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The core of games on ordered structures and graphs∗

Michel GRABISCH†

Abstract

In cooperative games, the core is the most popular solution concept, and its
properties are well known. In the classical setting of cooperative games, it is gen-
erally assumed that all coalitions can form, i.e., they are all feasible. In many
situations, this assumption is too strong and one has to deal with some unfeasible
coalitions. Defining a game on a subcollection of the power set of the set of players
has many implications on the mathematical structure of the core, depending on
the precise structure of the subcollection of feasible coalitions. Many authors have
contributed to this topic, and we give a unified view of these different results.

MSC Codes: 91A12, 06A06, 90C27

Keywords: TU-game, solution concept, core, feasible coalition, communication graph,
partially ordered set

1 Introduction

Let N := {1, . . . , n} be a finite set of players. We consider the situation where these
players can form coalitions, and the profit given by the cooperation of the players in a
coalition can be freely distributed among its members: this is in general referred to as
cooperative profit games with transferable utility, which we will abbreviate in the sequel as
TU-games (see, e.g., Driessen (1988); Peleg and Sudhölter (2003); Brânzei et al. (2005)).

Let v be a TU-game, that is, a set function v : 2N → R such that v(∅) = 0, assigning
to each coalition S ⊆ N its worth (profit) v(S). Let us assume that forming the grand
coalition N is the best way to generate profit. One of the main problems in cooperative
game theory is to define a rational sharing among all players of the total worth v(N)
of the game. Any sharing is called a solution of the game, since it solves the (difficult)
problem of sharing the cake.

The literature on solutions of TU-games is very abundant, and many concepts of so-
lution have been proposed. One may distinguish among them two main families, namely
those solutions which are single-valued, and those which are set-valued. In the first cate-
gory, to each game is assigned a single solution, which most of the time exists. Best known
examples are the Shapley value (Shapley, 1953), the Banzhaf value (Banzhaf, 1965) and
any other power index used in voting theory (see, e.g., Felsenthal and Machover (1998)),
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the nucleolus (Schmeidler, 1969), the τ -value (Tijs, 1981), etc. In the second category,
to each game a set of solutions is assigned. This is the case of the core (Gillies, 1953;
Shapley, 1971), the bargaining set (Aumann and Maschler, 1964; Davis and Maschler,
1963), the kernel (Davis and Maschler, 1965), etc.

Among all these solution concepts, the core remains one of the most appealing con-
cepts, due to its simple and intuitive definition. Roughly speaking, it is the set of sharing
vectors for which “nobody can complain”, or more exactly, which are coalitionally ratio-
nal. This means that no coalition can be better off by splitting from the grand coalition
N , i.e., for every S ⊆ N , the payoff x(S) given to S is at least equal to v(S), the profit
that S can make without cooperating with the other players. The core may be empty,
but when nonempty, it ensures in some sense the stability of the set of players, hence its
interest.

The core is an important notion in economics. In an exchange economy, the core is
defined as the set of situations where no coalition of agents can improve the utility of its
members by reassigning the initial resources of its own members among them (Debreu
and Scarf, 1963). Besides, there are many examples in economics where a common good
or resource has to be shared among several users (e.g., a river supplying the water of
several towns). The problem of sharing the cost among all the users in a rational way
precisely amounts to find a solution like the core (Ambec and Sprumont, 2002; van den
Brink and van der Laan, 2005; van den Brink et al., 2007; Khmelnitskaya, 2010). The
core is also well known in decision theory and in the field of imprecise probabilities (see
the monograph of Walley (1991), and also Chateauneuf and Jaffray (1989)): given a
capacity, i.e., a monotonic game v such that v(N) = 1 (Choquet, 1953) representing
the uncertainty on the set of states of nature, its core is the set of probability measures
compatible with the available information on uncertainty. Conversely, given a family of
probability measures representing some uncertainty on the set of states of nature, its
lower envelope defines a capacity.

The core has been widely studied, and its properties are well known. In particular,
when nonempty it is a bounded convex polyhedron, and the famous Bondareva theorem
tells us when the core is nonempty (Bondareva, 1963), while Shapley (1971) and later
Ichiishi (1981) found the vertices of the core for convex games.

The classical view in cooperative game theory is to consider that every coalition can
form, i.e., a game v is a mapping defined on 2N , the set of all subsets of N . A view closer
to reality reveals that it is not always possible to assume that every coalition can form,
so that one should distinguish between feasible and unfeasible coalitions. For example,
some hierarchy may exist on the set of players, and feasible coalitions are those which
respect this hierarchy, in the sense that subordinates should be present (games with
precedence constraints, Faigle and Kern (1992)). Another example is when coalitions
are the connected subgraphs of a communication graph, depicting who can communicate
with whom (Myerson, 1977b). More simply, when considering political parties, leftist and
rightist parties cannot in general make alliance. In fact, many authors have studied the
case where the set of feasible coalitions is a subcollection of 2N , as this paper will show.

The study of the core under such a general framework becomes much more difficult.
Surprisingly, even if the core, when nonempty, is still a convex polyhedron, it need not be
bounded, and moreover, it need not have vertices. The structure of the core for convex
games, perfectly clear in the classical case, is complicated by the fact that it is not always
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possible to speak of convex games in the usual sense, because the definition of convexity
works for a collection of feasible coalitions closed under union and intersection. The aim
of this survey, which is an updated version of (Grabisch, 2009), is precisely to give a
unified view of the scattered results around these questions.

The paper is organized as follows. Section 2 introduces the basic material on partially
ordered sets and polyhedra. Then Section 3 is devoted to a comparative study of various
families of set systems (collections of feasible coalitions). Section 4 defines the core and
the positive core, and gives the main classical results that are valid when all coalitions
are feasible. Section 5 studies the structure of the core under various assumptions on the
set system, while Section 6 does the same for the positive core. Finally, Section 7 studies
the case of communication graphs.

Throughout the paper, the following notation will be used: we denote by R+ the set
of nonnegative real numbers; N = {1, . . . , n} is the set of players; for any subset S ⊆ N ,
1S denotes the characteristic function (or vector) of S. For singletons, pairs, etc., we
often omit braces and commas to avoid a heavy notation: we write S \ i, 123 instead of
S \ {i} and {1, 2, 3}.

2 Some prerequisites

2.1 Partially ordered sets

The reader can consult, e.g., Davey and Priestley (1990), Birkhoff (1967), and Grätzer
(1998) for more details. A partially ordered set (or poset for short) (P,≤) (or simply
P if no confusion occurs) is a set P endowed with a partial order ≤ (i.e, a reflexive,
antisymmetric and transitive binary relation). As usual, x < y means x ≤ y and x 6= y,
while x ≥ y is equivalent to y ≤ x. Two elements x, y ∈ P are incomparable, and we
denote this by x||y, if neither x ≤ y nor y ≤ x hold. A useful example of poset in this
paper is (2N ,⊆). We say that x is covered by y, and we write x ≺ y, if x < y and there
is no z ∈ P such that x < z < y. A chain in P is a sequence of elements x1, . . . , xq such
that x1 < · · · < xq, while in an antichain, any two elements are incomparable. A chain
from x1 to xq is maximal if no other chain can contain it, i.e., it is a sequence of elements
x1, . . . , xq such that x1 ≺ · · · ≺ xq. The length of a chain is its number of elements minus
1.

A subset Q ⊆ P is a downset of P if for any x ∈ Q, y ≤ x implies y ∈ Q (and
similarly for an upset)1. The set of all downsets of P is denoted by O(P ). For any x ∈ P ,
↓x := {y ∈ P | y ≤ x} is the downset generated by x (often called principal ideal).

An element x ∈ P is maximal if there is no y ∈ P such that y > x (and similarly for a
minimal element). x ∈ P is the (unique) greatest element (or top element) of P if x ≥ y
for all y ∈ P (and similarly for the least element, or bottom element). Suppose P has a
least element ⊥. Then x is an atom of P if x ≻ ⊥. Let Q ⊆ P . The element x ∈ P is an
upper bound of Q if x ≥ y for all y ∈ Q (and similarly for a lower bound). For x, y ∈ P ,
the supremum of x, y, denoted by x ∨ y, is the least upper bound of {x, y}, if it exists
(and similarly for the infimum of x, y, denoted by x ∧ y).

