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ON THE INVERSE MAPPING CLASS MONOIDS

R. KAROUI AND V. V. VERSHININ

ABSTRACT. Braid groups and mapping class groups have many features in common. Similarly
to the notion of inverse braid monoid inverse mapping class monoid is defined. It concerns
surfaces with punctures, but among given n punctures several can be omitted. This corresponds
to braids where the number of strings is not fixed. In the paper we give the analogue of the
Dehn-Nilsen-Baer theorem, propose a presentation of the inverse mapping class monoid for a
punctured sphere and study the word problem. This shows that certain properties and objects
based on mapping class groups may be extended to the inverse mapping class monoids. We
also give an analogues of Artin presentation with two generators.
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1. INTRODUCTION

Mapping class group is an important object in Topology, Complex Analysis, Algebraic Ge-
ometry and other domains. It is a lucky case when the method of Algebraic Topology works
perfectly well, the application of the functor of fundamental group completely solves the topo-
logical problem: group of isotopy classes of homeomorphisms is described in terms of automor-
phisms of the fundamental group of the corresponding surface, as states the Dehn-Nilsen-Baer
theorem, see [11], for example.

Let Sy, be an oriented surface of the genus g with b boundary components and a set ),, of n
fixed points. Consider the group Homeo(Sy;,,,) of orientation preserving self-homeomorphisms
of S ., which fix pointwise the boundary (if it exists) and map the set ), into itself. Orientation
reversing homeomorphisms also possible to consider, see [4], for example, but for the simplicity
of exposition we restrict ourselves to orientation preserving case. Let Homeo"(S,;.,) be the
normal subgroup of self-homeomorphisms of Sy, which are isotopic to identity. Then the
mapping class group Mgy, is defined as a quotient group
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FIGURE 2.1

M, p.n = Homeo(S, p,,,)/ Homeo" (S, 5.,

These groups are connected closely with braid groups. In [16] W. Magnus interpreted the
braid group as the mapping class group of a punctured disc with the fixed boundary. Braid
groups have a variety of generalizations, see [25], for example. One of generalizations is the
inverse braid monoid 1B, constructed by D. Easdown and T. G. Lavers [5].

The notion of inverse semigroup was introduced by V. V. Wagner in 1952 [27]. By definition
it means that for any element a of a semigroup (monoid) M there exists a unique element b
(which is called inverse) such that

a = aba
and
b = bab.

The typical example of an inverse monoid is a monoid of partial (defined on a subset) in-
jections of a set. For a finite set this gives us the notion of a symmetric inverse monoid I,
which generalizes and includes the classical symmetric group >,. A presentation of symmetric
inverse monoid was obtained by L. M. Popova [22], see also formulas (2.1), (2.3-2.4) below.

2. INVERSE BRAID MONOIDS AND INVERSE MAPPING CLASS MONOIDS

Inverse braid monoid arises from a very natural operation on braids: deleting several strands.
By the application of this procedure to braids in Br, we get partial braids [5]. Applying the
standard procedure of multiplication of braids (concatenation) to partial braids we need to
eliminate all not complete strands, as it is shown at Figure 2.1. If all strands are eliminated
we get an empty braid. The set of all partial braids with this operation forms an inverse braid
monoid IB,,.

Usually the braid group Br,, is given by the following Artin presentation [1]. It has the
generators 0;, i = 1,...,n — 1, and two types of relations:

0;0; = 0; 0y, if ’Z—]‘ > 1,
0i0i+10; = 0410041 -

(2.1)

There exist other presentations of the braid group. Let

0 =0102...0p_1,
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FIGURE 2.2

then the group Br, is generated by o; and o because
Oir1 = aiala_i, 1=1,...n—2.

The relations for the generators o7 and o are the following

n—1

o

(2.2) oy0'ci0™" =cd'oo oy for 2<i<n/2,
" = (001)

The presentation (2.2) was given by Artin in the initial paper [1]. This presentation was also
mentioned in the books by F. Klein [13] and by H. S. M. Coxeter and W. O. J. Moser [3].

