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Introduction

Mapping class group is an important object in Topology, Complex Analysis, Algebraic Geometry and other domains. It is a lucky case when the method of Algebraic Topology works perfectly well, the application of the functor of fundamental group completely solves the topological problem: group of isotopy classes of homeomorphisms is described in terms of automorphisms of the fundamental group of the corresponding surface, as states the Dehn-Nilsen-Baer theorem, see [START_REF] Ivanov | Mapping class groups, Handbook of geometric topology[END_REF], for example.

Let S g,b,n be an oriented surface of the genus g with b boundary components and a set Q n of n fixed points. Consider the group Homeo(S g,b,n ) of orientation preserving self-homeomorphisms of S g,b,n which fix pointwise the boundary (if it exists) and map the set Q n into itself. Orientation reversing homeomorphisms also possible to consider, see [START_REF] Dicks | Algebraic mapping-class groups of orientable surfaces with boundaries[END_REF], for example, but for the simplicity of exposition we restrict ourselves to orientation preserving case. Let Homeo 0 (S g,b,n ) be the normal subgroup of self-homeomorphisms of S g,b,n which are isotopic to identity. Then the mapping class group M g,b,n is defined as a quotient group M g,b,n = Homeo(S g,b,n )/ Homeo 0 (S g,b,n ) These groups are connected closely with braid groups. In [START_REF] Magnus | Über Automorphismen von Fundamentalgruppen berandeter Flächen[END_REF] W. Magnus interpreted the braid group as the mapping class group of a punctured disc with the fixed boundary. Braid groups have a variety of generalizations, see [START_REF] Vershinin | Braid groups, their Properties and Generalizations[END_REF], for example. One of generalizations is the inverse braid monoid IB n constructed by D. Easdown and T. G. Lavers [START_REF] Easdown | The inverse braid monoid[END_REF].

The notion of inverse semigroup was introduced by V. V. Wagner in 1952 [START_REF] Wagner | Generalized groups. (Russian)[END_REF]. By definition it means that for any element a of a semigroup (monoid) M there exists a unique element b (which is called inverse) such that a = aba and b = bab. The typical example of an inverse monoid is a monoid of partial (defined on a subset) injections of a set. For a finite set this gives us the notion of a symmetric inverse monoid I n which generalizes and includes the classical symmetric group Σ n . A presentation of symmetric inverse monoid was obtained by L. M. Popova [START_REF] Popova | Defining relations of a semigroup of partial endomorphisms of a finite linearly ordered set[END_REF], see also formulas (2.1), (2.3 -2.4) below.

Inverse braid monoids and inverse mapping class monoids

Inverse braid monoid arises from a very natural operation on braids: deleting several strands. By the application of this procedure to braids in Br n we get partial braids [START_REF] Easdown | The inverse braid monoid[END_REF]. Applying the standard procedure of multiplication of braids (concatenation) to partial braids we need to eliminate all not complete strands, as it is shown at Figure 2.1. If all strands are eliminated we get an empty braid. The set of all partial braids with this operation forms an inverse braid monoid IB n .

Usually the braid group Br n is given by the following Artin presentation [START_REF] Artin | Theorie der Zöpfe[END_REF]. It has the generators σ i , i = 1, ..., n -1, and two types of relations:

(2.1)

σ i σ j = σ j σ i , if |i -j| > 1, σ i σ i+1 σ i = σ i+1 σ i σ i+1 .
There exist other presentations of the braid group. Let

σ = σ 1 σ 2 . . . σ n-1 , . q . . . q . . . q . . . q ... q . . q q q q q q x i x i+1 x -1 i+1 x i x i+1 Figure 2.2
then the group Br n is generated by σ 1 and σ because

σ i+1 = σ i σ 1 σ -i , i = 1, . . . n -2.
The relations for the generators σ 1 and σ are the following