1Some authors use instead the words ideals and filters. This is however incorrect, since in the standard
terminology, an ideal is a downset closed under supremum, and a filter is an upset closed under infimum.
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A poset L is a lattice if every pair of elements x, y ∈ L has a supremum and an infimum.
A lattice L is distributive if ∨,∧ obey distributivity, that is, x∨ (y∧ z) = (x∨ y)∧ (x∨ z)
or equivalently x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), for all x, y, z ∈ L. If L is finite, then it
has a least and a greatest element, which we denote by ⊥,⊤ respectively. An element
x 6= ⊥ is join-irreducible if it cannot be expressed as a supremum of other elements,
or equivalently, if it covers only one element. Atoms are join-irreducible elements. We
denote by J (L) the set of all join-irreducible elements. An important result which will
be useful in the sequel is the theorem of Birkhoff (1933): it says that if the lattice (L,≤)
is distributive, then it is isomorphic to O(J (L)), where it is understood that J (L) is
endowed with ≤, and that the set of downsets is endowed with inclusion. Conversely,
any poset P generates a distributive lattice O(P ). This is illustrated on Figure 1

1 3
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123
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1234

Figure 1: Left: a distributive lattice L. Join-irreducible elements are those in grey.
Middle: the poset J (L) of join-irreducible elements. Right: the set O(J (L)) of all
downsets of J (L) ordered by inclusion, which is isomorphic to L

Let P be a poset, and x ∈ P . The height of x is the length of a longest chain in P from
a minimal element to x. The height of a lattice L is the height of its top element, i.e., it
is the length of a longest chain from bottom to top. When the lattice is distributive, its
height is |J (L)|.

2.2 Inequalities and polyhedra

We recall only some basic facts useful for the sequel (see, e.g., Ziegler (1995), Faigle et al.
(2002) for details). Our exposition mainly follows Fujishige (2005, §1.2)

We consider a set of linear equalities and inequalities with real constants

n∑

j=1

aijxj ≤ bi (i ∈ I) (1)

n∑

j=1

a′ijxj = b′i (i ∈ E). (2)

This system defines an intersection of halfspaces and hyperplanes, called a (closed convex)
polyhedron. A set C ⊆ R

n is a convex cone (or simply a cone) if x, y ∈ C implies that
αx+βy ∈ C for all α, β ≥ 0 (conic combination). The cone is pointed if C ∩ (−C) = {0}
(equivalently, if it has an extreme point, see below). An affine set A is the translation
of a subspace of the vector space R

n. Its dimension is the dimension of the subspace. A
line is a one-dimensional affine set, and a ray is a “half-line”, i.e., a translation of a set
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given by {αx | α ≥ 0} for some x ∈ R
n, x 6= 0. An extreme ray of a cone is a ray whose

supporting vector cannot be expressed as a convex combination of the supporting vectors
of other rays. Any cone can be expressed as the conic combination of its extreme rays.
An extreme point or vertex of a polyhedron P is a point in P which cannot be expressed
as a convex combination of other points in P . A polyhedron is pointed if it contains an
extreme point. The recession cone C(P ) of a polyhedron P defined by (1) and (2) is
defined by

n∑

j=1

aijxj ≤ 0 (i ∈ I) (3)

n∑

j=1

a′ijxj = 0 (i ∈ E). (4)

The recession cone is either a pointed cone (possibly reduced to {0}) or it contains a line.
The following basic properties are fundamental:

(i) P has rays (but no line) if and only if C(P ) is a pointed cone different from {0};

(ii) P is pointed if and only if C(P ) does not contain a line, or equivalently, if the
system (4) and

n∑

j=1

aijxj = 0 (i ∈ I)

has 0 as unique solution.

(iii) P is a polytope (i.e., a bounded polyhedron) if and only if C(P ) = {0}.

The fundamental theorem of polyhedra asserts that any pointed polyhedron P defined by
a system (1) and (2) is the Minkowski sum of its recession cone (generated by its extreme
rays; this is the conic part of P ) and the convex hull of its extreme points (the convex
part of P ):

P = cone(r1, . . . , rk) + conv(ext(P ))

where r1, . . . , rk are the extreme rays of C(P ), cone() and conv() indicate respectively
the set of all conic and convex combinations, and ext() is the set of extreme points of
some convex set.

If P is not pointed, then it reduces to its recession cone up to a translation.

Finally, suppose that in the system (1) and (2) defining a polyhedron P , the equalities
in (2) are independent (i.e., P is (n− |E|)-dimensional). A p-dimensional face (0 ≤ p ≤
n − |E|) of P is a set of points in P satisfying in addition q = n − |E| − p independent
equalities in (1). In particular, P itself is a face of P (q = 0), a facet is a (n− |E| − 1)-
dimensional face (q = 1), and a vertex is a 0-dimensional face (q = n− |E|). Clearly, no
vertex can exist (i.e., P is not pointed) if |I| < n− |E|.
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3 Set systems

Our study deals with games defined on a collection of feasible coalitions. In this section,
we introduce various possible structures for these collections. The weakest requirement we
introduce is that the collection should include the grand coalition, and for mathematical
convenience, the empty set. There are however exceptions to this rule.

A set system F on N is a subset of 2N containing ∅ and N . Endowed with inclusion,
F is a poset with top and bottom elements N, ∅ respectively. The set of maximal chains
from ∅ to N in F is denoted by C(F). For any S ⊆ N , we put F(S) := {T ∈ F | T ⊆ S}.

A set system F is atomistic if {i} ∈ F for all i ∈ N .
For any collection F ⊆ 2N , we introduce

F̃ := {S ∈ 2N | S = F1 ∪ · · · ∪ Fk, F1, . . . , Fk ∈ F pairwise disjoint}

the family generated by F (Faigle, 1989).

Let F be a set system. A TU-game (or simply game) on F is a mapping v : F → R

such that v(∅) = 0. The game is monotonic if for S, T ∈ F such that S ⊆ T , we have
v(S) ≤ v(T ) (and therefore v is nonnegative).

When F = 2N , the notion of convexity and superadditivity are well known. A game
is said to be convex if for any S, T ∈ 2N , we have

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ).

A game v is superadditive if the above inequality holds for disjoint subsets, i.e., for all
S, T ∈ 2N such that S ∩ T = ∅,

v(S ∪ T ) ≥ v(S) + v(T ).

The above notions generalize as follows. Assume F is a (set) lattice. A game v on F is
convex if for any S, T ∈ F ,

v(S ∨ T ) + v(S ∧ T ) ≥ v(S) + v(T ).

Superadditivity amounts to the above inequality restricted to subsets S, T such that
S ∧ T = ∅. Obviously, one could not speak of convex game if the set system is not a
lattice. It is however possible to find alternative definitions for weaker structures, as will
be seen in the sequel (see Section 6.1, and supermodular games in Section 6.2).

The Möbius transform of v on F is a real-valued mapping mv on F given implicitely
by the system of equations

v(S) =
∑

F⊆S,F∈F

mv(F ), S ∈ F .

As it is well known, when F = 2N , we obtain mv(S) =
∑

F⊆S(−1)|S\F |v(F ). The Möbius
transform is known as the Harsanyi dividends (Harsanyi, 1963) in game theory.

Given these general definitions, we turn to the study of the main families of set
systems.
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3.1 Regular set systems

Let 1 ≤ k ≤ n. A set system is k-regular if all maximal chains from ∅ to N have the
same length k (Xie and Grabisch, 2009). A n-regular set system is simply called a regular
set system (Honda and Grabisch, 2008; Lange and Grabisch, 2009). Equivalently, F is
regular if and only if for S, T ∈ F such that S ≻ T , we have |S \ T | = 1.

Any regular set system satisfies:

(i) One-point extension: if S ∈ F , S 6= N , then ∃i ∈ N \ S such that S ∪ i ∈ F ;

(ii) Accessibility: if S ∈ F , S 6= ∅, then ∃i ∈ S such that S \ i ∈ F .

The converse is not true (see Figure 2).

∅

1

14

134

1234

2

23

123

Figure 2: A set system satisfying one-point extension and accessibility, but which is not
k-regular

In a k-regular set system F , for any S, T ∈ F , all maximal chains from S to T have
the same length.

Remark 1. Obviously, regular set systems (and to a less extent, k-regular set systems)
offer a convenient mathematical framework because all maximal chains have length n,
and for this reason many notions (in particular marginal worth vectors, and therefore the
Shapley value (Shapley, 1953) and the Weber set (see Section 4)) can be defined as in
the classical case F = 2N . One can however find motivations for such structures which
are more game-theoretically oriented:

(i) The set of connected coalitions in a connected communication graph is a regular
set system (see Section 7). The converse is false: {i} ∈ F for all i ∈ N is a
necessary condition (for necessary and sufficient conditions: see augmenting systems
in Section 3.7).

(ii) Maximal chains correspond to permutations on N (or total orders on players). A
regular set system forbids some permutations, i.e., some orderings of the players to
enter the game. With k-regular set systems, k < n, players may enter the game by
groups.

3.2 Convex geometries and antimatroids

A convex geometry F (Edelman and Jamison, 1985) is a collection of subsets of N con-
taining the empty set, closed under intersection, and satisfying the one-point extension
property. Necessarily N ∈ F , hence it is a set system, and moreover a regular set system.
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An antimatroid F (Dilworth, 1940) is a collection of subsets of N containing the
empty set, closed under union, and satisfying the accessibility property. Any antimatroid
satisfies the augmentation property:

S, T ∈ F with |T | > |S| ⇒ ∃i ∈ T \ S s.t. S ∪ i ∈ F .