Classical braid group Br,, can be defined also as the mapping class group of a disc D? with n
points deleted (or fixed) and with its boundary fixed, or as the subgroup of the automorphism
group of a free group Aut F;,, generated by the following automorphisms:

L = Tit1,

LTit1 x;_llxixi-&-l,
xj —xj,] # 1,1+ 1.

Geometrically this action is depicted in Figure 2.2, where x; correspond to the canonical loops
on D? which form the generators of the fundamental group of the punctured disc.

This topological interpretation of the braid group was continued in [26] for the inverse braid
monoid. Let @, the set of n fixed points of a disc D?. The fundamental group of D? with these
points deleted is isomorphic to F,. Consider homeomorphisms of D? onto a copy of the same
disc with the condition that only & points of @, k < n (say i1, ...,4) are mapped bijectively
onto the k points (say ji, ..., i) of the second copy of D?, k varies from 0 to n and n is fixed.
Consider the isotopy classes of such homeomorphisms and denote the set of them by IM, (D?).
Evidently it is a monoid.

Theorem 2.1. [26] The monoids IB,, and IM,(D?) are isomorphic.

The following presentation for the inverse braid monoid was obtained in [5]. It has the
generators 0;,0; ', i =1,...,n — 1, €, and relations

%

o0, =0;to; =1, for all i,

€o; = o€ fori > 2,
(2.3)

€01€ = 01€01€ = €01€07,

2 42 2
€ =€ = e€0] = 07€

and the braid relations (2.1).
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Geometrically the generator ¢ means that the first strand in the trivial braid is absent.
If we replace the first relation in (2.3) by the following set of relations

(2.4) o? =1, for alli,
and delete the superfluous relations
€ = eo? = ole,

we get a presentation of the symmetric inverse monoid 7, [22] . We also can simply add the
relations (2.4) if we do not worry about redundant relations. We get a canonical map [5]

(25) Tn : IB, — ]m

which is a natural extension of the corresponding map for the braid and symmetric groups.
More balanced relations for the inverse braid monoid were obtained in [9]. Let ¢; denote the
trivial braid with ith strand deleted, formally:

€1 = €,
+1_ 1
€+1 =0, €0, .
The generators are: 04,0, ', i=1,....,n—1, ¢,i=1,...,n, and relations are the following:
( _ _ .
0.0, =0, 'o; =1, for all 4,

€jo; = o465, for j#i,i+1,
€0 = 0i€i+1,

(2.6) €i+10; = O,

€ = E?,

2 _ 2 _
€i+10; = 0, €41 = €41,

€i€i+10; = 046,641 = €;€41,

plus the braid relations (2.1).
If we take the presentation (2.2) for the braid group we get a presentation of the inverse
braid monoid with generators o1, 0", 0,07", ¢, and relations [26]:

(

oot =o;to =1,
oot =0"lo =1,
(2.7) eoloo™t = odloyo e for 1 <i<n—2,
€01€ — 01€01€ = €01€01,
€ =2 = eo? = ole,

plus (2.2).

Similar to braids the notion of mapping class monoid was introduced in [26]. The definition
is as follows.

It is convenient to consider the surface Sy ,, sometimes with n points fixed, sometimes
deleted. Let f be a homeomorphism of S ;,, which maps k points, k < n, from Q,: {i1,...,9}
to k points {ji,...,Jjk} also from @Q,. The same way let h be a homeomorphism of Sy,
which maps [ points, | < n, from Q,, say {si,...,s} to [ points {t1,...,t;} again from @Q,.
Consider the intersection of the sets {j1,...,Jjx} and {s1,..., s}, let it be the set of cardinality
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m, (m < k), it may be empty. Then the composition of f and h maps m points of Q),, to m
points (may be different) of @,,. For example, suppose for the simplicity of notations that