(2.2) σ 1 σ i σ 1 σ -i = σ i σ 1 σ -i σ 1 for 2 ≤ i ≤ n/2, σ n = (σσ 1 ) n-1 .
The presentation (2.2) was given by Artin in the initial paper [START_REF] Artin | Theorie der Zöpfe[END_REF]. This presentation was also mentioned in the books by F. Klein [START_REF] Klein | Vorlesungen über höhere Geometrie[END_REF] and by H. S. M. Coxeter and W. O. J. Moser [START_REF] Coxeter | Generators and relations for discrete groups[END_REF]. Classical braid group Br n can be defined also as the mapping class group of a disc D 2 with n points deleted (or fixed) and with its boundary fixed, or as the subgroup of the automorphism group of a free group Aut F n , generated by the following automorphisms:

     x i → x i+1 , x i+1 → x -1 i+1 x i x i+1 , x j → x j , j = i, i + 1.
Geometrically this action is depicted in Figure 2.2, where x i correspond to the canonical loops on D 2 which form the generators of the fundamental group of the punctured disc. This topological interpretation of the braid group was continued in [START_REF] Vershinin | On the inverse braid monoid[END_REF] for the inverse braid monoid. Let Q n the set of n fixed points of a disc D 2 . The fundamental group of D 2 with these points deleted is isomorphic to F n . Consider homeomorphisms of D 2 onto a copy of the same disc with the condition that only k points of Q n , k ≤ n (say i 1 , . . . , i k ) are mapped bijectively onto the k points (say j 1 , . . . , j k ) of the second copy of D 2 , k varies from 0 to n and n is fixed. Consider the isotopy classes of such homeomorphisms and denote the set of them by IM n (D 2 ). Evidently it is a monoid. Theorem 2.1. [START_REF] Vershinin | On the inverse braid monoid[END_REF] The monoids IB n and IM n (D 2 ) are isomorphic.

The following presentation for the inverse braid monoid was obtained in [START_REF] Easdown | The inverse braid monoid[END_REF]. It has the generators σ i , σ -1 i , i = 1, . . . , n -1, ǫ, and relations

(2.3)            σ i σ -1 i = σ -1 i σ i = 1, for all i, ǫσ i = σ i ǫ for i ≥ 2, ǫσ 1 ǫ = σ 1 ǫσ 1 ǫ = ǫσ 1 ǫσ 1 , ǫ = ǫ 2 = ǫσ 2 1 = σ 2
1 ǫ and the braid relations (2.1).

Geometrically the generator ǫ means that the first strand in the trivial braid is absent. If we replace the first relation in (2.3) by the following set of relations (2.4) σ 2 i = 1, for all i, and delete the superfluous relations ǫ = ǫσ 2 1 = σ 2 1 ǫ, we get a presentation of the symmetric inverse monoid I n [START_REF] Popova | Defining relations of a semigroup of partial endomorphisms of a finite linearly ordered set[END_REF] . We also can simply add the relations (2.4) if we do not worry about redundant relations. We get a canonical map [START_REF] Easdown | The inverse braid monoid[END_REF] (2.5)

τ n : IB n → I n ,
which is a natural extension of the corresponding map for the braid and symmetric groups. More balanced relations for the inverse braid monoid were obtained in [START_REF] Gilbert | Presentations of the inverse braid monoid[END_REF]. Let ǫ i denote the trivial braid with ith strand deleted, formally:

ǫ 1 = ǫ, ǫ i+1 = σ ±1 i ǫ i σ ±1 i .
The generators are: σ i , σ -1 i , i = 1, . . . , n -1, ǫ i , i = 1, . . . , n, and relations are the following:

(2.6)

                         σ i σ -1 i = σ -1 i σ i = 1, for all i, ǫ j σ i = σ i ǫ j , for j = i, i + 1, ǫ i σ i = σ i ǫ i+1 , ǫ i+1 σ i = σ i ǫ i , ǫ i = ǫ 2 i , ǫ i+1 σ 2 i = σ 2 i ǫ i+1 = ǫ i+1 , ǫ i ǫ i+1 σ i = σ i ǫ i ǫ i+1 = ǫ i ǫ i+1 ,
plus the braid relations (2.1).

If we take the presentation (2.2) for the braid group we get a presentation of the inverse braid monoid with generators σ 1 , σ -1 1 , σ, σ -1 , ǫ, and relations [START_REF] Vershinin | On the inverse braid monoid[END_REF]:

(2.7)

               σ 1 σ -1 1 = σ -1 1 σ 1 = 1, σσ -1 = σ -1 σ = 1, ǫσ i σ 1 σ -i = σ i σ 1 σ -i ǫ for 1 ≤ i ≤ n -2, ǫσ 1 ǫ = σ 1 ǫσ 1 ǫ = ǫσ 1 ǫσ 1 , ǫ = ǫ 2 = ǫσ 2 1 = σ 2 1 ǫ, plus (2.2).
Similar to braids the notion of mapping class monoid was introduced in [START_REF] Vershinin | On the inverse braid monoid[END_REF]. The definition is as follows.