If F satisfies
⋃
F = N , then N ∈ F . Such antimatroids are called normal by van den

Brink (to appear).

Remark 2. Algaba et al. (2004) relate antimatroids to permission structures; see Sec-
tion 3.4. However, the relation is somewhat artificial since antimatroids do not always
correspond to permission structures (this is the case of systems closed under ∪,∩). The
unusual word “poset antimatroids” is used, and means the set of upsets (or downsets) of
a poset. These are antimatroids closed under intersection. But it is well known that such
set systems are distributive lattices O(N) (and so could be called poset convex geometries
as well), hence closed under union and intersection (see Section 2.1).

3.3 Set lattices

If a set system is a lattice, we call it a set lattice. It need not be closed under ∩,∪, nor
be a k-regular set system (see for example the pentagon on Figure 4 (ii)).

If the lattice is distributive, then we benefit from Birkhoff’s theorem and we know
that it is generated by a poset P . However this poset is not always N endowed with some
partial order. The following can be easily proved and clarifies the situation (see Xie and
Grabisch (2009)):

Proposition 1. Let F be a distributive set lattice on N of height k. The following holds.

(i) F is a k-regular set system, which is generated by a poset P of k elements, i.e., F
is isomorphic to O(P ).

(ii) F is closed under union and intersection if and only if F is isomorphic to O(P ),
where P can be chosen to be a partition of N .

(iii) k = n if and only if F is isomorphic to O(N).

Figure 3 shows the relative situation of set lattices and k-regular set systems. Figure 4
shows that all inclusions are strict.

3.4 Systems closed under union and intersection

As seen in Section 3.3, these are particular set lattices, which are distributive and gener-
ated by a partition of N .

Derks and Gilles (1995) proved that they are equivalent to (conjunctive) permission
structures of Gilles et al. (1992). A (conjunctive) permission structure is a mapping
σ : N → 2N such that i 6∈ σ(i). The players in σ(i) are the direct subordinates of i.
“Conjunctive” means that a player i has to get the permission to act of all his superiors.
Consequently, an autonomous coalition contains all superiors of every member of the
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set lattices

k-regular set systems, 1 ≤ k ≤ n
distributive lattices

closed under ∪,∩

1 ≤ k < n

O(N), k = n

Figure 3: Set lattices and k-regular set systems

coalition, i.e., the set of autonomous coalitions generated by the permission structure σ
is

Fσ = {S ∈ 2N | S ∩ σ(N \ S) = ∅}.

Then F is closed under union and intersection if and only if F = Fσ for some permission
structure σ.

See also Algaba et al. (2004) for similar results related to antimatroids (see Sec-
tion 3.2). They characterize acyclic permission structures (i.e., where, for all i ∈ N ,
in the set of all subordinates (not limited to the direct ones) of i, i is not present) by
distributive lattices O(N) (called there poset antimatroids).

3.5 Weakly union-closed systems

A set system F is weakly union-closed if F ∪F ′ ∈ F for all F, F ′ ∈ F such that F∩F ′ 6= ∅.
An important consequence is that for any S ⊆ N , F(S) := {F ∈ F | F ⊆ S} has

pairwise disjoint maximal elements.
The basis of F is the collection of sets S in F which cannot be written as S = A∪B,

with A,B ∈ F , A,B 6= S, A ∩ B 6= ∅ (Bilbao, 2000, Chap. 6). All singletons and pairs
of F are in the basis. Clearly, knowing the basis permits to recover F .

Remark 3. (i) This terminology is used by Faigle and Grabisch (2011). Weakly union-
closed systems have been studied under the name union stable systems by Algaba
(1998) (summarized in Bilbao (2000, Chap. 6)).

(ii) They are closely related to communication graphs because if F represents a com-
munication graph (i.e., F is the collection of connected coalitions of the graph;
see Section 7), then the union of two intersecting connected coalitions must be
connected. van den Brink (to appear) characterized those weakly union-closed
collections which correspond to communication graphs: F ⊆ 2N is the set of con-
nected coalitions of some comunication graph if and only if ∅ ∈ F , F is normal
(i.e.,

⋃
F = N), weakly union-closed, and satisfies 2-accessibility (i.e., S ∈ F with

|S| > 1 implies that there exist distinct i, j ∈ S such that S \ i and S \ j belong
to F). Another characterization is due to Bilbao through augmenting systems (see
Section 3.7).
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∅
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Figure 4: (i) k-regular but not a lattice; (ii) lattice but not k-regular; (iii) k-regular
lattice but not distributive; (iv) distributive lattice but not closed under ∪; (v) closed
under ∪,∩ but not isomorphic to O(N)

(iii) Similarly, they are also related to the more general notion of conference structures of
Myerson (1980), which generalize communication graphs. A conference structure Q
is a collection of subsets ofN of cardinality at least 2. Two players i, j are connected
if there is a sequence S1, . . . , Sk of sets in Q such that i ∈ S1, j ∈ Sk, and Sℓ∩Sℓ+1 6=
∅ for ℓ = 1, . . . , k − 1. Then, F := {S ⊆ N | ∀i, j ∈ S, i and j are connected} is
a weakly union-closed system. Conversely, given a weakly union-closed system F ,
the basis of F restricted to sets of cardinality at least 2 can be considered as a
conference structure. An equivalent view of this is given by van den Nouweland et
al. through hypergraphs (van den Nouweland et al., 1992), since in a hypergraph,
a (hyper)link joins several nodes (and thus can be viewed as a subset of cardinality
at least 2). Thus, a path in a hypergraph corresponds to a sequence S1, . . . , Sk as
described above.

3.6 Partition systems

They were studied by Bilbao (2000, §5.1) and Algaba et al. (2001). A partition system
is a collection F ⊆ 2N containing the empty set, all singletons, and such that for every
S ⊆ N , the maximal subsets of S in F form a partition of S (equivalently, F contains ∅,
all singletons and is weakly union-closed).

Any set system induced by a communication graph is a partition system. If F is a
partition system, then F̃ = 2N .
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3.7 Augmenting systems

An augmenting system (Bilbao, 2003; Bilbao and Ordóñez, 2009, 2008) is a collection
F ⊆ 2N containing ∅, being weakly union-closed, and satisfying

∀S, T ∈ F s.t. S ⊆ T, ∃i ∈ T \ S s.t. S ∪ i ∈ F .

Remark 4. (i) In Bilbao (2003), it is required in addition that
⋃

F = N (obviously,
this property should always be required when dealing with collections of subsets).

(ii) N does not necessarily belong to F . If N ∈ F , the above property implies that all
maximal chains from ∅ to N have the same length n, and thus F is a regular set
system. The converse is false.

If N 6∈ F , by weak union-closure, all maximal sets in F , say F1, . . . , Fk, are disjoint,
and no F ∈ F can intersect two distinct maximal subsets. Therefore, F can
be partitioned into augmenting subsystems F1, . . . ,Fk on F1, . . . , Fk respectively,
which are all regular. Hence, it is sufficient to study the case where N ∈ F .

(iii) An augmenting system is an antimatroid (respectively, convex geometry) if and
only if F is closed under union (respectively, intersection).

(iv) Augmenting systems are of particular importance since they permit to characterize
communication graphs (see Section 7). Specifically, if G is a communication graph,
the set of connected coalitions is an augmenting system. Conversely, an augmenting
system is the collection of connected coalitions of a communication graph if {i} ∈
F for all i ∈ N . Each connected component of the graph corresponds to the
augmenting subsystems F1, . . . ,Fk mentionned in (ii).

Augmenting systems are also closely related to the previously introduced structures,
as shown in the next proposition.

Proposition 2. F is an augmenting system containing N if and only if it is regular and
weakly union-closed.

Proof. The “only if” part has been already noticed above. Now, suppose it is regular.
Take S ⊆ T in F , then they lie on some chain. Since the system is regular, there are
t− s− 1 subsets between S and T , which implies the augmentation property.

The various relations between regular set systems, weakly union-closed systems and
augmenting systems are illustrated on Figure 5. Figure 6 shows that it is possible to have
regular set lattices which are not weakly union-closed, and weakly union-closed regular
systems not being a lattice.

3.8 Coalition structures

Our last category is of different nature since it is not a set system in our sense, and its
motivation is very different from the notion of feasible coalition. Its origin comes from the
domain of coalition formation. We nevertheless mention it here due to its importance,
although the topic of coalition formation falls outside the scope of this survey (see, e.g.,
Holler and Owen (2001), van Deemen (1997)).
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regular set systems

weakly union-closed systems

augmenting systems with N

regular set lattices

antimatroids with N

convex geometriesO(N)

Figure 5: Regular set systems and weakly union-closed systems
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Figure 6: Left: regular set lattice but not weakly union-closed. Right: regular and weakly
union-closed but not a lattice, since 1 and 2 have no supremum

A coalition structure on N is a partition of N (Aumann and Drèze, 1974). It is called
by Owen (1977) a priori union structures.