g sk = {0 dmt = {51, sm)
then the composition h o f maps the points {iy,..., 0} to {t1,...,tn}. If m = 0 then the
composition has no relation to the set ),,. Denote the set of isotopy classes of such maps by
IMgprn. Composition defines a structure of monoid on ZM,y,,,. It is evident that the monoid
IMgpp is inverse, so we call it the inverse mapping class monoid. If g = 0 and b = 1 we get
the inverse braid monoid. In the general case of ZM,; ,, the role of the empty braid plays the
mapping class group M, (without fixed points). Each element f € ZM,,, corresponds a
(partial) bijection

{il,...,ik} — {]bajk}

This defines a canonical homomorphism to the symmetric inverse monoid:

(28) Tgbn - ZMg,b,n - In

We recall that a monoid M is factorisable if M = EG where F is a set of idempotents of M
and G is a subgroup of M.

Proposition 2.1. [26] The monoid TMgy,,, can be written in the form
IMg,bm, = EMg,b,n7

where E is a set of idempotents of IM g, and M, is the corresponding mapping class group.
So, this monoid is factorisable.

Similar to braids we introduce the idempotent elements ¢; € ZM,,, as isotopy classes of
identity map
Id: Sg,b — Sg7b,
where during isotopy all points of the set ), are fixed with the exception of the point with
number ¢. The element ¢, is denoted by e.
We call an element m of the mapping class monoid ZM, ., i-Makanin or i- Brunnian if it
satisfies the equation:

(2.9) €M = €;.
Geometrically this means that if we fill the deleted point ¢ at the surface, then a homeomorphism
h lying in the class m
h: SQJJ — Sg,b,
becomes isotopical to the identity map
Id:ngb\{l,...,%,...,n}Hngb\{l,...,%,...,n}.

The condition (2.9) is equivalent to the condition

MEr(m)(i) = Er(m)(i)
where 7 is the canonical map to the symmetric inverse monoid (2.8). With the exception of
¢; itself all such elements belong to the mapping class group Mg,,. We denote the subgroup
of i-Makanin elements of the mapping class group by A;. The subgroups A;, : = 1,...,n,
are conjugate. The intersection of all subgroups of ¢-Makanin elements is the of Makanin or
Brunnian subgroup of the mapping class group
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That is the same as m € Makg,,, if and only if the equation (2.9) holds for all i. Certain
properties of Makanin subgroups of the mapping class groups are studied in the work Benson
Farb, Christopher J. Leininger and Dan Margalit [7]

The purpose of this paper is to develop further the theory of inverse mapping class monoids,
to demonstrate that canonical properties of mapping class groups often have there smooth
continuation for the inverse mapping class monoid ZMg, ,,.

3. PROPERTIES OF INVERSE MAPPING CLASS MONOIDS

Following the ideology of considering partial symmetries instead of global ones [15] we can
define the monoid of partial automorphisms of a group as follows. For a group G consider a
set of partial isomorphisms

f+H—=K,
where H, K are subgroups of G. The composition of f with the isomorphism
g:L— M,
(L, M are subgroups of @) is a superposition of f and g which is defined on (K N L)f~!:
fo: (KnL)f = (KL,

The set of all such partial isomorphisms with this operation form a monoid which is evidently
inverse and which we call the inverse partial automorphism monoid of a group G and denote
by IPA(G).