It is convenient to consider the surface S g,b,n , sometimes with n points fixed, sometimes deleted. Let f be a homeomorphism of S g,b,n which maps k points, k ≤ n, from Q n : {i 1 , . . . , i k } to k points {j 1 , . . . , j k } also from Q n . The same way let h be a homeomorphism of S g,b,n which maps l points, l ≤ n, from Q n , say {s 1 , . . . , s l } to l points {t 1 , . . . , t l } again from Q n . Consider the intersection of the sets {j 1 , . . . , j k } and {s 1 , . . . , s l }, let it be the set of cardinality m, (m ≤ k), it may be empty. Then the composition of f and h maps m points of Q n to m points (may be different) of Q n . For example, suppose for the simplicity of notations that {j 1 , . . . , j k } ∩ {s 1 , . . . , s l } = {j 1 , . . . , j m } = {s 1 , . . . , s m }, then the composition h • f maps the points {i 1 , . . . , i m } to {t 1 , . . . , t m }. If m = 0 then the composition has no relation to the set Q n . Denote the set of isotopy classes of such maps by IM g,b,n . Composition defines a structure of monoid on IM g,b,n . It is evident that the monoid IM g,b,n is inverse, so we call it the inverse mapping class monoid. If g = 0 and b = 1 we get the inverse braid monoid. In the general case of IM g,b,n the role of the empty braid plays the mapping class group M g,b (without fixed points). Each element f ∈ IM g,b,n corresponds a (partial) bijection {i 1 , . . . , i k } → {j 1 , . . . , j k }. This defines a canonical homomorphism to the symmetric inverse monoid:

(2.8) τ g,b,n : IM g,b,n → I n .
We recall that a monoid M is factorisable if M = EG where E is a set of idempotents of M and G is a subgroup of M . Proposition 2.1. [START_REF] Vershinin | On the inverse braid monoid[END_REF] The monoid IM g,b,n can be written in the form

IM g,b,n = EM g,b,n ,
where E is a set of idempotents of IM g,b,n and M g,b,n is the corresponding mapping class group. So, this monoid is factorisable.

Similar to braids we introduce the idempotent elements ǫ i ∈ IM g,b,n as isotopy classes of identity map Id : S g,b → S g,b , where during isotopy all points of the set Q n are fixed with the exception of the point with number i. The element ǫ 1 is denoted by ǫ.

We call an element m of the mapping class monoid IM g,b,n i-Makanin or i-Brunnian if it satisfies the equation:

(2.9)

ǫ i m = ǫ i .
Geometrically this means that if we fill the deleted point i at the surface, then a homeomorphism h lying in the class m h : S g,b → S g,b , becomes isotopical to the identity map

Id : S g,b \ {1, . . . , î, . . . , n} → S g,b \ {1, . . . , î, . . . , n}.
The condition (2.9) is equivalent to the condition

mǫ τ (m)(i) = ǫ τ (m)(i) ,
where τ is the canonical map to the symmetric inverse monoid (2.8). With the exception of ǫ i itself all such elements belong to the mapping class group M g,b,n . We denote the subgroup of i -Makanin elements of the mapping class group by A i . The subgroups A i , i = 1, . . . , n, are conjugate. The intersection of all subgroups of i -Makanin elements is the of Makanin or Brunnian subgroup of the mapping class group

Mak g,b,n = ∩ n i=1 A i .
That is the same as m ∈ Mak g,b,n if and only if the equation (2.9) holds for all i. Certain properties of Makanin subgroups of the mapping class groups are studied in the work Benson Farb, Christopher J. Leininger and Dan Margalit [START_REF] Farb | The lower central series and pseudo-Anosov dilatations[END_REF] The purpose of this paper is to develop further the theory of inverse mapping class monoids, to demonstrate that canonical properties of mapping class groups often have there smooth continuation for the inverse mapping class monoid IM g,b,n .

Properties of inverse mapping class monoids

Following the ideology of considering partial symmetries instead of global ones [START_REF] Lawson | Inverse semigroups: the theory of partial symmetries[END_REF] we can define the monoid of partial automorphisms of a group as follows. For a group G consider a set of partial isomorphisms f :

H → K,
where H, K are subgroups of G. The composition of f with the isomorphism

g : L → M,
(L, M are subgroups of G) is a superposition of f and g which is defined on (K ∩ L)f -1 :

f g : (K ∩ L)f -1 → (K ∩ L)g,
The set of all such partial isomorphisms with this operation form a monoid which is evidently inverse and which we call the inverse partial automorphism monoid of a group G and denote by IP A(G).