Let v be a game on 2N , and consider a coalition structure B := {B1, . . . , Bm}.
Given a payoff vector x, Bk ∈ B, we define the game v∗x on 2Bk by

v∗x(S) =

{
maxT⊆N\Bk

(v(S ∪ T )− x(T )), S ⊂ Bk, S 6= ∅

v(S), S = Bk or ∅.

Remark 5. The above definition considers a game in the classical sense, and not on the
blocks of the partition. Another type of game suited for coalition structures is global
games and games in partition function form. We mention them without further develop-
ment since their nature is too far away from coalitional games. A global game (Gilboa
and Lehrer, 1991) is a real-valued mapping defined on the set Π(N) of partitions of N : it
assigns some worth to any coalition structure. A game in partition function form (Thrall
and Lucas, 1963) is a mapping v assigning a real number to a coalition S and a partition
π containing S: knowing that the coalition structure is some π ∈ Π(N) such that S ∈ π,
v(S, π) is the worth of S in this organization of the society.
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4 The core and related notions

Let v be a game on a set system F . A payoff vector is any x ∈ R
n. It represents some

amount of money given to the players. By commodity we write x(S) :=
∑

i∈S xi for any
S ⊆ N . A payoff vector is efficient if x(N) = v(N). The pre-imputation set of v is the
set of all efficient payoff vectors. We define the imputation set of v as

I(v) := {x ∈ R
n | xi ≥ v({i}) if {i} ∈ F and x(N) = v(N)}.

The core of v is defined by

core(v) := {x ∈ R
n | x(S) ≥ v(S) for all S ∈ F and x(N) = v(N)}.

The positive core of v is defined by (Faigle, 1989):

core+(v) := {x ∈ R
n
+ | x(S) ≥ v(S) for all S ∈ F and x(N) = v(N)}.

Remark 6. (i) The classical definition of the core (Shapley, 1971) is recovered with
F = 2N . It should be noted that the definition is meaningful only if the game is a
profit game. For cost games, the inequalities should be reversed. The core is the
set of payoff vectors which are coalitionally rational: no coalition can have a better
profit if it splits from the grand coalition N .

(ii) If F contains all singletons and the game is monotonic, the distinction between
the core and the positive core is void since they coincide. The positive core retains
imputations which are nonnegative, which means that in no case the players would
have to pay something instead of being rewarded. This notion is natural essentially
if the game is monotonic, for otherwise there would exist players with negative
contribution to the game, and those players should be penalized; see also Remark 14.

(iii) The (positive) core is also well known in decision under risk and uncertainty: it is the
set of probability measures dominating a given capacity (monotonic game); see, e.g.,
Walley (1991). More surprisingly, the (positive) core with the reversed inequalities
is a well-known concept in combinatorial optimization, under the name of base
polyhedron of a polymatroid (Edmonds, 1970), where a polymatroid is nothing else
than a submodular2 monotonic game. As we will see, many theorems shown in
game theory about the core were already known in combinatorial optimization; see
the excellent monograph of Fujishige (2005).

We recall the classical results on the core when F = 2N .
A first important question is to know whether the core is empty or not. A collection

B of nonempty subsets of 2N is balanced if there exist positive coefficients λB, B ∈ B,
such that ∑

B∈B

λB1B = 1N .

The vector λ := (λB)B∈B is called the balancing vector. Balanced collections generalize
the notion of partitions. Derks and Peters (1998) have shown that a collection is balanced

2When F is closed under ∪,∩, a submodular game, also called concave, satisfies the inequality v(S ∪
T ) + v(S ∩ T ) ≤ v(S) + v(T ) for all S, T ∈ 2N .
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if and only if for all y ∈ R
n such that y(N) = 0 (side-payment vector), if y(S) > 0 for

some S ∈ B, then it exists S ′ ∈ B such that y(S ′) < 0.
A game v on 2N is balanced if for every balanced collection B with balancing vector

λ it holds ∑

B∈B

λBv(B) ≤ v(N).

This could be interpreted by saying that there is no advantage in dividing the grand
coalition into balanced collections. The following well-known result is an easy consequence
of the duality theorem of linear programming (or Farkas Lemma).

Theorem 1. (Bondareva, 1963) Let v be a game on 2N . Then core(v) 6= ∅ if and only if
v is balanced.

A strong version exists where only minimal balnced collections are used. Obviously,
the interest of the theorem is more mathematical than algorithmical. It cannot reasonably
be used for testing the nonemptiness of the core of a given game. Since the core is a set
of linear inequalities, classical tools testing the feasability of a set of inequalities, like the
Fourier-Motzkin elimination, or simply a linear programming solver, should be used.

Assuming that the core is nonempty, it is a polytope, and therefore the question of
knowing its vertices arises. To each maximal chain C ∈ C(2N) with C = {∅, S1, . . . , Sn =
N}, corresponds bijectively a permutation σ ∈ S(N), the set of permutations on N , such
that

Si = {σ(1), . . . , σ(i)}, i = 1, . . . , n.

Considering a game v on 2N , to each permutation σ (or maximal chain C) we assign a
marginal worth vector φσ (or φC) in R

n by:

φσ
σ(i) := v(Si)− v(Si−1) = v(Si−1 ∪ σ(i))− v(Si−1).

The Weber set is the convex hull of all marginal worth vectors:

W(v) := conv(φC | C ∈ C(2N)).

The following inclusion always holds

core(v) ⊆ W(v).

Theorem 2. The following assertions are equivalent.

(i) v is convex

(ii) All marginal vectors φC , C ∈ C(2N ) (or φσ, σ ∈ S(N)), belong to the core

(iii) core(v) = conv({φσ}σ∈S(N))

(iv) ext(core(v)) = {φσ}σ∈S(N).

Shapley (1971) proved (i)⇒(ii) and (i)⇒(iv), while Ichiishi (1981) proved (ii)⇒(i).
Edmonds (1970) proved the same result as Shapley. This is also mentionned in (Lovász,
1983). This result clearly shows why convexity is an important property for games.
Indeed, in this case, the core is nonempty and its structure is completely known. In the
subsequent sections, we will see that much effort is done for games defined on set systems
in order to preserve these properties as far as possible.
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5 Structure of the core

5.1 General results for arbitrary set systems

We begin by some simple considerations on the imputation set. If F is atomistic, then
I(v) 6= ∅ if and only if v(N) ≥

∑
i∈N v({i}). If F is not atomistic, then it is always true

that I(v) 6= ∅. Indeed, if {j} 6∈ F , just take xi = v(i) if {i} ∈ F , xj = v(N)−
∑

{i}∈F v(i),

and xi = 0 otherwise. Similarly, I(v) is bounded if and only if F is atomistic.

The first question we address is to know when the core is nonempty. It is easy to
see that the classical definitions and result of Bondareva on balancedness still work:
core(v) 6= ∅ if and only if v is balanced, where balanced collections are understood as
collections in F . Another result is due to Faigle (1989), with a different (but equivalent)
definition of balancedness. A game v on F is balanced if for all families A1, . . . , Ak in F
and m ∈ N it holds

1

m

k∑

i=1

1Ai
= 1N implies

1

m

k∑

i=1

v(Ai) ≤ v(N).

In the above, it should be noted that repetitions are allowed in the family and that the
length of a family is arbitrary.

Assuming that core(v) is nonempty, one can define its lower envelope v∗, which is a
game on 2N :

v∗(S) := min
x∈core(v)

x(S), ∀S ⊆ N.

Note that v∗(N) = v(N), and if F = 2N , we have core(v∗) = core(v).

Remark 7. The lower envelope is an important notion in decision theory (see Walley
(1991)). In game theory, it is called the Harsanyi mingame (Derks et al., 2008).

An important question is to know whether the equality v = v∗ holds. Such games are
called exact. If a game v is exact, by the above mentioned property, it is the smallest
game having the core equal to core(v). Faigle (1989) proved the next result:

Theorem 3. A game v is exact if and only if for all families A,A1, . . . , Ak in F \ {∅}
and m, l ∈ N,

k∑

i=1

1Ai
= m1N + l1A implies

k∑

i=1

v(Ai) ≤ mv(N) + lv(A).

As above, repetitions are allowed in the family. This is similar to a result of Schmeidler
(1972), proved when F is a (possibly infinite) family closed under union and complemen-
tation: v is exact if and only if for all S ∈ F

v(S) = sup
{∑

i

aiv(Si)− a|v| s.t.
∑

i

ai1Si
− a1N ≤ 1S,

with a ∈ R+, (ai, Si) is a finite sequence in R+ × F
}
,

and |v| := sup{
∑

i aiv(Si) | (ai, Si) is a finite sequence in R+ × F s.t.
∑

i ai1Si
≤ 1N}.
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When nonempty, the core is a polyhedron. Therefore it makes sense to speak of
its recession cone (proposed under the name of core of the set system F by Derks and
Reijnierse (1998), hence the notation):

core(F) := {x ∈ R
n | x(S) ≥ 0 for all S ∈ F and x(N) = 0}.

