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A SECOND-ORDER DIFFERENTIAL SYSTEM WITH
HESSIAN-DRIVEN DAMPING;

APPLICATION TO NON-ELASTIC SHOCK LAWS

Hedy ATTOUCH 1, Paul-Emile MAINGÉ2 and Patrick REDONT 3

Dedicated to J.I. Diaz on the occasion of his 60th birthday

Abstract. We consider the second-order differential system with Hessian-driven damp-

ing ü+αu̇+β∇2Φ(u)u̇+∇Φ(u)+∇Ψ(u) = 0, where H is a real Hilbert space, Φ, Ψ : H → IR

are scalar potentials, and α, β are positive parameters. An interesting property of this sys-

tem is that, after introduction of an auxiliary variable y, it can be equivalently written as a

first-order system involving only the time derivatives u̇, ẏ and the gradient operators ∇Φ,

∇Ψ. This allows to extend our analysis to the case of a convex lower semicontinuous func-

tion Φ : H → IR ∪ {+∞}, and so to introduce constraints in our model. When Φ = δK is

the indicator function of a closed convex set K ⊆ H, the subdifferential operator ∂Φ takes

account of the contact forces, while ∇Ψ takes account of the driving forces. In this setting,

by playing with the geometrical damping parameter β, we can describe nonelastic shock

laws with restitution coefficient. Taking advantage of the infinite dimensional framework,

we introduce a nonlinear hyperbolic PDE describing a damped oscillating system with obsta-

cle. The first-order system is dissipative; each trajectory weakly converges to a minimizer

of Φ + Ψ, provided that Φ and Φ + Ψ are convex functions. Exponential stabilization is

obtained under strong convexity assumptions.

Key words: Asymptotic stabilization; convex variational analysis; dissipative dy-

namical systems; exponential stabilization; gradient-like systems; Hessian-driven damping;

impact dynamics; nonelastic shocks; nonsmooth potentials; restitution coefficient; second-

order nonlinear differential equations; unilateral mechanics; viscoelastic membrane.
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1 Introduction

Let Φ,Ψ : H → IR be smooth real-valued functions operating on a real Hilbert
space H (we will consider later the case Φ nonsmooth), and let α, β be positive real
parameters. The function Φ is assumed to be convex. We consider the second-order
differential system

ü(t) + αu̇(t) + β∇2Φ(u(t))u̇(t) + ∇Φ(u(t)) + ∇Ψ(u(t)) = 0, (1.1)
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where ∇Φ(u) and ∇Ψ(u) denote the respective gradient operators of Φ and Ψ at u,
∇2Φ(u) is the Hessian of Φ at u, while u̇(t) and ü(t) respectively denote the first
(velocity) and second derivative (acceleration) of the solution u at time t ≥ 0.
We aim at showing that system (1.1) and its nonsmooth version provide a flexible
mathematical model for nonelastic shocks with perfect contact in unilateral mechan-
ics (like a ball bouncing on the floor, or a vibrating membrane over an obstacle).

Equation (1.1) is the Newton equation of Mechanics for an inertial system (the
mass matrix has been normalized) subject to the following forces:

The driving forces have been split into the sum ∇Φ +∇Ψ, where ∇Ψ stands for
classical smooth driving forces (like gravity), and ∇Φ takes account of the contact
forces. This will lead us naturally to consider nonsmooth potentials Φ, with, as a
typical situation, Φ = δK , the indicator function of a closed convex constraint set
K ⊆ H (δK(v) = 0 if v ∈ K, +∞ elsewhere).

The damping forces are the most original part of our model: the geometrical
damping term ∇2Φ(u)u̇ only involves the (contact) potential Φ, which makes func-
tions Φ and Ψ play asymmetric roles; we shall see that playing both with this term
and its coefficient β allows to control the energy dissipation due to shocks, and so
to obtain nonelastic shock laws with restitution coefficient. The viscous damping
term αu̇ is not involved in the analysis of shocks, it plays a role in the asymptotic
stabilization analysis.

As we already stressed, in order to model contact forces, it is important to con-
sider system (1.1) with a nonsmooth potential Φ (like δK). At first glance this looks
difficult, because a meaning has to be given to ∇2Φ, the derivative of a noncontinu-
ous vector field! A simple but central remark is that ∇Φ(u(t)) comes with its time
derivative ∇2Φ(u(t))u̇(t) in (1.1), which suggests that system (1.1) can be simplified
by performing some time integration. Indeed, as a key property of our approach, we
show (Section 2, Theorem 2.1) that (1.1) can be equivalently written as a first-order
in time differential system

{
u̇(t) + β∇Φ(u(t)) + au(t) + by(t) = 0,
ẏ(t) − β∇Ψ(u(t)) + au(t) + by(t) = 0,

(1.2)

where a and b are real numbers such that a + b = α and βb = 1. More precisely,
the set of solutions of (1.1) is made of functions u verifying (1.2) (for some auxiliary
function y). It is important to note that (1.2), an alternative formulation of (1.1)
with no occurrence of the Hessian of Φ, makes sense for possibly nonsmooth convex
functions (∇Φ is then replaced by ∂Φ, the subdifferential of Φ in the sense of convex
analysis).

Our program becomes clear. We first study (1.1) and (1.2) in the smooth case
(Section 3) with the help of classical tools (Cauchy-Lipschitz theorem, energy esti-
mates).

