorphic to E:

Z(IM0,n) = {1} ∐M0,0
∼= E ,

i.e. the only non-unit element of Z(IM0,n) is the isotopy class of the identity map of a sphere
such that isotopy does not respect punctures.

Proof. If n = 1, then the monoid IM0,1 consists of two elements, unit 1 and the idempotent ǫ
(Example 2 below) and so it is a commutative monoid isomorphic to E . Let n ≥ 2. Denote by
Φ the only element of M0,0 →֒ IM0,n:

Φ ∈ M0,0 →֒ IM0,n.

For any element x of IM0,n we have

Φx = xΦ = Φ.

So, Φ lies in the center. Let c be a non-unit element in the center different from Φ. It does not
belong to the mapping class group M0,n, because this group is centerless for n ≥ 3 [10] and for
n = 2 (Example 3 below) c can not be the generator σ1 of M0,2 = Σ2, since we have

σ1ǫ1 6= ǫ1σ1.

So c is a homeomorphism of S2 which maps the points Ik = {i1, . . . , ik} to the points Jk =
{j1, . . . , jk}, 0 < k < n. Take a (class of) homeomorphism x that maps one point in the
complement of Jk to a point in Ik without restrictions to other points. Then cx is equal to Φ,
while xc is not. �

5. The word problem

R. Gillette and J. Van Buskirk in [10] obtained an analogue of the Markov normal form [19]
for the sphere braid groups Brn(S2) and for the punctured sphere mapping class group M0, n.
This form can be obtained algorithmically, so, it gives a solution of the word problem. These
ideas can be applied to the cases of inverse braid and mapping class monoids.

Let us recall the main points of the Gillette-Van Buskirk variant of Markov normal form.
Define the elements si,j, 1 ≤ i < j ≤ m, of the classical braid group Brm by the formula:

si,j = σj−1...σi+1σ
2
i σ

−1
i+1...σ

−1
j−1.

These elements satisfy the following Burau relations:

(5.1)























si,jsk,l = sk,lsi,j for i < j < k < l and i < k < l < j,

si,jsi,ksj,k = si,ksj,ksi,j for i < j < k,

si,ksj,ksi,j = sj,ksi,jsi,k for i < j < k,

si,ksj,ksj,ls
−1
j,k = sj,ksj,ls

−1
j,ksi,k for i < j < k < l.

The elements si,j with the relations (5.1) give a presentation of the pure braid group Pm [19].
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Let us define the elements σk,l, 1 ≤ k ≤ l ≤ m by the formulas

σk,k = e,

σk,l = σ−1
k ...σ−1

l−1.

We denote by the same symbols the images of the defined elements in the braid group of a
sphere. Let w(x1, ..., xm) be a word with possible entries of xδ

i , where xi are some letters and δ
may be ±1.

Theorem 5.1. [10] Every element of the group Brn(S2) can be uniquely written in the form

σin,n...σij ,j...σi2,2w1(s1,2, ..., s1,n−1)...wj(sj,j+1, ..., sj,n−1)...wn−3(sn−3,n−2, sn−2,n−1)∆
2δ,

where elements sj,j+1, ..., sj,n−1 generate a free group and δ may be 0 or 1. There exists an
algorithm of obtaining the normal form for any word on letters σ1, . . . , σn−1, which gives a
solution of the word problem for Brn(S2).

Theorem 5.2. [10] Every element of the group M0,n can be uniquely written in the form

σin,n...σij ,j...σi2,2w1(s1,2, ..., s1,n−1)...wj(sj,j+1, ..., sj,n−1)...wn−3(sn−3,n−2, sn−2,n−1),

where elements sj,j+1, ..., sj,n−1 generate a free group. There exists an algorithm of obtaining the
normal form for any word on letters σ1, . . . , σn−1, which gives a solution of the word problem
for M0,n.