In the case when the group G is a finitely generated free group Fj, the following submonoid
EF, of IPA(F,) was defined in [26]. Let a be an element of the symmetric inverse monoid I,,,
a € I,, so a is a partial injection with the elements iy, ...,%; as its domain of the definition.
Denote by Jp = {J1,...,jx} the image of a. The monoid E'F,, consists of isomorphisms

< Tjgy e s Tjy, > < Tjyye oo, Ty, >

expressed by
faixi— wi_l%(i)wz’,

if ¢ is among 71, ..., 7, and not defined otherwise and w; is a word on z;,,...,x;,. The compo-
sition of f, and ¢, a,b € I,,, is defined for z; belonging to the domain of aob. We put z;,, =1
in a word wj; if x;, does not belong to the domain of definition of g. We define a map ¢,, from
1B, to EF'F), expanding the canonical inclusion

Br, — Aut F,
by the condition that ¢,(¢) as a partial isomorphism of F,, is given by the formula

2 if i > 2,
undefined, if 7 = 1.

Pn(€) (i) = {

Using the presentation (2.3) we see that ¢, is a well defined homomorphism of monoids
¢n : IB, — EF,.
The following statement was proved in [26].

Theorem 3.1. The homomorphism ¢, is a monomorphism.



ON THE INVERSE MAPPING CLASS MONOIDS 7

As usual, we define the (g, b, n)-surface group as a group with the presentation

n g
Tgbn =< Q1,C1, ..., 0g,Cgy U1y .., Upy Uty ..., Up | HuiHvl [y Cm] >
=1 I=1 m=1
It is the fundamental group of a surface of genus g with b components of a boundary and
n punctures. The generators a;, ¢; correspond to the genus of a surface, the generators v;
correspond to boundary components and the generators u correspond to punctures.

In our construction of the inverse mapping class monoid ZM,,, we are passing from maps
which are fixing a set of n points to maps which are fixing the set with a smaller number of
points. If we consider these points deleted it means we are filling the holes. On the level of
fundamental groups this means passing to quotient group.

Let H be a quotient group of 7y, defined by the conditions

w; =1 forall @& {iy,... 0},
and let K be a quotient group of 7,y ,,, defined by the conditions
uj=1forall j¢{j,...,Jk}

Let ¢ be an element of the symmetric inverse monoid I,,, t € [,, so t is an injection with
elements iy, ..., 4 constituting the domain of the definition of t. Let J, = {j1,...,jx} be the

image of ¢. Let w; be a word on letters ay,c1,...,a4,¢q,V1,..., V5, Ujy, ..., uj,. Let TAutmgy,
be the monoid consisting of isomorphisms

fi : H— K,
such that

fi(vm) = vy form=1,...,b,
fi(w;) = w{lu(i)twi, if 4 is among i1, ..., i,

for all subgroups H and K of the type defined above, for all k = 0,1,...,n. Here the index
(i)t of the element u(;, means the image of the element 7 by the action of the injection ¢, so
(i)t € Jy.

The composition of f; and g,, t,s € I,, is defined for u; belonging to the domain of tos. We
put u;,, = 1 in a word w; if u;,, does not belong to the domain of definition of g.

By our construction to each element of f; € IAut 7, the element ¢ € I, is associated. This
gives a canonical homomorphism

(3.1) Tobn : TAut Ty — Iy,

For the simplicity of exposition we restrict ourselves to the case of empty boundary which
was described in the book of W. Magnus, A. Karrass and D. Solitar [18, Sec. 3.7], and we
denote 7y, by m,,. Let us define an equivalence relation in [Aut 7y, for fi and f,

fl,fQZH—>K.

Such isomorphisms f; and f; are equivalent if they differ by an inner automorphism of the
group H, their domain of definition, i.e. if there exists an element ¢ € H such that

filg  zq) = fo(z).

This equivalence is in fact a congruence on the monoid [Aut 7y, and we denote the corre-
sponding quotient monoid by IOut my,,. This is similar to the classical case of groups when a
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homomorphism is defined from a mapping class group of a surface to the group of outer auto-
morphisms of the fundamental group of the surface. The homomorphism 74, : TAut 7y, — I,
of (3.1) factors through IOut 7y, and we have a homomorphism

(3.2) Tabm - 1OUWE Ty pn — L.