Then in Section 4 we consider a potential φ : H → IR ∪ {+∞} which is just
assumed to be convex and lower semicontinuous (lsc for short); from now on we
write φ for a nonsmooth potential, and Φ for a smooth one. We show that the
Cauchy problem for the differential inclusion system

{
u̇(t) + ∂φ(u(t)) + au(t) + by(t) ∋ 0, for a.e. t > 0,
ẏ(t) −∇Ψ(u(t)) + au(t) + by(t) = 0, for t > 0

(1.3)
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has a unique strong global solution (u, y) ∈ C ([0,+∞[,H2
)
, which is absolutely

continuous on all compact subsets of ]0,+∞[ (Theorem 4.1). Our analysis is quite
similar to that followed by Brézis in the study of semigroups of contractions gener-
ated by subdifferentials of convex lsc functions (see [15–17]). It consists in taking
the Moreau-Yosida approximation of φ (a smooth approximation), getting uniform
estimates on the trajectories of the approximate system, and passing to the limit.
Relying on the laziness property of the solutions of (1.3), by taking φ = δK equal to
the indicator function of a closed convex set K ⊆ H, we show that the solutions of
the corresponding system exhibit a completely inelastic shock law. To our knowl-
edge, this is one of the first existence and uniqueness results for trajectories of an
inertial system evolving in a general convex subset of a Hilbert space and satisfy-
ing a completely inelastic shock law; see Moreau [28], Paoli-Schatzman [29–32], and
Cabot and Paoli [18] for a recent account on this subject.

The Moreau-Yosida approximation plays an important theoretical role, but it
may be difficult to compute, and hence not easy to handle practically. This leads us
to consider an abstract variational approximation scheme based on Mosco-epiconver-
gence (Theorem 4.2) which covers various practical approximations schemes like
exterior penalization, or barrier methods.

Sections 5 and 6 provide some illustrations of our approach to impact dynamics:
- in Section 5, we take φ equal to the Dirichlet energy functional with obstacle
constraint, and treat it as a lower semicontinuous functional on H = L2(Ω);
- in Section 6, we take advantage of the fact that the exterior penalization of a convex
constraint by the square of the distance provides a C1,1 function ((1.2) becomes a
classical differential system). By playing both with this approximation and the
damping parameter β we obtain an application to impact dynamics with restitution
coefficient; our dynamics in this case is closely related to that introduced by Paoli-
Schatzman in [29–32] (and hopefully simpler!).

In the last Section 7, we analyze the asymptotic behaviour (as time t → +∞) of
trajectories of systems (1.1) and (1.2). Under the sole extra assumption that Φ + Ψ
is convex with a nonempty set S of minimizers, we show in Theorem 7.1 that any
solution trajectory u of (1.1) or (1.2) weakly converges to a minimizer (S may be a
continuum). Note that S is also the set of equilibria of (1.1). Exponential decay is
obtained under the assumption of strong convexity of Φ + Ψ (Theorem 7.3). This
asymptotic stabilization property bears natural link with the analysis and control
of infinite dimensional systems.
Actually, systems (1.1) and (1.2) combine the convergence properties of the following
two systems, which appear as particular cases:
- if Φ = 0, (1.1) reduces to the so-called heavy ball with friction system (see Alvarez
[3], Attouch-Goudou-Redont [10]):

ü(t) + αu̇(t) + ∇Ψ(u(t)) = 0.

A nonsmooth potential Ψ gives rise to a differential inclusion modelling shocks:
elastic (Schatzman [34], Attouch-Cabot-Redont [9]), or nonelastic ( [18]).
- if Ψ = 0, (1.1) reduces to the so-called dynamical inertial Newton system (see
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Alvarez-Attouch-Bolte-Redont [4]):

ü(t) + αu̇(t) + β∇2Φ(u(t))u̇(t) + ∇Φ(u(t)) = 0.

Indeed it can be viewed as a (hyperbolic) regularization of the ill-posed continuous
dynamical Newton method in optimization ∇2Φ(u(t))u̇(t) + ∇Φ(u(t)) = 0.

From the point of view of optimization, (1.1) and (1.2) offer greater flexibility
by allowing to consider two potentials, one for the objective function (Ψ) and the
other for the constraint (Φ). One can consult [2–4,7,12] for related work concerning
Newton dynamics and optimization.
The natural link between continuous dissipative dynamical systems and optimization
algorithms (by time discretization) paves the way for new numerical methods. Let
us mention for instance that the first-order in time system treated in [4] has been
used for solving nonsmooth convex minimization problems [7], general monotone
inclusions [25,27], fixed-point problems [24], and also for minimizing the nonsmooth
extended difference of convex functions [26]. In this respect, the present work offers
new perspective concerning splitting algorithms for constrained minimization, and
for minimizing a sum of convex functions Φ+Ψ (interestingly, in (1.2) the sum Φ+Ψ
has been split in a form suitable for parallel computing).

All these interesting questions regarding impact dynamics, asymptotic control,
and optimization algorithms require further theoretical and applied studies which
go beyond the scope of the present article. We try to give an overview on these
issues and show the remarkable mathematical and modelling properties of system
(1.1) and its companion (1.2).

Throughout this work, H is a real Hilbert space; its scalar product is denoted
by 〈·, ·〉 and its associated norm by | · |.

2 Equivalence of systems (1.1), (1.2)

Consider systems (1.1), (1.2) and suppose that constants a, b, α, β verify

β 6= 0, b = 1/β, a = α − 1/β. (2.1)

Theorem 2.1 Suppose Φ twice-differentiable and Ψ differentiable on H. Suppose
that (2.1) holds. Let (u0, v0, y0) ∈ H3 verify v0 + β∇Φ(u0) + au0 + by0 = 0. Then
the following assertions are equivalent:

(i1) u is a twice-differentiable solution of (1.1) with initial conditions u(0) = u0,
u̇(0) = v0;

(i2) there exists a function y such that (u, y) is a differentiable solution of (1.2),
with initial conditions u(0) = u0, y(0) = y0.