In the case when the group G is a finitely generated free group F n the following submonoid EF n of IP A(F n ) was defined in [START_REF] Vershinin | On the inverse braid monoid[END_REF]. Let a be an element of the symmetric inverse monoid I n , a ∈ I n , so a is a partial injection with the elements i 1 , . . . , i k as its domain of the definition. Denote by J k = {j 1 , . . . , j k } the image of a. The monoid EF n consists of isomorphisms

< x i 1 , . . . , x i k > → < x j 1 , . . . , x j k > expressed by f a : x i → w -1 i x a(i) w i , if i is among i 1 , .
. . , i k and not defined otherwise and w i is a word on x j 1 , . . . , x j k . The composition of f a and g b , a, b ∈ I n , is defined for x i belonging to the domain of a • b. We put x jm = 1 in a word w i if x jm does not belong to the domain of definition of g. We define a map φ n from IB n to EF n expanding the canonical inclusion Br n → Aut F n by the condition that φ n (ǫ) as a partial isomorphism of F n is given by the formula

φ n (ǫ)(x i ) = x i if i ≥ 2, undefined, if i = 1.
Using the presentation (2.3) we see that φ n is a well defined homomorphism of monoids

φ n : IB n → EF n .
The following statement was proved in [START_REF] Vershinin | On the inverse braid monoid[END_REF].

Theorem 3.1. The homomorphism φ n is a monomorphism.

As usual, we define the (g, b, n)-surface group as a group with the presentation

π g,b,n =< a 1 , c 1 , . . . , a g , c g , v 1 , . . . , v b , u 1 , . . . , u n | n i=1 u i b l=1 v l g m=1 [a m , c m ] > .
It is the fundamental group of a surface of genus g with b components of a boundary and n punctures. The generators a i , c i correspond to the genus of a surface, the generators v j correspond to boundary components and the generators u k correspond to punctures.

In our construction of the inverse mapping class monoid IM g,b,n we are passing from maps which are fixing a set of n points to maps which are fixing the set with a smaller number of points. If we consider these points deleted it means we are filling the holes. On the level of fundamental groups this means passing to quotient group.

Let H be a quotient group of π g,b,n , defined by the conditions

u i = 1 for all i ∈ {i 1 , . . . , i k },
and let K be a quotient group of π g,b,n , defined by the conditions u j = 1 for all j ∈ {j 1 , . . . , j k }.

Let t be an element of the symmetric inverse monoid I n , t ∈ I n , so t is an injection with elements i 1 , . . . , i k constituting the domain of the definition of t. Let J k = {j 1 , . . . , j k } be the image of t. Let w i be a word on letters a 1 , c 1 , . . . , a g , c g , v 1 , . . . , v b , u j 1 , . . . , u j k . Let IAut π g,b,n be the monoid consisting of isomorphisms

f t : H → K, such that f t (v m ) = v m for m = 1, . . . , b, f t (u i ) = w -1 i u (i)t w i , if i is among i 1 , .
. . , i k , for all subgroups H and K of the type defined above, for all k = 0, 1, . . . , n. Here the index (i)t of the element u (i)t means the image of the element i by the action of the injection t, so (i)t ∈ J k .

The composition of f t and g s , t, s ∈ I n , is defined for u i belonging to the domain of t • s. We put u jm = 1 in a word w i if u jm does not belong to the domain of definition of g s .

By our construction to each element of f t ∈ IAut π g,b,n the element t ∈ I n is associated. This gives a canonical homomorphism

(3.1) τ g,b,n : IAut π g,b,n → I n .
For the simplicity of exposition we restrict ourselves to the case of empty boundary which was described in the book of W. Magnus, A. Karrass and D. Solitar [18, Sec. 3.7], and we denote π g,0,n by π g,n . Let us define an equivalence relation in IAut π g,n : for f 1 and f 2

f 1 , f 2 : H → K.
Such isomorphisms f 1 and f 2 are equivalent if they differ by an inner automorphism of the group H, their domain of definition, i.e. if there exists an element q ∈ H such that

f 1 (q -1 xq) = f 2 (x).
This equivalence is in fact a congruence on the monoid IAut π g,n and we denote the corresponding quotient monoid by IOut π g,n . This is similar to the classical case of groups when a homomorphism is defined from a mapping class group of a surface to the group of outer automorphisms of the fundamental group of the surface. The homomorphism τ g,b,n : IAut π g,b,n → I n of (3.1) factors through IOut π g,n and we have a homomorphism

(3.2) τ g,b,n : IOut π g,b,n → I n .
Let us take an arbitrary element η of IM g,n . It is represented by a homeomorphism of a surface with k points deleted (among our n fixed points) onto another copy of the surface with (may be) different k points deleted h : S g,n \ {i 1 , . . . , i k } → S g,n \ {j 1 , . . . , j k }.