Let us take an arbitrary element n of ZM, ,,. It is represented by a homeomorphism of a surface
with &k points deleted (among our n fixed points) onto another copy of the surface with (may
be) different k& points deleted

h : ngn\{’l.l,...,ik} — Sgﬂ\{jla--'vjk}-

It defines the bijection & between the conjugacy classes of m1(Sgn \ {i1,...,%x}) and 71 (S, \
{j1,...,jk}). We define h as an algebraic image of i in JOut m,,,. Formally a homomorphism
of monoids

Ygn 1 IMg, — 10Ut Ty 4.
is defined by the formula

Vgn(n) = h.
This homomorphism is compatible with homomorphisms 7, of (2.8) and (3.2).

Theorem 3.2. The homomorphism 1, is an isomorphism of monoids.

Proof. The monoid ZM, ,, as a set is a disjoint union of copies of mapping class groups My,
for k = 0,...n, namely, C* copies of M, for each k. Our constructions are done so that for
each copy of M, the map 1), is a bijection because of the Dehn-Nilsen-Baer theorem. O

4. INVERSE MAPPING CLASS MONOIDS FOR PUNCTURED SPHERE

The following presentation for the mapping class group of a punctured sphere M, ,, was ob-
tained by W. Magnus [16], see also[18]. Let o1, ..., 0,_1, denote the classes of homeomorphisms
such that o; locally interchanges, say clockwise, the punctures with numbers ¢ and ¢ + 1. Then
the presentation has generators oy, ..., 0,_1, which satisfy the braid relations (2.1), the sphere
relation

2
(4.1) 0109 ... 0p—90, 10p_2...0201 = 1

and the following relation

(4.2) (0109 ...0420,-1)" = 1.

Let A be the Garside’s fundamental word in the braid group Br, [8]. It can be in particular
defined by the formula:
A=0y...0,-101...0p_9...01020].
If we use Garside’s notation Il; = oy ... 0y, then A =11, ... II;. If the generators oy, o9, ...,
On—2, On_1, are subject to the braid relations (2.1), then the condition (4.2) is equivalent to the
following
A =1,

If we consider the presentation of the braid group with two generators the sphere relation

has the form
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and the sphere mapping class relation is
o" =1.

So, the mapping class group My ,, in two generators is described by the braid relations and the
following two relations

o =1,
(4?)) { -1 _\n—-1 _ 1.

(01 0)

Theorem 4.1. We get a presentation of the inverse mapping class monoid for punctured sphere
IMy,, if we take the generators oy, 0, ..., Op_9, On_1, 01 ', oy, .., oty ot € (or e,
€2, ..., €n_1, €, instead of one €) subject to the sphere braid relations (2.1), (4.1), the sphere

mapping class relation (4.2) and the inverse braid relations (2.3) (or (2.6)).

Proof. We use the fact that the mapping class group My, is a quotient group of the n-strand
braid group for sphere and the ideas of the proof of the presentation (2.3) for the inverse braid
monoid IB,, in the work [5].
Denote temporarily by P, the mon01d defined by the presentation by the generators oy, oo,
oy Opgy Op_1, 07 058, ..., 0.y, 0.1, € the sphere braid relations (2.1), (4.1), the sphere
mapping class relation (4.2) and the inverse braid relations (2.3). To define a map

1

we associate to each word in the alphabet on letters o4, 09, ..., 0,2, 0,_1, 01_1, 02_1, cey O, o,
—1., € the corresponding composition of (classes of) homeomorphisms. To juxtaposition of
words there evidently corresponds the composition of (classes of) homeomorphisms. The fact
that © is well defined (respects the relations) for some relations are classical facts, for others
it is evident, probably, with the exception of the third relation in (2.3). The equalities of this
relation follow from the fact that all three given classes (containing identity) ignore the first
two points.