Theorem 5.3. Every element w in IBn(S2) can be uniquely written in the form

(5.2) σi1 . . . σ1 . . . σik . . . σkǫk+1,nxǫk+1,nσk . . . σjk
. . . σ1 . . . σj1 ,

k ∈ {0, . . . , n}, 0 ≤ i1 < · · · < ik ≤ n− 1, 0 ≤ j1 < · · · < jk ≤ n− 1, and x ∈ Brk(S
2)

is written in the Gillette-Van Buskirk normal form for Brk(S
2). If w is expressed in terms of

σ1, . . . , σn−1, σ
−1
1 , . . . , σ−1

n−1, ǫ, there is an effective algorithm for putting it in this normal
form.

Proof. Given an element w of IBn(S2), expressed as a word in the generators, the elements
σi1 , . . . , σ1, . . . , σik , . . . , σk and σk, . . . , σjk

, . . . , σ1, . . . , σj1 of (5.2) are determined uniquely
and algorithmically [5] by a given element of IBn(S2). Geometrically they are determined by
the fact which strands are absent and which ones are present in the braid w. The same way
the element x ∈ Brk(S

2) is determined as a word in the generators of Brk(S
2). We apply

Gillette-Van Buskirk algorithm to it to put it into Gillette-Van Buskirk normal form which is
also unique. �

Theorem 5.4. Every element w in IM0, n can be uniquely written in the form

σi1 . . . σ1 . . . σik . . . σkǫk+1,nxǫk+1,nσk . . . σjk
. . . σ1 . . . σj1 ,

k ∈ {0, . . . , n}, x ∈ M0, n, 0 ≤ i1 < . . . < ik ≤ n− 1, 0 ≤ j1 < · · · < jk ≤ n− 1,

where x is written in the Gillette-Van Buskirk normal form for M0, k. If w is expressed in terms
of σ1, . . . , σn−1, σ

−1
1 , . . . , σ−1

n−1, ǫ, there is an effective algorithm for putting it in this normal
form.
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Proof. It is essentially the same as the proof of Theorem 5.3. Given an element w of IM0, n,
expressed in its generators, the elements σi1 , . . . , σ1, . . . , σik , . . . , σk and σk, . . . , σjk

, . . . ,
σ1, . . . , σj1 are determined uniquely and algorithmically [5] by a given element of IM0, n.
Geometrically they are determined by the fact which points participate in the description of
a map of the class w and which ones are omitted. The same way the element x ∈ M0, k is
determined as a word in generators of M0, k. We apply Gillette-Van Buskirk algorithm for
M0, k to it to put it into Gillette-Van Buskirk normal form which is also unique. �

6. Examples

1. The monoid IM0,0 consists of one element of the identical map of a sphere

Id : S0,0 → S0,0,

2. The monoid IM0,1 consists of two elements, say, unit 1 and the idempotent ǫ.
3. The mapping class group M0,2 is isomorphic to the symmetric group Σ2, so the inverse

mapping class monoid IM0,2 is isomorphic to the symmetric inverse monoid I2.
4. The mapping class group M0,3 is isomorphic to the symmetric group Σ3, so the inverse

mapping class monoid IM0,3 is isomorphic to the symmetric inverse monoid I3.
5. The mapping class group of a once-punctured torus M1,1 is isomorphic to the general

linear group GL2Z (unimodular group SL2Z if we want to restrict ourselves to the orientation
preserving homeomorphisms of a torus) as well as the mapping class group of a torus (without
punctures) is isomorphic toGL2Z (again it is isomorphic to SL2Z if we want to restrict ourselves
to the orientation preserving case). Then the inverse mapping class monoid IM1,1 as a set is
a disjoint union of two copies of GL2Z:

IM1,1 = GL2Z ∐GL2Z.

If we denote by IM+
1,1 the inverse mapping class monoid of orientation preserving homeomor-

phisms then we have
IM+

1,1 = SL2Z ∐ SL2Z.

Let the classes of maps of the first copy of GL2Z respect the puncture and of the second copy
are free. Then the multiplication in each copy is standard and multiplying a punctured element
by a free one we get a standard product in GL2Z and put it in the free copy.

This example gives a good illustration for Theorem 3.2 if we recall the classical result of
Nilsen that the group of outer automorphisms of the free group F2 (fundamental group of
punctured torus) is isomorphic to GL2Z, see, for instance [18, Corollary N4, p.169].
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