It defines the bijection ĥ between the conjugacy classes of π 1 (S g,n \ {i 1 , . . . , i k }) and π 1 (S g,n \ {j 1 , . . . , j k }). We define ĥ as an algebraic image of η in IOut π g,n . Formally a homomorphism of monoids ψ g,n : IM g,n → IOut π g,n . is defined by the formula ψ g,n (η) = ĥ. This homomorphism is compatible with homomorphisms τ g,b,n of (2.8) and (3.2).

Theorem 3.2. The homomorphism ψ n is an isomorphism of monoids.

Proof. The monoid IM g,n as a set is a disjoint union of copies of mapping class groups M g,k , for k = 0, . . . n, namely, C k n copies of M g,k for each k. Our constructions are done so that for each copy of M g,k the map ψ g,n is a bijection because of the Dehn-Nilsen-Baer theorem.

Inverse mapping class monoids for punctured sphere

The following presentation for the mapping class group of a punctured sphere M 0,n was obtained by W. Magnus [START_REF] Magnus | Über Automorphismen von Fundamentalgruppen berandeter Flächen[END_REF], see also [START_REF] Magnus | Presentations of groups in terms of generators and relations[END_REF]. Let σ 1 , . . . , σ n-1 , denote the classes of homeomorphisms such that σ i locally interchanges, say clockwise, the punctures with numbers i and i + 1. Then the presentation has generators σ 1 , . . . , σ n-1 , which satisfy the braid relations (2.1), the sphere relation

(4.1) σ 1 σ 2 . . . σ n-2 σ 2 n-1 σ n-2 . . . σ 2 σ 1 = 1 and the following relation (4.2) (σ 1 σ 2 . . . σ n-2 σ n-1 ) n = 1.
Let ∆ be the Garside's fundamental word in the braid group Br n [START_REF] Garside | The braid group and other groups[END_REF]. It can be in particular defined by the formula:

∆ = σ 1 . . . σ n-1 σ 1 . . . σ n-2 . . . σ 1 σ 2 σ 1 . If we use Garside's notation Π t ≡ σ 1 . . . σ t , then ∆ ≡ Π n-1 . . . Π 1 . If the generators σ 1 , σ 2 , . . . , σ n-2 , σ n-1
, are subject to the braid relations (2.1), then the condition (4.2) is equivalent to the following ∆ 2 = 1. If we consider the presentation of the braid group with two generators the sphere relation has the form

σ n (σ -1 1 σ) 1-n = 1,
and the sphere mapping class relation is

σ n = 1.
So, the mapping class group M 0,n in two generators is described by the braid relations and the following two relations (4.3)

σ n = 1, (σ -1 1 σ) n-1 = 1. Theorem 4.1.
We get a presentation of the inverse mapping class monoid for punctured sphere IM 0,n if we take the generators Proof. We use the fact that the mapping class group M 0,0,n is a quotient group the n-strand braid group for sphere and the ideas of the proof of the presentation (2.3) for the inverse braid monoid IB n in the work [START_REF] Easdown | The inverse braid monoid[END_REF].

σ 1 , σ 2 , . . . , σ n-2 , σ n-1 , σ -1 1 , σ -1 2 , . . . , σ -1 n-2 , σ -1 n-1 , ǫ (or ǫ 1 , ǫ 2 , . . . , ǫ n-1 , ǫ n instead
Denote temporarily by P n the monoid defined by the presentation by the generators

σ 1 , σ 2 , . . . , σ n-2 , σ n-1 , σ -1 1 , σ -1 2 , . . . , σ -1 n-2 , σ -1 n-1
, ǫ the sphere braid relations (2.1), (4.1), the sphere mapping class relation (4.2) and the inverse braid relations (2.3). To define a map Θ : P n → M 0,n we associate to each word in the alphabet on letters

σ 1 , σ 2 , . . . , σ n-2 , σ n-1 , σ -1 1 , σ -1 2 , . . . , σ -1 n-2 , σ -1
n-1 , ǫ the corresponding composition of (classes of) homeomorphisms. To juxtaposition of words there evidently corresponds the composition of (classes of) homeomorphisms. The fact that Θ is well defined (respects the relations) for some relations are classical facts, for others it is evident, probably, with the exception of the third relation in (2.3). The equalities of this relation follow from the fact that all three given classes (containing identity) ignore the first two points.