Let €41, denote the the isotopy class of of a homeomorphism that fixes the first k& points
and does not care about the remaining n — k points. On the level of braids (on a sphere) it
corresponds to the partial braid with the trivial first & strands and the absent rest n—k strands.
The element €11, can be expressed using the generator € or the generators ¢; as follows

g

(4.4) €hilm = E0p—1 .. Okt1€0p_1 .. Of42€ . .. €0y 10, _9€0,_1€,

€k+1,n = €k+1€k+2 - - - En,
From our construction of the inverse mapping class monoid it follows that every element of
IM,, represented by a homeomorphism h of Sy, which maps k points, & < n, from Q,:
{i1,...,1x} to k points {ji, ..., jx} from @, can be expressed in the form

(4.5) (03 -..01) . (i - Ok) €kt T €1 (Ok .. 04) ... (01 ... 05,),
ke{0,....n}, reMop, 0<i1 < - <ip<n—-land0<j; < ---<jp<n-—1L
Geometrically this means that we first send the points {iy, ..., it} to the points {1,..., k},

then apply a homeomorphism from the mapping class group M, and then send the points
{1, ..., k} to the points {ji,..., jx}-

Note that in the formula (4.5) we can remove one of the €;11,, but we shall use the form
(4.5) because of convenience: two symbols €11, serve as markers to distinguish the elements

of MO,k-
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The element = belongs to the mapping class group My, so it can be expressed as a word in
the letters oy, oa, ..., Op_1, 07, 05 'y ..., O'k_jl. This proves that homomorphism © is onto.
Let us prove that © is a monomorphism. Suppose that for two words Wy, W5 € P, we have

@(Wl) = @(W2>-

It means that the corresponding homeomorphisms both map the set of points {1, ..., i} onto
the set of points {ji,...,Jjr} and they are isotopic in the class of homeomorphisms mapping
{i1,...,ix} onto {j1,...,Jx}. Using relations (2.1) and (2.3) the same way as in [5] transform

the words Wy, Wy into the form (4.5)

U(ih oD k)€k+1,n$€k+1,n0(/f;j1, .- ~jk)~

Then the corresponding fragments o (i, ... ix; k) and o(k, ji, ... Jk; k) for Wi and W5 coincide.
The elements x; of W5 and x5 of W5 presented in the form 4.5 are the words in o4, ..., 0. and
ot ,ak’l, and they correspond after © to isotopic homeomorphisms

hi,ha = Sor — Sok-

Hence x; can be transformed into xo using relations for the mapping class group My . So, the
words W and W5 represent the same element in P,. O

Proposition 4.1. There is a presentation of the inverse mapping class monoid for punctured
sphere TM,, with the generators o1, o, a7, 071, € subject to the relations (2.2), (2.7) and

(4.3) .

UJ
The generators ¢; commute with A in the following way [26]:

EiA = A€n+1_i.
Let &£ be the monoid generated by one idempotent generator e.

Proposition 4.2. The abelianization of TMy,,, n > 2, is an abelian monoid AM generated
(as an abelian monoid) by elements € and & subject to the following relations

[\)

€ =c¢,
E+a=c¢
ma =0, where m =2(n — 1), if n is even and m = (n — 1), if n is odd.

So, AM is isomorphic to the quotient-monoid of € ® Z/mZ by the relation ¢ + 1 = €. The

canonical map of abelianization

a:IMgy, — AM

{a(ei) = ¢,
a(o;) = a.

Proof. According to the presentation of the monoid ZM,,, given in Theorem 4.1 the homo-
morphism a is well defined. Now let f : ZM,, — B be an arbitrary homomorphism from
IM,,, to an abelian monoid B. Then the braid relations give that f(o;) = f(o;) for any 1, j.
Denote this element f(o;) by b and the image of € by €. Then the sphere braid relation and the
sphere mapping class relation give that b = 1. Two last relations in (2.3) give that

€ =¢c> = eb® = eb.