Proof: (i1 ⇒ i2) Consider the function y defined by the first equation of (1.2)

u̇ + β∇Φ(u) +

(
α − 1

β

)
u +

1

β
y = 0 , (2.2)

and note that y is differentiable with y(0) = y0. Differentiating, we obtain

ü + β∇2Φ(u)u̇ +

(
α − 1

β

)
u̇ +

1

β
ẏ = 0.
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Whence, with (1.1), we deduce

−β(∇Φ(u) + ∇Ψ(u)) − u̇ + ẏ = 0.

Adding this equality and (2.2) yields the second equation of (1.2).
(i2 ⇒ i1) Conversely, suppose that (u, y) is a differentiable solution of (1.2). Note

that u̇(0) = v0. Subtract the first equation of (1.2) from the second one to obtain

ẏ = u̇ + β(∇Φ(u) + ∇Ψ(u)).

The first equation of (1.2) shows that u̇ is differentiable and ü satisfies

ü + β∇2Φ(u)u̇ +

(
α − 1

β

)
u̇ +

1

β
ẏ = 0.

Eliminating ẏ in the two equalities above gives (1.1) . •

Remark 2.1 Equivalently, by taking −y (instead of y) as an auxiliary variable in

(1.2), and setting a =
(
α − 1

β

)
, b = 1

β
, we obtain the following first-order system

{
u̇(t) + β∇Φ(u(t)) + au(t) − by(t) = 0,
ẏ(t) + β∇Ψ(u(t)) − au(t) + by(t) = 0.

The auxiliary variable y can be expressed as y(t) = 1
b
(u̇(t) + β∇Φ(u(t)) + au(t)) .

It involves both u̇(t) and β∇Φ(u(t)). Thus, despite some similarities, it is differ-
ent from the classical transformation which consists in taking y = u̇ as in classi-
cal mechanics, when passing from second-order Newtonian equation to first-order
Hamiltonian system.

3 Dynamics with smooth potentials

This section is devoted to the study of existence and uniqueness results for systems
(1.1) and (1.2). Without loss of generality we essentially focus our attention on the
special case of (1.2) with β = 1, that is the first-order system





u̇(t) + ∇Φ(u(t)) + au(t) + by(t) = 0,
ẏ(t) −∇Ψ(u(t)) + au(t) + by(t) = 0,
u(0) = u0, y(0) = y0,

(3.1)

where (u0, y0) ∈ H2 and parameters a and b are real numbers satisfying

(CP) b ≥ 0, a + b ≥ 0.

Functions Φ and Ψ are required to fulfill the following assumptions:

(A1) Ψ : H → IR is differentiable, its gradient ∇Ψ is Lipschitz continuous on
bounded sets;

(A2) Φ : H → IR is convex and differentiable, its gradient ∇Φ is Lipschitz
continuous on bounded sets;
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(A3) Θ := Φ + Ψ is bounded from below on H.

Remark 3.1 By difference between the first and second equations of (3.1), and
recalling Θ = Ψ + Φ, we obtain the following useful formula

u̇ − ẏ + ∇Θ(u) = 0. (3.2)

We are interested in establishing global existence and uniqueness results for
classical solutions of the first-order system (3.1) under conditions (A1)-(A3) and
(CP). Note that, in this section, no convexity assumption is made on functions Ψ
and Φ + Ψ.

With any classical solution (u, y) of (3.1), we associate the energy-like function
E defined for t ≥ 0 by

E(t) = bΘ(u(t)) +
1

2
|u̇(t)|2. (3.3)

The global existence property relies on the decreasing property of the energy E.

Lemma 3.1 Suppose that conditions (A1)-(A2) (CP) are satisfied. Suppose also
that (u, y) is a classical solution of (3.1) defined on some nonempty interval [0, Tm[.
Then, E is a nonincreasing function; more precisely, for all s, t with 0 ≤ s ≤ t < Tm,
we have

1

2
|u̇(t)|2 + bΘ(u(t)) + (a + b)

∫ t

s
|u̇(τ)|2dτ ≤ 1

2
|u̇(s)|2 + bΘ(u(s)). (3.4)

Proof: For any 0 < T < Tm, u and y are Lipschitz continuous over [0, T ], as
functions of class C1. Let h be a positive real number, 0 < h < Tm − T . For any
mapping f : [0, T ] → H and for any t ∈ [0, T ], set dhf(t) = f(t+h)−f(t). From the
first equation of (3.1), owing to the autonomous property of the system, we have for
0 ≤ t ≤ T

dhu̇(t) + adhu(t) + bdhy(t) + dh((∇Φ) ◦ u)(t) = 0.

By taking the scalar product in H with dhu(t) we obtain

〈dhu̇(t), dhu(t)〉+a|dhu(t)|2+b〈dhy(t), dhu(t)〉+〈dh((∇Φ)◦u)(t), dhu(t)〉 = 0. (3.5)

The first term in the left side of (3.5) can be equivalently written as

〈dhu̇(t), dhu(t)〉 =
1

2

d

dt
|dhu(t)|2. (3.6)

Concerning the last term in the left side of (3.5), by convexity of Φ, and thus by
monotonicity of its gradient ∇Φ (see, e.g., [15]), we additionally have

〈dh((∇Φ) ◦ u)(t), dhu(t)〉 = 〈∇Φ(u(t + h)) −∇Φ(u(t)), u(t + h) − u(t)〉 ≥ 0. (3.7)

Combining these last three results we obtain

1

2

d

dt
|dhu(t)|2 + a|dhu(t)|2 + b〈dhy(t), dhu(t)〉 ≤ 0. (3.8)
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Given two real values s and t such that 0 ≤ s < t ≤ T , after integrating (3.8) on
[s, t] and dividing by h2, we obtain

1

2

∣∣∣∣
dhu(t)

h

∣∣∣∣
2

− 1

2

∣∣∣∣
dhu(s)

h

∣∣∣∣
2

+ a

∫ t

s

∣∣∣∣
dhu(r)

h

∣∣∣∣
2

dr + b

∫ t

s

〈
dhy(r)

h
,
dhu(r)

h

〉
dr ≤ 0.