Let ǫ k+1,n denote the the isotopy class of of a homeomorphism that fixes the first k points and does not care about the remaining n -k points. On the level of braids (on a sphere) it corresponds to the partial braid with the trivial first k strands and the absent rest n-k strands. The element ǫ k+1,n can be expressed using the generator ǫ or the generators ǫ i as follows

(4.4) ǫ k+1,n = ǫσ n-1 . . . σ k+1 ǫσ n-1 . . . σ k+2 ǫ . . . ǫσ n-1 σ n-2 ǫσ n-1 ǫ, ǫ k+1,n = ǫ k+1 ǫ k+2 . . . ǫ n ,
From our construction of the inverse mapping class monoid it follows that every element of IM 0,n represented by a homeomorphism h of S g,b,n which maps k points, k ≤ n, from

Q n : {i 1 , . . . , i k } to k points {j 1 , . . . , j k } from Q n can be expressed in the form (4.5) (σ i 1 . . . σ 1 ) . . . (σ i k . . . σ k ) ǫ k+1,n x ǫ k+1,n (σ k . . . σ j k ) . . . (σ 1 . . . σ j 1 ), k ∈ {0, . . . , n}, x ∈ M 0,k , 0 ≤ i 1 < • • • < i k ≤ n -1 and 0 ≤ j 1 < • • • < j k ≤ n -1.
Geometrically this means that we first send the points {i 1 , . . . , i k } to the points {1, . . . , k}, then apply a homeomorphism from the mapping class group M 0,k , and then send the points {1, . . . , k} to the points {j 1 , . . . , j k }.

Note that in the formula (4.5) we can remove one of the ǫ k+1,n , but we shall use the form (4.5) because of convenience: two symbols ǫ k+1,n serve as markers to distinguish the elements of M 0,k .

The element x belongs to the mapping class group M 0,k , so it can be expressed as a word in the letters σ 1 , σ 2 , . . . , σ k-1 , σ -1 1 , σ -1 2 , . . . , σ -1 k-1 . This proves that homomorphism Θ is onto. Let us prove that Θ is a monomorphism. Suppose that for two words W 1 , W 2 ∈ P n we have

Θ(W 1 ) = Θ(W 2 ).
It means that the corresponding homeomorphisms both map the set of points {i 1 , . . . , i k } onto the set of points {j 1 , . . . , j k } and they are isotopic in the class of homeomorphisms mapping {i 1 , . . . , i k } onto {j 1 , . . . , j k }. Using relations (2.1) and (2.3) the same way as in [START_REF] Easdown | The inverse braid monoid[END_REF] transform the words W 1 , W 2 into the form (4.5)

σ(i 1 , . . . i k ; k)ǫ k+1,n xǫ k+1,n σ(k; j 1 , . . . j k ).
Then the corresponding fragments σ(i 1 , . . . i k ; k) and σ(k, j 1 , . . . j k ; k) for W 1 and W 2 coincide. The elements x 1 of W 1 and x 2 of W 2 presented in the form 4.5 are the words in σ 1 , . . . , σ k and σ -1 1 , . . . , σ -1 k , and they correspond after Θ to isotopic homeomorphisms h 1 , h 2 : S 0,k → S 0,k .

Hence x 1 can be transformed into x 2 using relations for the mapping class group M 0,k . So, the words W 1 and W 2 represent the same element in P n .

Proposition 4.1. There is a presentation of the inverse mapping class monoid for punctured sphere IM 0,n with the generators σ 1 , σ, σ -1 1 , σ -1 , ǫ subject to the relations (2.2), (2.7) and (4.3) .

The generators ǫ i commute with ∆ in the following way [START_REF] Vershinin | On the inverse braid monoid[END_REF]:

ǫ i ∆ = ∆ǫ n+1-i .
Let E be the monoid generated by one idempotent generator ǫ. This defines a unique map f a : AM → B, such that f = f a a and so AM is an abelianization of IM 0,n .