A direct application of results of Section 2.2 leads to:

(i) core(v) has rays if and only if core(F) is a pointed cone different from {0}. Then
core(F) corresponds to the conic part of core(v);

(ii) core(v) has no vertices if and only if core(F) contains a line;

(iii) core(v) is a polytope if and only if core(F) = {0}.

Therefore, it remains to study the structure of the recession cone. We introduce

span(F) :=
{
S ⊆ N | 1S =

∑

T∈F

λT1T for some λT ∈ R
}
.

F is non-degenerate if span(F) = 2N 3. Non-degeneracy implies the discerning property
(see Section 5.2). The converse holds if F is closed under ∪,∩ (see Theorem 7). We give
two easy sufficient conditions for F to be non-degenerate:

(i) F contains all singletons (obvious from Footnote 3);

(ii) F is regular. Indeed, since any chain has length n, all 1i’s can be recovered from
1Sj

− 1Sj−1
, for two consecutive sets Sj , Sj−1 in a chain.

Theorem 4. (Derks and Reijnierse, 1998) core(F) is a pointed cone if and only if F is
non-degenerate.

This result is easy to see from Footnote 2 and Section 2.2. Indeed, non-degeneracy is
equivalent to the existence of linear combinations of the 1T ’s, T ∈ F , giving all 1i’s,
i ∈ N , and the same linear combinations can be used to express all xi’s, i ∈ N , from the
system x(T ) = 0, T ∈ F , thus proving that this system has a unique solution (which is
0). But this is equivalent to say that the recession cone is a pointed cone.

We recall that F is balanced if ∃λS > 0 for all S ∈ F such that 1N =
∑

S∈F λS1S.

Theorem 5. (Derks and Reijnierse, 1998) core(F) is a linear subspace if and only if F
is balanced.

Therefore, core(F) = {0} if and only if F is balanced and non-degenerate.

Lastly, considering a game v on F , we introduce the following extension of v to F̃
(Faigle, 1989)

ṽ(S) := max
{∑

i∈I

v(Fi), {Fi}i∈I is a F -partition of S
}
,

where by a F -partition we mean a partition whose blocks belong to F . The game ṽ is
superadditive, and if ṽ(N) = v(N), then core(v) = core(ṽ), which is easy to show.

3In fact, it is simpler to check the following equivalent condition: for all i ∈ N , it exists a linear
combination of the 1T ’s, T ∈ F , giving 1i.
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Remark 8. If F contains all singletons (e.g., a partition system), then F̃ = 2N , and so ṽ
is an extension of v on 2N : compare with the extension v defined in Section 6.3. Also, ṽ
is a partitioning game of Kaneko and Wooders (see Section 5.5). If v is a superadditive
game on a partition system, then ṽ = v. In Bilbao (2000, §5.3) it is shown that if F is a
partition system containing N and v(N) = v(N) = ṽ(N), then core(v) = core(ṽ).

5.2 Set systems closed under ∪,∩

Let F be a set system closed under ∪,∩ (such systems are distributive lattices, and
correspond to permission structures; see Section 3.4). For each i ∈ N we define

Di :=
⋂

{S ∈ F | S ∋ i} = smallest S in F containing i.

Proposition 3. The set of Di’s coincides with the set of join-irreducible elements of F ,
i.e.,

{Di}i∈N = J (F).

Moreover, if the height of F is strictly smaller than n, necessarily we have Di = Dj for
some i, j (the height equals the number of distinct Di’s).

Proof. Suppose there is some Di which is not a join-irreducible element. Then Di can be
written as the supremum of other elements, which are smaller. Since F is closed under
∪, one of these elements must contain i, a contradiction with the definition of Di.

Conversely, take a join-irreducible element S. If S = {i}, we are done. Assume then
that |S| > 1. Since it covers only one subset, say S ′, for any i in S \ S ′, S is the smallest
subset containing i, whence the result.

Finally, since F is a distributive lattice, its height is the number of join-irreducible
elements, hence some Di’s must coincide if the height is less than n.

Remark 9. The sets Di’s are introduced in Derks and Gilles (1995). They are also
known in the literature of combinatorial optimization (see Fujishige (2005, Sec. 3.3) and
Fujishige (2005, Sec. 7.2 (b.1)) (principal partitions)).

Theorem 6.

core(F) = cone(1j − 1i | i ∈ N and j ∈ Di).

If F is not closed under ∪,∩, then any 1j − 1i is a ray of core(F).

Remark 10. This result is due to Derks and Gilles (1995). It was in fact proved when the
system is of the type O(N) in a more precise form by Tomizawa (Tomizawa (1983), cited
in Fujishige (2005, Th. 3.26)): it says that the extreme rays are those corresponding to
j ≻ i in (N,≤). Note that it could be easily adapted if the lattice is not generated by N ,
but by a partition of N (see Proposition 1).

Another consequence of this result is that when F is closed under ∪,∩, the core is
always unbounded, unless (N,≤) (or the partition of N endowed with ≤) is an antichain.

The set system F is discerning if all Di’s are different (equivalently, by Proposition 3,
if the height of F is n, which is a much simpler condition).

Theorem 7. (Derks and Gilles, 1995) Consider F to be closed under ∪,∩. core(F) is a
pointed cone if and only if F is discerning.
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This result is easy to deduce from previous facts. If the recession cone is pointed, then
F is non-degenerate by Theorem 4, which implies the discerning property as mentionned
above. If F is discerning, then its height is n, and so it is regular, which implies that it
is non-degenerate, and therefore, the recession cone is pointed.

When F is of the type O(N), for any maximal chain C ∈ C(F), define the marginal
vector associated to C like in the classical case, and define the Weber set as the convex
hull of all marginal vectors.

Theorem 8. Let F be of the type O(N). Then the convex part of the core is included
in the Weber set.

Theorem 9. Let F be of the type O(N). Then v is convex if and only if the convex
part of the core is equal to the Weber set.

Remark 11. The two last theorems are shown by Grabisch and Xie (2011), but they
can deduced from Derks and Gilles (1995), where they are stated for acyclic permission
structures. Indeed, from Algaba et al. (2004), we know that these systems are equivalent
to distributive lattices of the type O(N) (see Section 3.4). The “only if” part of the latter
theorem was already shown by Fujishige and Tomizawa (1983).

Lastly, we address a slightly more general case, where closure under union is replaced
by weak union-closure. The following development is due to Faigle (1989). A,B ⊆ N is
a crossing pair if A,B intersect, A ∪ B 6= N and A \B,B \ A are nonempty. Then F is
a crossing family if A ∪ B,A ∩ B ∈ F whenever A,B is a crossing pair. v on a crossing
family F is convex if for every crossing pair v(A ∪B) + v(A ∩ B) ≥ v(A) + v(B).

Theorem 10. Suppose F is weakly union-closed and closed under intersection. Then F̃
is closed under union and intersection, and v convex on F implies ṽ convex on F̃ .

Theorem 11. Suppose F is weakly union-closed and closed under intersection, and v on
F is convex. Then v is balanced if and only if for all partitions (with nonempty blocks,
as usual) {A1, . . . , Ak} of N ,

v(A1) + . . . v(Ak) ≤ v(N).

Now, if the Ai’s are only pairwise disjoint, this characterizes complete balancedness (see
Section 6).

5.3 Distributive lattices generated by a poset on N

Consider F = O(N) for some partial order ≤ on N . Then F is a regular distributive set
lattice, closed under union and intersection, and previous results give us the properties
of the core. Considering a balanced game v, we have seen that:

(i) core(v) is a pointed polyhedron, since F is non-degenerate (see Section 5.1);

(ii) core(v) is unbounded, unless (N,≤) is an antichain.

(iii) coreF (v) ⊆ W(v), where coreF (v) is the convex part of core(v) (see Theorem 8);
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(iv) v is convex if and only if coreF (v) = W(v) (see Theorem 9).

The following result (Grabisch and Sudhölter, 2012) shows that all games can be balanced,
provided (N,≤) is connected (i.e., all players are within a single hierarchy).

Proposition 4. If (N,≤) is connected, then core(v) 6= ∅ for any game v on O(N).
Conversely, if (N,≤) is not connected, there exists some game v on O(N) such that
core(v) = ∅.

So far we have mainly studied extremal points and rays. Although faces of the core
have not drawn the attention of game theorists, they have been deeply studied in com-
binatorial optimization when F = O(N) (see Fujishige (2005, Ch. 2, §3.3 (d)) for a
detailed account). We restrict here to basic facts.