One can easily deduce from the first and second equations of (3.1) that u̇ and ẏ are
Lipschitz continuous on [0, T ]. This is a consequence of the Lipschitz continuity of u
and y on [0, T ], and of the Lipschitz continuity on bounded sets of ∇Φ and ∇Ψ (by
(A1) and (A2)). It is then classically deduced that dhu

h
and dhy

h
converge uniformly

to u̇ and ẏ, respectively, on [s, t] (as h → 0). Passing to the limit as h → 0 in the
above inequality gives

1

2
|u̇(t)|2 − 1

2
|u̇(s)|2 + a

∫ t

s
|u̇(r)|2dr + b

∫ t

s
〈ẏ(r), u̇(r)〉dr ≤ 0. (3.9)

On the other hand, from (3.2) we deduce 〈ẏ, u̇〉 = |u̇|2 + d
dt

Θ(u), which, together
with (3.9), yields (3.4). •

We can now formulate the existence and uniqueness theorem.

Theorem 3.1 Suppose that conditions (A1)-(A3) and (CP) are satisfied. Then,
problem (3.1) has a unique global classical solution (u, y) defined on [0,+∞[, and
which satisfies

(r1) u, y ∈ C1([0,+∞);H);

(r2) u̇ ∈ L∞(0,+∞;H) ; if moreover a + b > 0 then u̇ ∈ L2(0,+∞;H);

(r3) the energy E(t) = bΘ(u(t)) + (1/2)|u̇(t)|2 is a decreasing function of t.

Proof: System (3.1) can be equivalently rewritten as

Ż + D(Z) = 0, (3.10)

with Z(t) = (u(t), y(t)) ∈ H2, and D : H2 → H2 defined for (x1, x2) in H2 by

D(x1, x2) =

(
∇Φ(x1) + ax1 + bx2

−∇Ψ(x1) + ax1 + bx2

)T

. (3.11)

Applying the Cauchy-Lipschitz theorem, under conditions (A1)-(A3), we deduce
that there exists a maximal time Tm (finite or infinite) such that existence and
uniqueness of a classical local solution (u, y) to (3.1) in C1([0, Tm[;H2) hold.
To extend this existence and uniqueness result to the whole interval [0,+∞[, we
follow a standard argument and proceed by contradiction. Suppose that Tm is
finite. Then, from (3.4) and using (A3), we deduce that |u̇|, and further |u|, is
bounded on [0, Tm[. This result and the Lipschitz continuity of ∇Θ = ∇Φ +∇Ψ on
bounded sets show that ẏ = u̇ + ∇Θ(u) is also bounded on [0, Tm[. Then it can be
checked that u(t) and y(t) converge as t → T−

m , which contradicts the maximality
of Tm. Consequently, Tm = +∞ and there exists a unique global solution (u, y) to
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(3.1) which satisfies u ∈ C1([0,+∞[;H) and y ∈ C1([0,+∞[;H), so that (r1) holds.
Items (r2) and (r3) are then readily deduced from Lemma 3.1 . •

Returning to the equivalent second-order equation (1.1), we can reformulate the
preceding results as follows.

Corollary 3.1 Let the parameters in equation (1.1) be such that α ≥ 0 and β > 0,
and suppose, besides conditions (A1)-(A3), that Φ : H → IR is twice-differentiable.
Then, for any (u0, v0) ∈ H2, problem (1.1) with Cauchy data u(0) = u0, u̇(0) = v0,
has a unique global twice-differentiable solution u defined on [0,+∞[. Moreover, the
following properties hold:
- u̇ ∈ L∞(0,+∞;H); if α > 0 then u̇ ∈ L2(0,+∞;H);
- if Φ ∈ C2(H) then u ∈ C2([0,+∞);H).

Proof: According to Theorem 2.1, u is a twice-differentiable solution of (1.1), with
initial data u(0) = u0 and u̇(0) = v0, if and only if, for some function y, (u, y) is
a differentiable solution of (3.1) with initial data u(0) = u0, y(0) = −(1/b)(v0 +
β∇Φ(u0) + au0) (with Φ and Ψ replaced by βΦ and βΨ, also with b = 1/β, a =
α − 1/β). In view of the continuity of ∇Φ and ∇Ψ, (u, y) is necessarily a classical
(i. e. C1) solution. Noticing that a + b = α ≥ 0, and b > 0, we are precisely in the
situation examined in Theorem 3.1. •

4 Dynamics with a nonsmooth damping potential

Replacing the smooth potential Φ : H → IR by a nonsmooth potential φ : H → IR∪
{+∞} is motivated by applications to unilateral mechanics, PDE’s, and optimization
(this last algorithmic aspect is not considered in this paper). A direct approach
which would consist in studying the singular differential inclusion

ü(t) + αu̇(t) + β∂2φ(u(t))u̇(t) + ∂φ(u(t)) + ∇Ψ(u(t)) ∋ 0, (4.1)

is out of reach, a major obstacle being to give a meaning to ∂2φ. By contrast, our
approach, which relies on the study of the first-order system (3.1), still makes sense
when considering a convex lower semicontinuous potential φ : H → IR∪{+∞}. This
naturally suggests to apply it to unilateral mechanics (take φ equal to the indicator
function of a closed convex set K ⊆ H), or to nonlinear hyperbolic PDE’s (take φ
equal to a Dirichlet type energy functional with an obstacle constraint).