Corollary 4.1. The monoid AM as a set consists of the following elements AM = { 0, ǫ, ᾱ, 2ᾱ, . . . , (m -1)ᾱ}.

Proposition 4.3. The center of IM 0,n for n ≥ 1 is isomorphic to E:

Z(IM 0,n ) = {1} ∐ M 0,0 ∼ = E,
i.e. the only non-unit element of Z(IM 0,n ) is the isotopy class of the identity map of a sphere such that isotopy does not respect punctures.

Proof. If n = 1, then the monoid IM 0,1 consists of two elements, unit 1 and the idempotent ǫ (Example 2 below) and so it is a commutative monoid isomorphic to E. Let n ≥ 2. Denote by Φ the only element of M 0,0 ֒→ IM 0,n : Φ ∈ M 0,0 ֒→ IM 0,n .

For any element x of IM 0,n we have Φx = xΦ = Φ. So, Φ lies in the center. Let c be a non-unit element in the center different from Φ. It does not belong to the mapping class group M 0,n , because this group is centerless for n ≥ 3 [START_REF] Gillette | The word problem and consequences for the braid groups and mapping class groups of the 2-sphere[END_REF] and for n = 2 (Example 3 below) c can not be the generator σ 1 of M 0,2 = Σ 2 , since we have

σ 1 ǫ 1 = ǫ 1 σ 1 .
So c is a homeomorphism of S 2 which maps the points I k = {i 1 , . . . , i k } to the points J k = {j 1 , . . . , j k }, 0 < k < n. Take a (class of) homeomorphism x that maps one point in the complement of J k to a point in I k without restrictions to other points. Then cx is equal to Φ, while xc is not.

5.

The word problem R. Gillette and J. Van Buskirk in [START_REF] Gillette | The word problem and consequences for the braid groups and mapping class groups of the 2-sphere[END_REF] obtained an analogue of the Markov normal form [START_REF] Markoff | Foundations of the Algebraic Theory of Tresses[END_REF] for the sphere braid groups Br n (S 2 ) and for the punctured sphere mapping class group M 0, n . This form can be obtained algorithmically, so, it gives a solution of the word problem. These ideas can be applied to the cases of inverse braid and mapping class monoids.

Let us recall the main points of the Gillette-Van Buskirk variant of Markov normal form. Define the elements s i,j , 1 ≤ i < j ≤ m, of the classical braid group Br m by the formula:

s i,j = σ j-1 ...σ i+1 σ 2 i σ -1 i+1 ...σ -1 j-1 .
These elements satisfy the following Burau relations:

(5.1)

          
s i,j s k,l = s k,l s i,j for i < j < k < l and i < k < l < j, s i,j s i,k s j,k = s i,k s j,k s i,j for i < j < k, s i,k s j,k s i,j = s j,k s i,j s i,k for i < j < k, s i,k s j,k s j,l s -1 j,k = s j,k s j,l s -1 j,k s i,k for i < j < k < l. The elements s i,j with the relations (5.1) give a presentation of the pure braid group P m [START_REF] Markoff | Foundations of the Algebraic Theory of Tresses[END_REF].

Proof. It is essentially the same as the proof of Theorem 5.3. Given an element w of IM 0, n , expressed in its generators, the elements σ i 1 , . . . , σ 1 , . . . , σ i k , . . . , σ k and σ k , . . . , σ j k , . . . , σ 1 , . . . , σ j 1 are determined uniquely and algorithmically [START_REF] Easdown | The inverse braid monoid[END_REF] by a given element of IM 0, n . Geometrically they are determined by the fact which points participate in the description of a map of the class w and which ones are omitted. The same way the element x ∈ M 0, k is determined a word in generators of M 0, k . We apply Gillette-Van Buskirk algorithm for M 0, k to it to put it into Gillette-Van Buskirk normal form which is also unique.

Examples

1. The monoid IM 0,0 consists of one element of the identical map of a sphere Id : S 0,0 → S 0,0 , 2. The monoid IM 0,1 consists of two elements, say, unit 1 and the idempotent ǫ.

3. The mapping class group M 0,2 is isomorphic to the symmetric group Σ 2 , so the inverse mapping class monoid IM 0,2 is isomorphic to the symmetric inverse monoid I 2 .

4. The mapping class group M 0,3 is isomorphic to the symmetric group Σ 3 , so the inverse mapping class monoid IM 0,3 is isomorphic to the symmetric inverse monoid I 3 .