15 given by the formula:
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This defines a unique map
fao: AM — B,
such that f = f,a and so AM is an abelianization of ZM,,,. O

Corollary 4.1. The monoid AM as a set consists of the following elements
AM ={0,¢,@,2a,...,(m —1)a}.
O

Proposition 4.3. The center of My, for n > 1 is isomorphic to &:
Z(IMp,)={1} T My =€,

i.e. the only non-unit element of Z(IMy,,) is the isotopy class of the identity map of a sphere
such that isotopy does not respect punctures.

Proof. If n = 1, then the monoid ZM, ; consists of two elements, unit 1 and the idempotent €
(Example 2 below) and so it is a commutative monoid isomorphic to €. Let n > 2. Denote by
® the only element of Mgy — ZMj,:

o e ./\/l()70 — I./\/lo,n.
For any element x of ZM,,, we have
Or =2 = .

So, ® lies in the center. Let ¢ be a non-unit element in the center different from ®. It does not
belong to the mapping class group M, ,,, because this group is centerless for n > 3 [10] and for
n = 2 (Example 3 below) ¢ can not be the generator o, of Mg = 3, since we have

01€1 7é €101.
So ¢ is a homeomorphism of S? which maps the points I, = {i1,...,ix} to the points J, =
{j1,---,Jr}, 0 < k < n. Take a (class of) homeomorphism x that maps one point in the

complement of J, to a point in I, without restrictions to other points. Then cz is equal to @,
while zc is not. O

5. THE WORD PROBLEM

R. Gillette and J. Van Buskirk in [10] obtained an analogue of the Markov normal form [19]
for the sphere braid groups Br,(S?) and for the punctured sphere mapping class group M ,,.
This form can be obtained algorithmically, so, it gives a solution of the word problem. These
ideas can be applied to the cases of inverse braid and mapping class monoids.

Let us recall the main points of the Gillette-Van Buskirk variant of Markov normal form.
Define the elements s; ;, 1 <@ < j < m, of the classical braid group Br,, by the formula:

_ 2 _—1 -1
Sij = 0j-1..-04410; U’H—l"‘aj—l'

These elements satisfy the following Burau relations:

8ijSki = SkSij fori < j<k<landi<k<l<yj,
(5.1) 5iSikSjk = SikSjkSij for i < j <k,
SikSjkSi; = SjkSijsSik fori < j <k,
Si7k8j,k3j7lsj_7’i = 8j7k3j7lsj_7’1$i7k- fori<j<k<l.

The elements s, ; with the relations (5.1) give a presentation of the pure braid group P, [19].
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Let us define the elements oy;, 1 <k <[ < m by the formulas
Okk = €

-1 -1
Okl =0y -..0;_1-

We denote by the same symbols the images of the defined elements in the braid group of a
sphere. Let w(x1, ..., 7,,) be a word with possible entries of 29, where x; are some letters and §
may be +1.

Theorem 5.1. [10] Every element of the group Br,(S?) can be uniquely written in the form
O-in,n"'o-ij,j"'o-’iz,le(Sl,Qa cees sLn_l)...wj(sj,jH, ceey sj7n_1)...wn_3(sn_37n_2, Sn_27n_1)A26,

where elements S;ji1,...,5;n—1 generate a free group and 6 may be 0 or 1. There exists an
algorithm of obtaining the normal form for any word on letters oy,...,0,_1, which gives a
solution of the word problem for Br,(S?%).