4.1 Notion of strong solution and Moreau-Yosida approximation

Instead of working with the singular system (4.1), we consider the following system





(u, y) ∈ C ([0,+∞[,H2
)
,

absolutely continuous on all compact subset of ]0,+∞[,
u̇(t) + ∂φ(u(t)) + au(t) + by(t) ∋ 0, for a.e. t > 0,
ẏ(t) −∇Ψ(u(t)) + au(t) + by(t) = 0, for t > 0,
u(0) = u0, y(0) = y0,

(4.2)

when (u0, y0) ∈ H2 and the following conditions hold:
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(CP) a and b are real numbers such that b ≥ 0 and a + b ≥ 0;

(A1) Ψ : H → IR is a differentiable function with ∇Ψ Lipschitz continuous on
bounded sets;

(B̃1) φ : H → IR ∪ {+∞} is a convex l.s.c. (lower semi-continuous) function;

(B̃2) φ and Ψ are bounded from below over H;

(B̃3) (u0, y0) ∈ dom ∂φ ×H.

Clearly (4.2) is nothing but the formulation of system (3.1) with a nonsmooth poten-
tial φ (instead of Φ). In order to investigate (4.2), we give an equivalent formulation.

Setting Z(t) = (u(t), y(t)) ∈ H2, system (4.2) can be equivalently written as





Z ∈ C ([0,+∞[,H2
)
,

absolutely continuous on all compact subset of ]0,+∞[,

Ż(t) + ∂φ̃(Z(t)) + D(Z(t)) ∋ 0, for a.e. t > 0,
Z(0) = (u0, y0),

(4.3)

with φ̃ : H2 → IR ∪ {+∞} and D : H2 → H2 defined for any (v1, v2) in H2 by

φ̃(v1, v2) = φ(v1) and D(v1, v2) =

(
av1 + bv2

−∇Ψ(v1) + av1 + bv2

)T

.

Note that system (4.3) is governed by the sum of the convex subdifferential oper-
ator ∂φ̃ and the locally Lipschitz operator D.

Remark 4.1 If ∇Ψ was assumed to be globally Lipschitz continuous, we could ap-
ply Proposition 3.12 of [15] to obtain the global existence and uniqueness of a strong
solution of (4.3). But in many instances this assumption is too strong. We then
adopt another strategy. Following the classical proof of the nonlinear Hille-Yosida
theorem, we use the Yosida regularization of the nonsmooth operator ∂φ. Existence
and uniqueness of a global classical solution for the approximate problem is a direct
consequence of the results of Section 3. Next we pass to the limit on the approxi-
mated equations to finally obtain the solution of system (4.2). As a byproduct, this
approach provides estimations which will be useful for the asymptotic analysis.

Before we introduce our approximate problem, we recall some classical definitions
and facts from convex analysis (see [15, ch. 2] for a reference).

Definition 4.1 The Yosida regularization (∂φ)λ of index λ > 0 of the maximal
monotone operator ∂φ is defined by (∂φ)λ = ∇φλ, where φλ (which is C1 indeed) is
the Moreau-Yosida regularization of index λ > 0 of φ, that is

∀v ∈ H, φλ(v) = inf
w∈H

{
φ(w) +

1

2λ
|v − w|2

}
. (4.4)

Definition 4.2 The resolvent of index λ > 0 of the operator ∂φ is the single-valued
operator defined by Jλ = (I + λ∂φ)−1.
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Remark 4.2 The following properties hold:

(d1) The Yosida regularization (∂φ)λ = ∇φλ is (1/λ)-Lipschitz continuous and

∇φλ(v) = (1/λ) (v − Jλ(v)) . (4.5)

(d2) The operator Jλ is a contraction, and Jλ(v) is the unique point where the
minimum in (4.4) is achieved, namely φλ(v) = φ(Jλ(v)) + 1

2λ
|v − Jλ(v)|2.

So, it follows immediately that

∀v ∈ H, ∇φλ(v) ∈ ∂φ(Jλ(v)). (4.6)

Remark 4.3 The following inequalities and convergence properties are satisfied:

∀v ∈ H, inf φλ = inf φ ≤ φλ(v) ≤ φ(v), (4.7)

∀v ∈ dom φ, |∇φλ(v)| ր |∂φ(v)◦| and ∇φλ(v) → ∂φ(v)◦, λ → 0, (4.8)

where ∂φ(v)◦ denotes the element of minimum norm of ∂φ(v).

We now formulate a well-suited approximate formulation of (4.2). Given λ > 0,
we associate with (4.2) the following approximate system






u̇λ(t) + ∇φλ(uλ(t)) + auλ(t) + byλ(t) = 0, for t > 0,
ẏλ(t) −∇Ψ(uλ(t)) + auλ(t) + byλ(t) = 0, for t > 0,
uλ(0) = u0, yλ(0) = y0.

(4.9)

Lemma 4.1 Under assumptions (CP)-(A1)-(B̃1)-(B̃2)-(B̃3), system (4.9) admits a
unique global solution (uλ, yλ) : [0,+∞[→ H×H.

Proof: The functions φλ and Ψ are both differentiable, and their gradients ∇φλ

and ∇Ψ are Lipschitz continuous and Lipschitz continuous on bounded sets, respec-
tively. Moreover, in light of (4.7), the function φλ + Ψ satisfies

inf(φλ + Ψ) ≥ inf φλ + inf Ψ ≥ inf φ + inf Ψ > −∞.

Thus, all the conditions of Theorem 3.1 are fulfilled. •

4.2 Lazy solutions and inelastic shock law

Let us claim the main result of this section.

Theorem 4.1 Under assumptions (CP)-(A1)-(B̃1)-(B̃2)-(B̃3), system (4.2) admits
a unique solution (u, y). Moreover, for each T > 0, (u, y) is the uniform limit on
[0, T ] of the sequence (uλ, yλ), where (uλ, yλ) is the solution of problem (4.9), and it
also holds that

u̇λ ⇀ u̇ weakly in L2(0, T ;H). (4.10)
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Proof: The proof closely follows that of [15, Theorem 3.1] for solving the system
u̇+Au ∋ 0, where A is a maximal monotone operator, and consists mainly in showing
that (uλ, yλ), the solution of (4.9), is Cauchy.