5. The mapping class group of a once-punctured torus M 1,1 is isomorphic to the general linear group GL 2 Z (unimodular group SL 2 Z if we want to restrict ourselves to the orientation preserving homeomorphisms of a torus) as well as the mapping class group of a torus (without punctures) is isomorphic to GL 2 Z (again it is isomorphic to SL 2 Z if we want to restrict ourselves to the orientation preserving case). Then the inverse mapping class monoid IM 1,1 as a set is a disjoint union of two copies of GL 2 Z:

IM 1,1 = GL 2 Z ∐ GL 2 Z.
If we denote by IM + 1,1 the inverse mapping class monoid of orientation preserving homeomorphisms then we have IM + 1,1 = SL 2 Z ∐ SL 2 Z. Let the classes of maps of the first copy of GL 2 Z respect the puncture and of the second copy are free. Then the multiplication in each copy is standard and multiplying a punctured element by a free one we get a standard product in GL 2 Z and put it in the free copy.

This example gives a good illustration for Theorem 3.2 if we recall the classical result of Nilsen that the group of outer automorphisms of the free group F 2 (fundamental group of punctured torus) is isomorphic to GL 2 Z, see, for instance [START_REF] Magnus | Presentations of groups in terms of generators and relations[END_REF]Corollary N4,p.169].
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Let us define the elements σ k,l , 1 ≤ k ≤ l ≤ m by the formulas σ k,k = e, σ k,l = σ -1 k ...σ -1 l-1 . We denote by the same symbols the images of the defined elements in the braid group of a sphere. Let w(x 1 , ..., x m ) be a word with possible entries of x δ i , where x i are some letters and δ may be ±1.

Theorem 5.1. [START_REF] Gillette | The word problem and consequences for the braid groups and mapping class groups of the 2-sphere[END_REF] Every element of the group Br n (S 2 ) can be uniquely written in the form σ in,n ...σ i j ,j ...σ i 2 ,2 w 1 (s 1,2 , ..., s 1,n-1 )...w j (s j,j+1 , ..., s j,n-1 )...w n-3 (s n-3,n-2 , s n-2,n-1 )∆ 2δ , where elements s j,j+1 , ..., s j,n-1 generate a free group and δ may be 0 or 1. There exists an algorithm of obtaining the normal form for any word on letters σ 1 , . . . , σ n-1 , which gives a solution of the word problem for Br n (S 2 ). Theorem 5.2. [START_REF] Gillette | The word problem and consequences for the braid groups and mapping class groups of the 2-sphere[END_REF] Every element of the group M 0,n can uniquely written in the form σ in,n ...σ i j ,j ...σ i 2 ,2 w 1 (s 1,2 , ..., s 1,n-1 )...w j (s j,j+1 , ..., s j,n-1 )...w n-3 (s n-3,n-2 , s n-2,n-1 ), where elements s j,j+1 , ..., s j,n-1 generate a free group. There exists an algorithm of obtaining the normal form for any word on letters σ 1 , . . . , σ n-1 , which gives a solution of the word problem for M 0,n . Theorem 5.3. Every element w in IB n (S 2 ) can be uniquely written in the form

is written in the Gillette-Van Buskirk normal form for Br k (S 2 ). If w is expressed in terms of σ 1 , . . . , σ n-1 , σ -1 1 , . . . , σ -1 n-1 , ǫ, there is an effective algorithm for putting it in this normal form.

Proof. Given an element w of IB n (S 2 ), expressed as a word in the generators, the elements σ i 1 , . . . , σ 1 , . . . , σ i k , . . . , σ k and σ k , . . . , σ j k , . . . , σ 1 , . . . , σ j 1 of (5.2) are determined uniquely and algorithmically [START_REF] Easdown | The inverse braid monoid[END_REF] by a given element of IB n (S 2 ). Geometrically they are determined by the fact which strands are absent and which ones are present in the braid w. The same way the element x ∈ Br k (S 2 ) is determined as a word in the generators of Br k (S 2 ). We apply Gillette-Van Buskirk algorithm to it to put it into Gillette-Van Buskirk normal form which is also unique. Theorem 5.4. Every element w in IM 0, n can be uniquely written in the form

where x is written in the Gillette-Van Buskirk normal form for M 0, k . If w is expressed in terms of σ 1 , . . . , σ n-1 , σ -1 1 , . . . , σ -1 n-1 , ǫ, there is an effective algorithm for putting it in this normal form.