Assuming v is a balanced game, take any x ∈ core(v) and define F(x) = {S ∈ F |
x(S) = v(S)}. Then F(x) is a sublattice of F if v is convex. Indeed, first remark that
∅, N ∈ F(x). Now, take S, T ∈ F(x) and let us prove that S ∪ T and S ∩ T belong to
F(x). Assuming it is false, we have

x(S) + x(T ) = x(S ∪ T ) + x(S ∩ T ) >

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) = x(S) + x(T ),

a contradiction.
Assuming v is convex, define for any subsystem D ⊆ F

F (D) := {x | x(S) = v(S), ∀S ∈ D, x(S) ≥ v(S) otherwise}

F ◦(D) := {x | x(S) = v(S), ∀S ∈ D, x(S) > v(S) otherwise}.

Note that F (D) is either empty or a face of the core provided D ∋ N , and that F ◦(D) is
an open face. Define

D := {D ∈ F | D is a sublattice of F containing ∅, N, F ◦(D) 6= ∅}.

Observe that any such D is necessarily distributive, and therefore is generated by a poset.
It is easy to see that D = {F(x) | x ∈ core(v)}. It follows that any face of the core is
defined by a distributive sublattice of F . Moreover, the dimension of a face F (D) is
|N | − |h(D)|, where h(D) is the height of the lattice D.

5.4 Convex Geometries

The core of games on convex geometries has been studied by Bilbao et al. (1999).

Theorem 12. Let v be a game on a convex geometry F .

(i) core(v) is either empty or a pointed polyhedron (i.e., having vertices).

(ii) Assume that core(v) 6= ∅ and that v is nonnegative. Then core(v) is a polytope if
and only if F is atomistic if and only if core(v) = core+(v).

Remark 12. (i) is clear from Theorem 4 since a convex geometry is non-degenerate (since
n-regular). (ii) was already remarked by Faigle (1989) (see Theorem 18).
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A game v is quasi-convex if convexity holds only for pairs A,B ∈ F such that A∪B ∈
F . Marginal vectors are defined as usual, considering all maximal chains in F (all of
length n).

Theorem 13. A game v on F is quasi-convex if and only if all marginal vectors belong
to the core.

5.5 Partition systems

Let F be a partition system, v be a game on F , and v its extension on 2N (see Section 6.3).
If N ∈ F , it is easy to establish that core(v) ⊆ core(v).

Kaneko and Wooders (1982) deal with a weaker definition of partition systems. A
partition system only needs to contain all singletons. Then a partitioning game v is a
game on 2N defined from some game v′ on F by

v(S) = max
{∑

i∈I

v′(Fi), {Fi}i∈I is a F -partition of S
}
.

Then v is superadditive and core(v) = core(v′) when N ∈ F .

5.6 k-regular set systems

The core of games on k-regular set systems has been studied by Xie and Grabisch (2009).
We mentioned in Section 5.1 that a n-regular set system is non-degenerate, hence Theo-
rem 4 applies and the core is a pointed polyhedron, unbounded in general. However, in
many cases, F could be degenerate, and in this case the core has no vertices. This is the
case for the 2-regular set system given in Figure 7.

∅

1

123

23

Figure 7: Example of a degenerate 2-regular set system with 3 players

Let F be a k-regular set system, and a maximal chain C := {∅ = S0, S1, . . . , Sk = N}.
Since |Si \ Si−1| > 1 may occur, the classical definition of a marginal worth vector does
not work. Instead, from a given maximal chain, several marginal worth vectors can be
derived. Choose an element ri in Si \ Si−1, i = 1, . . . , k. The marginal worth vector
associated to C and r1, . . . , rk is defined by

ψC(r1,...,rk) =
k∑

i=1

(v(Si)− v(Si−1))1ri.
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We have ψC(r1,...,rk)(Si) = v(Si) for all Si ∈ C. Denote by M(v,F) the set of all marginal
worth vectors, for all maximal chains and possible choices of elements. We define the
Weber set as

W(v) := conv(M(v,F)).

Theorem 14. Let F be a k-regular lattice closed under union and intersection. If v is
convex, then W(v) ⊆ core(v).

Theorem 15. Let F be a n-regular lattice. If v is monotone and convex, then W(v) ⊆
core(v).

The classical inclusion of the convex part of the core into the Weber set does not hold
in general, as shown by the following counterexample4.

Consider the following sets system (regular set lattice but not distributive, since it
contains a pentagon, figured by the grey circles), with the values of the game v given into
parentheses.

∅

(-1) 1

(-1) 12

123 (0)

23 (0)

2 (-1)

13 (0)

The core is defined by

x1 ≥ −1

x2 ≥ −1

x1 + x2 ≥ −1

x1 + x3 ≥ 0

x2 + x3 ≥ 0

x1 + x2 + x3 = 0

The core is bounded and vertices are (0, 0, 0), (−1, 0,+1), (0,−1,+1). The Weber set is
generated by the marginal vectors associated to the 4 maximal chains (only 2 differents):

(0,−1,+1), (−1, 0,+1).

Clearly, W(v) 6∋ (0, 0, 0).

Remark 13. As noted in Section 6.1, the same phenomenon occurs for the positive core
of games on augmenting systems. However, one should be careful that this kind of
(negative) result heavily depends on the definition given to the marginal vectors: the
framework given in Section 6.2, which is more general than augmenting systems, does
not exhibit this drawback.

4This example was communicated by J. Derks.
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5.7 Coalition structures

Let B be a coalition structure and v on 2N being zero-normalized (i.e., v({i}) = 0 for all
i ∈ N). The core is defined as follows (Aumann and Drèze, 1974):

core(v,B) := {x ∈ R
n | x(S) ≥ v(S), ∀S ∈ 2N , and x(Bk) = v(Bk), k = 1, . . . , m}.

Theorem 16. Let B be a coalition structure and v on 2N being zero-normalized, and let
x ∈ core(v,B). Then

{y ∈ R
Bk | (y, x|N\Bk

) ∈ core(v,B)} = core(Bk, v
∗
x, Xk),

with core(Bk, v
∗
x, Xk) := {y ∈ R

Bk

+ | y(Bk) = v∗x(Bk), y(S) ≥ v∗x(S), ∀S ⊆ Bk, }.

5.8 Bounded faces of the core

We have seen that in many cases, especially if F = O(N), the core is unbounded. Since
infinite payoffs cannot be used in practice, it is necessary to find bounded parts of the
core and to select a payoff vector in this part. A simple idea to do this is to impose
further restrictions on the definition of the core. One of them is to impose nonnegativity
of the payoff vectors: this leads to the positive core, studied in the next section. Another
one is to select some inequalities x(S) ≥ v(S), S ∈ F of the core and to turn them into
equalities. It is easy to prove that this procedure will eventually lead to a bounded subset
of the core. Equalities x(S) = v(S) can be interpreted as additional binding constraints:
the members of coalition S must share v(S) among them. On the geometrical side, this
is nothing else than defining a face of the core, which has the property to be bounded
(see Section 2.2).

A first attempt in this direction was done by Grabisch and Xie (2011) for F = O(N),
based on an interpretation of (N,≤) as a hierarchy. Later, the problem was further
elucidated for the case F = O(N) (Grabisch, 2011), and some other cases (regular set
systems and weakly-union closed set systems, although much less general results can be
obtained in these cases). We give here the main results for the case F = O(N).

The basic idea is to suppress all extremal rays of the recession cone core(F) (recall
that the extremal rays do not depend on v, but only on F), which are of the form 1j −1i

for any i, j ∈ N such that j ≺ i (in other words, each link of the Hasse diagram of (N,≤)
corresponds to an extremal ray and vice versa). We say that an extremal ray r ∈ core(F)
is deleted by equality x(S) = 0 in core(F) if r 6∈ core{S}(F), where

core{S}(F) := {x ∈ core(F) | x(S) = 0}.

A first fundamental result is the following.

Proposition 5. Let F = O(N), and suppose that h(N) > 0 (height of (N,≤)). For
i, j ∈ N such that j ≺ i, the extremal ray 1j − 1i is deleted by equality x(S) = 0 if and
only if S ∋ j and S 6∋ i.

A collection N ⊆ F \ {N} of nonempty sets is said to be normal for F if

coreN (F) := {x ∈ core(F) | x(S) = 0, ∀S ∈ N}
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reduces to {0}. We call restricted core of v w.r.t. N the set coreN (v) = {x ∈ core(v) |
x(S) = v(S), ∀S ∈ N}. If nonempty, it corresponds to a bounded face of core(v), and
the union of all bounded faces of the core is called the bounded core, studied in Grabisch
and Sudhölter (2012).

A nonempty normal collection is nested if any two sets S, T in the collection satisfy
S ⊆ T or T ⊆ S.