(Uniqueness): Let us switch to the equivalent system (4.3). If Z1, Z2 are two
solutions then, by the monotonicity of ∂φ̃, we have

0 ≤ −〈Ż2(t) + D(Z2(t)) − Ż1(t) −D(Z1(t)), Z2(t) − Z1(t)〉, for a.e. t > 0.

Fix T > 0. Z1 and Z2 are bounded on t ∈ [0, T ]. Since D is Lipschitz continuous on
bounded sets, there exists some positive constant L such that

t ∈ [0, T ] ⇒ 〈D(Z2(t)) −D(Z1(t)), Z2(t) − Z1(t)〉 ≤ L|Z2(t) − Z1(t)|2.

Hence

0 ≤ −〈Ż2(t) − Ż1(t), Z2(t) − Z1(t)〉 + L|Z2(t) − Z1(t)|2, for a.e. t > 0.

Now fix some S with 0 < S < T . The function t 7→ 1
2 |Z2(t) − Z1(t)|2 exp(−2Lt) is

absolutely continuous on [S, T ] with an almost everywhere nonpositive derivative;
hence it is nonincreasing on [S, T ], also on [0, T ] thanks to its continuity and the
arbitrariness of S; so we have

t ∈ [0, T ] ⇒ 1

2
|Z2(t) − Z1(t)|2 exp(−2Lt) ≤ 1

2
|Z2(0) − Z1(0)|2. (4.11)

Hence Z2(t) = Z1(t) for all t > 0 (due to the arbitrariness of T ) whenever Z2(0) =
Z1(0).

(Existence): We begin with showing the existence of a strong solution on [0, T ] for
any fixed value T > 0. This part of the proof is divided into two cases (a) and (b)
regarding the initial data (i.e., (u0, y0) ∈ dom ∂φ ×H and (u0, y0) ∈ dom ∂φ ×H):

(a) We assume first that (u0, y0) ∈ dom ∂φ × H and we give a proof in three
steps.
Let (uλ, yλ) ∈ C ([0,+∞[,H2

)
be the solution of (4.9).

(a1) Let us state some bounds. With Lemma 3.1, the energy Eλ := 1
2 |u̇λ|2 +

b(φλ + Ψ) ◦ uλ is nonincreasing, so that Eλ(t) ≤ Eλ(0), for all t ≥ 0. Hence, in view
of (B̃2) and (4.7)

1

2
|u̇λ(t)|2 ≤ Eλ(0) − b(φλ(uλ(t)) + Ψ(uλ(t)))

≤ Eλ(0) − b(inf φ + inf Ψ). (4.12)

Moreover, with (4.9) and (4.8), we have u̇λ(0) = −(∇φλ(u0) + au0 + by0), and so
|u̇λ(0)| ≤ |∂φ(u0)

◦|+ |au0 + by0|. Hence with (4.7), and for any λ > 0, we also have

Eλ(0) =
1

2
|u̇λ(0)|2 + b(φλ(u0) + Ψ(u0))

≤ 1

2
(|∂φ(u0)

◦| + |au0 + by0|)2 + b(φ(u0) + Ψ(u0)). (4.13)
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This shows, with (4.12), that |u̇λ(t)| is uniformly bounded with respect to λ > 0
and t ≥ 0. As a consequence |uλ(t)| is uniformly bounded with respect to λ > 0 and
t ∈ [0, T ].

Now, the second equation in (4.9) admits a solution in closed form

yλ(t) = y0e
−bt +

∫ t

0
(∇Ψ(uλ(s)) − auλ(s))e−b(t−s)ds, (4.14)

which shows that |yλ(t)| is uniformly bounded for λ > 0 and t ∈ [0, T ], since ∇Ψ
is Lipschitz continuous on bounded subsets. Consequently (return to the second
equation in (4.9)), |ẏλ(t)| is also uniformly bounded for λ > 0 and t ∈ [0, T ].

Finally, the first equation in (4.9) shows that |∇φλ(uλ(t))| is uniformly bounded
for λ > 0 and t ∈ [0, T ].

Summing up, we have the following upper bounds for some constant M

sup
λ>0, t≥0

|u̇λ(t)| ≤ M, sup
λ>0, 0≤t≤T

(|uλ(t)|, |yλ(t)|, |ẏλ(t)|, |∇φλ(uλ(t))|) ≤ M. (4.15)

(a2) Let us show that (uλ, yλ)λ>0 is Cauchy. We consider two solutions (uλ, yλ)
and (uµ, yµ) of (4.9) corresponding to two parameters λ and µ. We drop variable
t ∈ [0, T ], for the sake of simplicity, and we compute

1

2

d

dt
|uµ − uλ|2 = 〈u̇µ − u̇λ, uµ − uλ〉

= −〈∇φµ(uµ) −∇φλ(uλ), uµ − uλ〉
−a|uµ − uλ|2 − b〈yµ − yλ, uµ − uλ〉. (4.16)

Successively invoking (4.5), (4.6), the monotonicity of ∇φλ and (4.15), we have

〈∇φµ(uµ) −∇φλ(uλ), uµ − uλ〉
= 〈∇φµ(uµ) −∇φλ(uλ), Jµ(uµ) − Jλ(uλ)〉

+〈∇φµ(uµ) −∇φλ(uλ), µ∇φµ(uµ) − λ∇φλ(uλ)〉
≥ 〈∇φµ(uµ) −∇φλ(uλ), µ∇φµ(uµ) − λ∇φλ(uλ)〉

= µ

{∣∣∣∣∇φµ(uµ) − 1

2
∇φλ(uλ)

∣∣∣∣
2

− 1

4
|∇φλ(uλ)|2

}

+λ

{∣∣∣∣∇φλ(uλ) − 1

2
∇φµ(uµ)