Theorem 5.2. [10] Every element of the group My, can be uniquely written in the form

O'Z'n’n...O'i].’j...O'i%le (81’2, ceey slm_l)...wj(sj,jﬂ, ceey sj7n_1)...wn_3(sn_37n_2, Sn_g’n_1>,

where elements s ji1, ..., Sjn—1 generate a free group. There exists an algorithm of obtaining the
normal form for any word on letters oy,...,0,_1, which gives a solution of the word problem

for Mg ,,.
Theorem 5.3. Every element w in 1B, (S?) can be uniquely written in the form
(5.2) Oiy o 01 Oy o Okl €kt 1Ok - - Oy - . O1 ... 0,

ke{0,....n},0<i; < - <i <n—1,0<j; <--<jpr<n—1, and v € Bri(S?

is written in the Gillette-Van Buskirk normal form for Bry(S?). If w is expressed in terms of
Oly ooy Opt, 01 ..., O €, there is an effective algorithm for putting it in this normal
form.

-1
n—1

Proof. Given an element w of IB,(S?), expressed as a word in the generators, the elements
Tiyy coos Oly ooy Oipy ooy O and oy, ..., 045 ..., 01, ..., 0j, of (5.2) are determined uniquely
and algorithmically [5] by a given element of IB,(5%). Geometrically they are determined by
the fact which strands are absent and which ones are present in the braid w. The same way
the element x € Br(S?) is determined as a word in the generators of Br(S?). We apply
Gillette-Van Buskirk algorithm to it to put it into Gillette-Van Buskirk normal form which is
also unique. 0

Theorem 5.4. Every element w in M ,, can be uniquely written in the form
04y 20104« . Op€lp1nl€41n0k ... 04 «..01...04,

ke{0,....n}, zeEMpn 0<i3<...<i<n-1,0<j<--<jp<n-—1,

where x is written in the Gillette- Van Buskirk normal form for M . If w is expressed in terms
of 01, ..., On_1, 01, ..., 0,1, €, there is an effective algorithm for putting it in this normal
form.
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Proof. It is essentially the same as the proof of Theorem 5.3. Given an element w of ZM ,,
expressed in its generators, the elements o;,, ..., o1, ..., 04, ..., op and o, ..., 04, ...,
o1, ..., 0j, are determined uniquely and algorithmically [5] by a given element of ZMy ,,.
Geometrically they are determined by the fact which points participate in the description of
a map of the class w and which ones are omitted. The same way the element x € M, is
determined as a word in generators of M ;. We apply Gillette-Van Buskirk algorithm for
My, i to it to put it into Gillette-Van Buskirk normal form which is also unique. O

6. EXAMPLES

1. The monoid ZM, consists of one element of the identical map of a sphere
Id : 5070 — 507(),

2. The monoid ZM,; consists of two elements, say, unit 1 and the idempotent e.

3. The mapping class group My 2 is isomorphic to the symmetric group s, so the inverse
mapping class monoid ZMj 5 is isomorphic to the symmetric inverse monoid /5.

4. The mapping class group My s is isomorphic to the symmetric group X3, so the inverse
mapping class monoid ZMj 3 is isomorphic to the symmetric inverse monoid /3.

5. The mapping class group of a once-punctured torus M ; is isomorphic to the general
linear group GLyZ (unimodular group SL.Z if we want to restrict ourselves to the orientation
preserving homeomorphisms of a torus) as well as the mapping class group of a torus (without
punctures) is isomorphic to G LsZ (again it is isomorphic to S LoZ if we want to restrict ourselves
to the orientation preserving case). Then the inverse mapping class monoid ZM, ; as a set is
a disjoint union of two copies of G LoZ:

IMy;y = GLyZ 11 GLyZ.

If we denote by I./\/lf1 the inverse mapping class monoid of orientation preserving homeomor-
phisms then we have
IML = SLZ 11 SLyZ.

Let the classes of maps of the first copy of GL,Z respect the puncture and of the second copy
are free. Then the multiplication in each copy is standard and multiplying a punctured element
by a free one we get a standard product in GLyZ and put it in the free copy.

This example gives a good illustration for Theorem 3.2 if we recall the classical result of
Nilsen that the group of outer automorphisms of the free group F» (fundamental group of
punctured torus) is isomorphic to GLyZ, see, for instance [18, Corollary N4, p.169].
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