We introduce three examples of normal collections. The first one is introduced in
(Grabisch, 2011), and we call it the upwards collection. It is obtained as follows: discard
all disconnected elements from (N,≤), then considerM1 the set of all minimal elements of
(N,≤), and putN1 :=↓M1, the principal ideal generated byM1 (see Section 2.1). Then on
N ′ := N \M1, perform the same operations (discard disconnected elements, consider M2

the set of minimal elements, etc.), till reaching the empty set. Then Nu := {N1, . . . , Nq}
is a normal collection, minimal in the sense that no subcollection is normal. The second
example comes from Grabisch and Xie (2011) and is built as follows. First, elements in
(N,≤) of same height i are put into the level set Qi+1. Hence, N is partitioned into level
sets Q1, . . . , Qk , and Q1 contains all minimal elements of N . Then

NGX := {Q1, Q1 ∪Q2, . . . , Q1 ∪ · · · ∪Qk−1}

is a nested normal collection. Lastly, a nested collection can be built from Nu (called the
nested closure of Nu):

Nncu := {N1, N1 ∪N2, . . . , N1 ∪ · · · ∪Nq}

(see Figure 8 for illustration).

9

1

4 5

7

2

3

6

8

Figure 8: (N,≤) has 9 elements. Level 1 is {1, 2, 3}, level 2 is {4, 5, 6, 9} and level 3 is
{7, 8}. The upwards collection is {123, 13456}, its nested closure is {123, 123456}, and
the Grabisch-Xie collection is {123, 1234569}.

Given a normal collection N = {S1, . . . , Sq}, restricted maximal chains are those
passing through all sets S1, . . . , Sq. Marginal vectors induced by restricted maximal chains
are called restricted marginal vectors, and the restricted Weber set w.r.t. N , denoted by
WN , is the convex hull of all restricted marginal vectors.

Theorem 17. Consider N a nested normal collection on F = O(N). Then for every
game v on F , coreN (v) ⊆ WN (v). In addition, if v is convex, equality holds.

The converse (coreN (v) = WN (v) implies convexity of v) does not hold in general.
Note that the theorem shows that coreN (v) is nonempty as soon as v is convex and N is
nested.
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6 Structure of the positive core

We first address the question of nonemptiness. Adapting the result of Bondareva, we say
that a collection B is completely balanced if there exist positive coefficients λB, B ∈ B
such that ∑

B∈B

λB1B ≤ 1N .

Then a game is completely balanced if
∑

B∈B λBv(B) ≤ v(N) holds for every completely
balanced collection, and core+(v) 6= ∅ if and only if v is completely balanced.

An equivalent definition of a completely balanced game is given by Faigle (1989). A
game v is completely balanced if and only if for all families A1, . . . , Ak in F and m ∈ N

it holds
1

m

k∑

i=1

1Ai
≤ 1N implies

1

m

k∑

i=1

v(Ai) ≤ v(N).

Above, F ∋ ∅ is assumed, in order to get the condition v(N) ≥ 0 by considering the
family reduced to ∅. If F is closed under intersection and complementation, a nonnegative
balanced game is completely balanced.

Remark 14. The positive core is in general much smaller than the core, and could be
empty even if the core is nonempty. In particular, if v is not monotone, the positive core
is likely to be empty. See also the discussion below on the equality between the core and
the positive core.

An important question is to know when the core and the positive core coincide.

Theorem 18. (Faigle, 1989) Let v be a nonnegative balanced game on F closed under
intersection. Then core(v) = core+(v) if and only if F is atomistic. Moreover, core(v) is
unbounded unless core(v) = core+(v).

F atomistic implies core(v) = core+(v) is obvious by nonnegativity of v. Also, if
core(v) 6= core+(v) then F is not atomistic, and for {j} 6∈ F , xj can be taken arbitrarily
negatively large, hence unboundedness.

6.1 The positive core for augmenting systems

This has been studied by Bilbao and Ordóñez (2008). Given a (nonnegative) game v on
F , we consider its extension v̂ on 2N :

v(S) :=
∑

T maximal in F(S)

v(T ).

(see Section 6.3). Recall that maximal sets in F(S) are pairwise disjoint.
Since N does not necessarily belong to F , the definition of the core is slightly modified

as follows:

core+(v) := {x ∈ R
n
+ | x(S) ≥ v(S) for all S ∈ F and x(N) = v(N)}.

A fundamental (but obvious) property is that core+(v) = core+(v) (see Section 7 for a
close result, as well as Remark 15(v) for a more general result), and it is a polytope.
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Suppose that N ∈ F (hence it is a regular set system). Then any maximal chain in F
corresponds to an ordering on N (compatible orderings or permutations). For a maximal
chain C, denote by φC the corresponding marginal worth vector. Then the Weber set is
naturally defined by

W(v) := conv{φC | C ∈ C(F)}.

Define v to be convex if for all S, T ∈ F such that S ∪ T ∈ F ,

v(S ∪ T ) +
∑

F maximal in F(S∩T )

v(F ) ≥ v(S) + v(T )

(this is identical to supermodular games on weakly union-closed systems in Section 6.2).

Theorem 19. (Bilbao and Ordóñez, 2008) If v is monotone and convex, then W(v) ⊆
core+(v), and any marginal vector is a vertex of core+(v).

The classical inclusion of the core in the Weber set does not hold in general: a
counterexample is given in Bilbao and Ordóñez (2008) (see also Remark 13).

A game v is superadditive if for all disjoint S, T ∈ F such that S∪T ∈ F , v(S∪T ) ≥
v(S) + v(T ).

Theorem 20. (Bilbao and Ordóñez, 2008) Let v be a game on F .

(i) If v is superadditive and monotone, then v is superadditive and monotone.

(ii) If v is convex and monotone, then v is convex.

(iii) Suppose v is monotone. Then v is convex if and only if v is convex if and only if
core(v) = W(v).

6.2 The positive core and Monge extensions

It is possible to get more general results, valid for an arbitrary set system or a weakly-
union closed system, by considering an approach closer to combinatorial optimization,
through the so-called Monge algorithm5. We refer the reader to Faigle et al. (2010) for
details and proofs.

Consider an arbitrary set system F , and a vector c ∈ R
n, which will be the input

vector of the Monge algorithm (MA). The idea of the algorithm is to take at each iteration

5The original idea of the Monge algorithm goes back to Monge (1781). Monge studied a geometric
transportation problem in which a set of locations s1, . . . , sn of mass points has to be matched optimally
(in the sense of minimizing the total cost) with another set of locations t1, . . . , tn, and proved that
optimality was reached if the transportation lines do not cross. This geometric fact can be expressed as
follows: if the costs cij of matching objects si with tj have the “uncrossing” property:

cij + ckℓ ≥ cmax(i,k),max(j,ℓ) + cmin(i,k),min(j,ℓ)

then the optimal matching is (s1, t1), . . . , (sn, tn). This is also called the “north-west corner rule”.
Translated into the language of set functions, the uncrossing property is in fact submodularity:

v(A) + v(B) ≥ v(A ∪B) + v(A ∩B).
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the largest subset F of F contained in the current set X , and to select in F the first
element p corresponding to the smallest component of a vector γ ∈ R

n. At initialization,
X = N and γ = c, and at each iteration, p is discarded from X , and γp is subtracted
from γi, for all i ∈ F .

The output of the algorithm is the sequence of all selected subsets F , the sequence of
all selected elements p, and a vector y ∈ R

F recording at index F the quantity γp.
We define Γ(y) := 〈v, y〉. Letting for any input c ∈ R

n

v̂(c) := Γ(y),

v̂ is an extension of v since it can be proven that v̂(1F ) = v(F ) for any F ∈ F . Moreover,

core+(v) = {x ∈ R
n | 〈c, x〉 ≥ v̂(c), ∀c ∈ R

n}.

The next step is to define marginal vectors, usually defined through permutations on
N . The idea here is to take instead the sequence of selected elements p produced by
MA, which is not necessarily a permutation, because some elements of N may be absent.
Let us denote by Π the set of all possible sequences produced by MA, and consider a
sequence π ∈ Π. Then the marginal vector xπ associated to π is computed as follows:
for each p ∈ π, xπp is the difference between v(F ) (where F is the smallest selected
subset containing p) and

∑
G v(G), where the sum is running over all maximal subsets

of F belonging to the sequence. For each p 6∈ π, we put xπp = 0. Clearly, the classical
definition is recovered if F is regular, since in this case, the sequence of selected subsets
will form a maximal chain.

We define the Weber set as

W(v) := conv{xπ | π ∈ Π}.

Then it is proved in Faigle et al. (2010) that core+(v) ⊆ W(v).

The last step is to relate equality of the Weber set and the core to convexity. This is
done through the following definition. A game v on F is convex if v̂ is concave, i.e., it
satisfies for all parameter vectors c, d ∈ R

N and real scalars 0 < t < 1,

tv̂(c) + (1− t)v̂(d) ≤ v̂(tc+ (1− t)d).

Theorem 21. Assume v is monotone. Then v is convex if and only if core+(v) = W(v).