∣∣∣∣
2

− 1

4
|∇φµ(uµ)|2

}

≥ −µ

4
|∇φλ(uλ)|2 − λ

4
|∇φµ(uµ)|2

≥ −M2

4
(λ + µ). (4.17)

Let us write M instead of M2/4, by abuse of notation; we then have combining
(4.16) and (4.17)

1

2

d

dt
|uµ − uλ|2 ≤ M(λ + µ) − a|uµ − uλ|2 − b〈yµ − yλ, uµ − uλ〉. (4.18)
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Concerning yλ and yµ, we have

1

2

d

dt
|yµ − yλ|2

= 〈ẏµ − ẏλ, yµ − yλ〉
= 〈∇Ψ(uµ) −∇Ψ(uλ), yµ − yλ〉 − a〈uµ − uλ, yµ − yλ〉 − b|yµ − yλ|2,
≤ L|uµ − uλ||yµ − yλ| − a〈uµ − uλ, yµ − yλ〉 − b|yµ − yλ|2, (4.19)

where L is the Lipschitz constant of ∇Ψ on some bounded set containing uν(t) for
ν > 0 and for t ∈ [0, T ] (recall (4.15)).
Collecting (4.18) and (4.19), we further have

1

2

d

dt

(
|uµ − uλ|2 + |yµ − yλ|2

)

≤ M(λ + µ) − a|uµ − uλ|2 − b|yµ − yλ|2

−(a + b)〈yµ − yλ, uµ − uλ〉 + L|uµ − uλ||yµ − yλ|.

Whence we may infer the existence of some constant M ′ such that

1

2

d

dt

(
|uµ − uλ|2 + |yµ − yλ|2

)
≤ M(λ + µ) +

M ′

2

(
|uµ − uλ|2 + |yµ − yλ|2

)
.

For simplicity of notation, let M denote the greater of the two constants M and M ′.
Then, integrating the above inequality on [0, t] readily yields (recall 0 < t < T )

|uµ(t) − uλ(t)|2 + |yµ(t) − yλ(t)|2 ≤ 2(λ + µ)(eMt − 1) ≤ 2(λ + µ)(eMT − 1),

which shows that (uλ, yλ)λ>0 is Cauchy in C([0, T ],H2).

(a3) Next we derive our results by passing to the limit. As λ → 0, uλ and yλ

converge to some u and y in C([0, T ],H), hence in L2([0, T ],H). Since u̇λ and ẏλ are
bounded in C([0, T ],H), hence in L2([0, T ],H), u and y are absolutely continuous,
and u̇λ and ẏλ converge weakly to u̇ and ẏ in L2([0, T ],H).

To deal with y, we note that we may pass to the limit in (4.14) in view of the
uniform convergence of uλ and of the Lipschitz continuity on bounded sets of ∇Ψ;
so we get

y(t) = y0e
−bt +

∫ t

0
(∇Ψ(u(s)) − au(s))e−b(t−s)ds.

Differentiating yields the second equation in (4.2).
Now, the first equation in (4.9) also reads (recall (4.6))

−(u̇λ(t) + auλ(t) + byλ(t)) ∈ ∂φ(Jλuλ(t)), 0 ≤ t ≤ T. (4.20)

Let A be the maximal monotone operator extension of ∂φ to L2([0, T ],H) ( [15, ex.
2.3.3, p. 25]). We have

−(u̇λ + auλ + byλ) ∈ A(Jλuλ), in L2([0, T ],H).

On the one hand u̇λ+auλ+byλ converges weakly to u̇+au+by in L2([0, T ],H). On the
other hand Jλuλ converges strongly to u in L2([0, T ],H); indeed: |uλ(t)−Jλuλ(t)| =
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λ|∇φλ(uλ(t))| ≤ λM for t ∈ [0, T ] (recall (4.5, 4.15)). Taking into account the fact
that the graph of A is sequentially strong-weak closed ( [15, prop. 2.5, p. 27]), we
deduce that

−(u̇ + au + by) ∈ Au, in L2([0, T ],H);

explicitly
−(u̇(t) + au(t) + by(t)) ∈ ∂φ(u(t)), for a.e. t > 0.

(b) Case u0 ∈ dom ∂φ = dom φ and y0 ∈ H. Let u0,n ∈ dom∂φ be some
sequence converging to u0, and let us switch again to formalism (4.3). For each
initial condition Z0,n = (u0,n, y0) system (4.3) admits a solution Zn. For (p, n) ∈ IN2

we may derive from inequality (4.11) that |Zp(t) − Zn(t)| ≤ |u0,p − u0,n|eLT for
t ∈ [0, T ], which shows that (Zn) is Cauchy in C([0, T ],H2) and that its limit Z̄ only
depends on u0. Set fn = −D(Zn), f̄ = −D(Z̄). The following properties hold:
- Zn is a strong solution (in the sense of [15, def. 3.1, p. 64]) of Z + ∂φ̃(Z) ∋
fn, Z(0) = Z0,n;
- fn → f̄ in C([0, T ],H2), hence in L1([0, T ],H2);
- Zn → Z̄ in C([0, T ],H2).
Consequently, Z̄ is a weak solution ( [15, def. 3.1, p. 64]) of Z + ∂φ̃(Z) ∋ f̄ , with
Z(0) = (u0, y0). But ( [15, th. 3.6, p. 76]) due to the special form of (4.3) (namely
the maximal monotone operator involved is a subdifferential), Z̄ is a strong solution
of Z + ∂φ̃(Z) ∋ f̄ ; that is, Z̄ is a solution of (4.2).

The existence of u on [0,∞[ definitely follows from the arbitrariness of T . •
We next make precise some properties of the solution of (4.2). We denote by PK

the projection operator onto the closed convex set K ⊆ H and by TK(v) the closed
convex tangent cone to K at point v ∈ K.