The above definition of convexity is done through the extension v̂. However, it is
possible to relate it directly to v. A game v on F is strongly monotone if for any F ∈ F
and pairwise disjoint feasible sets G1, . . . , Gf ∈ F(F ) we have

f∑

ℓ=1

v(Gℓ) ≤ v(F ).

For any intersecting F, F ′ ∈ F we put

v(F ∩ F ′) :=
∑

{v(G) | G ∈ F(F ∩ F ′) maximal}

A game v on F is supermodular if for all intersecting F, F ′ ∈ F , we have

v(F ∪ F ′) + v(F ∩ F ′) ≥ v(F ) + (F ′).

Theorem 22. A game v is convex if and only if v is strongly monotone and supermodular.
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6.3 Extension of v on 2N

Let F be weakly union-closed, and v be a game on F . We introduce an extension of v
on 2N as follows:

v(S) =
∑

T maximal in F(S)

v(T ), ∀S ⊆ N.

Remark 15. (i) This way of extending a game on 2N appears in many different works.
For communication graphs, Myerson (1977b) used it for computing vG(S), the ex-
tension on 2N of a game v on G, for any S ⊆ N , decomposing S into its (maximal)
connected components (in this context, see also Owen (1986), Borm et al. (1992),
Potters and Reijnierse (1995)). It can be found also in Bilbao (2000, §5.2) with
F a partition system, under the name of F-restricted game, and in Bilbao and
Ordóñez (2008). In general, it is considered in all the literature on communication
graphs. This extension has been studied by Faigle and Grabisch (2011), and arises
naturally as the output of the Monge algorithm described in Section 6.2 (see (ii)
and (iii) below).

(ii) Even if v is monotone, v need not be monotone. If v is monotone, it is not the
smallest extension of v (for this replace

∑
by max in the above equation). If F

is union-closed, then v is the smallest extension and preserves monotonicity of v
(Faigle and Grabisch, 2011).

(iii) v is given by the Monge algorithm, i.e., v(S) = v̂(1S) for all S ∈ 2N .

(iv) The Möbius transform (see Section 3) of v vanishes for all S not in F (easy fact,
remarked by Owen (1986)). More precisely:

mv(S) =

{
mv(S), for all S ∈ F

0, otherwise

where mv is the Möbius transform of v on F .

(v) For any game v, we always have core+(v) = core+(v). Indeed, the inclusion of
core+(v) in core+(v) is obvious. Conversely, assume that x ∈ core+(v) and take
any F 6∈ F . Then v(F ) =

∑
T maximal in F(F ) v(T ). We have x(T ) ≥ v(T ) for all

T maximal in F(F ). Therefore, since these T ’s are disjoint and x is nonnegative,
we find x(F ) ≥ v(F ). Adapting the previous argument, core(v) = core(v) holds
provided all singletons belongs to F . Then the maximal sets in F(F ) form a
partition of F (F is a partition system).

Faigle and Grabisch (2011) have proved the following.

Theorem 23. Assume F is union-closed, and v is a game on F . Then v is supermodular
on F (in the sense of Section 6.2) if and only if v is supermodular on 2N .
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7 Games on communication graphs

7.1 General definitions

Consider a (undirected) graph G = (N,E), where the vertices are players, and E is
the set of links. A link between i, j exists if these players can communicate or are
friends. Two players are connected if there exists a path between them. A connected
coalition is a subset of N where any two players are connected. The set of connected
coalitions is denoted by CE(N). Maximal connected coalitions of G are called connected
components of G, and they partition N . The set of connected components of G is denoted
by N/E. Any coalition S ⊆ N , even if not connected, can be partitioned into maximal
connected coalitions (i.e., connected components of the subgraph induced by S). The
set of connected components of S is denoted by S/E. This is the framework defined by
Myerson (1977a).

Remark 16. (i) As said in Section 3.7, set collections induced by communication graphs
are exactly augmenting systems containing all singletons. If the graph is connected,
then they are regular set systems containing all singletons (the converse is false).
Recall also from Section 3.5 the characterization of van den Brink, and that these
set collections are weakly union-closed.

(ii) A generalization of communication graphs is done through conference structures of
Myerson, or equivalently through hypergraphs (see Section 3.5).

A game on the graph G = (N,E) is a TU-game on CE(N) (i.e., it is a game on the
collection of feasible coalitions F = CE(N)). From v we define the extended game vG on
2N as follows (see Section 6.3; called point game by Borm et al. (1992))

vG(S) =
∑

T∈S/E

v(T ), ∀S ⊆ N.

Since a communication graph may contain several connected components, and recall-
ing Remark 4 (ii), a natural adaptation for the definition of the core is as follows:

core(v) := {x ∈ R
n | x(C) = v(C), ∀C ∈ N/E, and x(S) ≥ v(S), ∀S ∈ CE(N)}.

This definition was considered, among others, by Demange (1994, 2004). As it is easy to
show, core(v) = core(vG), which proves that when nonempty the core is a polytope.

Remark 17. Note that if the graph is connected, we recover the definition of the previous
sections, hence all general properties given in Section 5.1 apply. Concerning the positive
core, results in Section 6.2 apply under the same condition. Using again Remark 4 (ii),
the above definition of the core amounts to take the intersection of all cores on the
subsystems induced by the connected components of G.

We consider below the main families of communication graph, most useful in appli-
cations.
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7.2 Communication line-graphs

Let us assume that the players are ordered according to the natural ordering 1, . . . , n,
and consider the set of edges connecting two adjacent players: E0 = {(i, i + 1), i =
1, . . . , n−1}. Then G = (N,E) is a line-graph if E ⊆ E0, i.e., only some adjacent players
can communicate. For convenience, we introduce the notation [i, j] := {i, i+1, . . . , j} for
i < j in N .

These line-graphs often arise in applications, e.g., water distribution problem along a
river (Ambec and Sprumont, 2002), and auctions situations (Graham et al., 1990), and
have been studied by van den Brink et al. (2007). They show that a sufficient condition
for the nonemptiness of the core is linear convexity :

v([i, j])− v([i+ 1, j])− v([i, j − 1]) + v([i+ 1, j − 1]) ≥ 0

for all [i, j] ∈ C(E)N .
van den Brink (to appear) has characterized communication line-graphs in terms of

the associated set system as follows.

Theorem 24. A collection F ⊆ 2N is the set of connected coalitions of a line-graph if and
only if F ∋ ∅, F is normal (i.e.,

⋃
F = N), weakly union-closed, satisfies 2-accessibility

(see Remark 3 (ii)) and path union stability.

To explain the last property, we need some definitions. Let ∅ 6= S ∈ F and i ∈ S.
Then i is an extreme player in S if S \ i ∈ F . Now, S is a path in F if it has exactly two
extreme players. The name comes from the fact that a path in F corresponds to a path
in the graph (although the converse is false). Path union stability means that the union
of two nondisjoint paths in F is still a path in F .

7.3 Cycle-free communication graphs

A graph is cyle-free if it contains no cycle, in the usual sense of graph theory. Le Breton
et al. (1992) have characterized this property by what they call strong balancedness :
the collection F of connected coalitions is strongly balanced if every balanced collection
contains a partition of N .

Another characterization is due to van den Brink (to appear).

Theorem 25. A collection F ⊆ 2N is the set of connected coalitions of a cycle-free
graph if and only if F ∋ ∅, F is normal (i.e.,

⋃
F = N), weakly union-closed, satisfies

2-accessibility (see Remark 3 (ii)) and weak path union stability.

Weak path union stability means that path union stability is required only for those
pairs of paths having a common extreme player.

An important particular case of cycle-free communication graph is the case of con-
nected graphs. Then the graph is called a tree. Games on trees have been studied by
many authors, among them Demange (1994, 2004), Herings et al. (2008), Khmelnitskaya
(2010), Baron et al. (2011) and Béal et al. (2010). However, most of these works are
more concerned with single-valued solution (as the average tree solution of Herings et al.
(2008)) than the core (see however Béal et al. (to appear)).
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7.4 Cycle-complete communication graphs

A communication graph is cycle-complete if for each cycle of the graph, the subgraph
induced by the players in that cycle is complete (i.e., each player is connected to every
player in the cycle).

van den Nouweland and Borm (1991) have studied this kind of communication graph.
They have shown that if the game v is convex (assuming v is defined on 2N , unlike our
assumption), then vG is also convex.

van den Brink (to appear) has characterized cycle-complete communication graphs as
follows.

Theorem 26. A collection F ⊆ 2N is the set of connected coalitions of a cycle-free
graph if and only if F ∋ ∅, F is normal (i.e.,

⋃
F = N), weakly union-closed, satisfies

2-accessibility (see Remark 3 (ii)) and the path property.

F has the path property if for every pair of players i, j, there is at most one path
having i, j as extremal players. Alternatively, the path property can be replaced by
closure under intersection.
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