Proposition 4.1 The solution (u, y) of (4.2) enjoys the following properties:
a. if u0 ∈ dom ∂φ = dom φ, then u(t) ∈ dom∂φ for all t > 0;
b. u̇+(t), the right derivative of u, exists for all t > 0 and we have

u̇+(t) = −(au(t) + by(t) + ∂φ(u(t)))◦ = −au(t) − by(t) − P∂φ(u(t))(−au(t) − by(t)).

c. In particular, if φ is the indicator function δK of the closed convex set K ⊆ H

u̇+(t) = PTK(u(t))(−au(t) − by(t)).

Furthermore, for any t > 0 such that there exists ǫ > 0 such that t − ǫ < s < t ⇒
u(s) ∈ int K, then u̇−(t), the left derivative of u, exists and the following bounce
law holds

u̇+(t) = PTK(u(t))(u̇
−(t)).

Proof. a. Let us first suppose that u0 ∈ dom ∂φ. Recall equation (4.20). As λ → 0,
we can extract from −(u̇λ(t)+auλ(t)+ byλ(t)) a subsequence that converges weakly
to some ξ ∈ H. Besides Jλuλ(t) converges strongly to u(t). Taking into account the
fact that the graph of ∂φ is sequentially strong-weak closed, we have ξ(t) ∈ ∂φ(u(t)).
When u0 ∈ dom∂φ, we can notice that t 7→ au(t)+by(t) is absolutely continuous on
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each interval of the form (δ, T ) with 0 < δ < T < ∞. The conclusion then follows
from [15, Th. 3.7, p. 76].
b. This point is a direct application of [15, Th. 3.5, p. 66].
c. Equality u̇+(t) = PTK (u(t))(−au(t) − by(t)) is a specialization of the previous
point.
Let 0 < η < ǫ. Function u verifies u̇(s) + ∂δK(u(s)) + au(s) + by(s) = 0 almost
everywhere on ]t − ǫ, t[. Since u(s) ∈ int K, the cone tangent to K at u(s) equals
H 4; then ∂δK(u(s)), which is equal to the normal cone to K at u(s), reduces to
{0}. Hence, u being absolutely continuous

u(t) − u(t − η) =

∫ t

t−η
u̇(s)ds = −

∫ t

t−η
(au(s) + by(s))ds

Dividing by η and letting η → 0 yields the existence of u̇−(t) = −(au(t) + by(t));
hence the bounce law. . •

4.3 Dissipative properties

Let us extend to the nonsmooth case the decreasing property of the energy.

Proposition 4.2 For u0 ∈ dom(∂φ), the following results hold:

u̇λ → u̇ in L2(0, T ;H) for all T > 0; (4.21)

φλ(uλ(t)) → φ(u(t)) for almost every t > 0. (4.22)

Moreover, the mapping t → E(t) = 1
2 |u̇(t)|2 + bΘ(u(t)) is essentially nonincreasing

for any solution u of (4.2).

Proof: Let us first prove (4.21) and (4.22). Let us recall (Theorem 4.1) that the
sequence (uλ, yλ) converges uniformly on each interval [0, T ] to (u, y), which is the
unique solution of system (4.2). From (4.9) we have u̇λ +∇φλ(uλ) + auλ + byλ = 0.
By taking the scalar product with u̇λ in this last expression, and integrating on [0, t],
we obtain

∫ t

0
|u̇λ(τ)|2dτ + φλ(uλ(t)) − φλ(u0) +

∫ t

0
〈auλ(τ) + byλ(τ), u̇λ(τ)〉dτ = 0. (4.23)

We now use an elementary argument ( [6, Lemma 1.18]) which tells us that if, given
a finite number of filtered sequences of real numbers (di,λ)λ, i = 1, 2, ..., k, one has
the following conditions (c1)-(c3) satisfied:

(c1)
∑k

i=1 di,λ = 0 ∀λ > 0,
(c2) di ≤ lim infλ→0 di,λ, i = 1, 2, ..., k,
(c3)

∑k
i=1 di = 0

then di = limλ→0 di,λ for all i = 1, 2, ..., k.
Let us verify that conditions (c1)-(c3) are satisfied in our situation: Clearly, (4.23)
can be rewritten as

∑4
k=1 dk,λ = 0, with (dk)k=1,..,4 defined by

4this is the important point, and it may hold even if int K = ∅; e. g. H = L2(0, 1; IR), K = {u ∈
H ; u ≥ 0}, for any u ∈ K such that ess- sup u > 0 the tangent cone to K at u is H .
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d1,λ =
∫ t
0 |u̇λ(τ)|2dτ , d2,λ = φλ(uλ(t)),

d3,λ = −φλ(u0), and d4,λ =
∫ t
0 〈auλ(τ) + byλ(τ), u̇λ(τ)〉dτ . That is (c1).

Let us now prove that (c2) is satisfied with the following quantities
d1 =

∫ t
0 |u̇(τ)|2dτ , d2 = φ(u(t)),

d3 = −φ(u0), and d4 =
∫ t
0 〈au(τ) + by(τ), u̇(τ)〉dτ .

¿From (4.10) we know that u̇λ ⇀ u̇ weakly in L2(0, t;H). From the weak lower
semicontinuity of the mapping v → ∫ t

0 |v|2dτ on L2(0, t;H), we immediately deduce
that lim infλ→0

∫ t
0 |u̇λ|2dτ ≥ ∫ t

0 |u̇|2dτ , that is lim infλ→0 d1,λ ≥ d1.
We know that φλ increases as λ decreases to 0+, hence, for 0 < λ < λ0 (where λ0

is any positive value) we have φλ(uλ(t)) ≥ φλ0
(uλ(t)). Then, for any λ0 > 0, by

continuity of φλ0
over H and using the fact that uλ(t) → u strongly in H as λ → 0

(see Theorem 4.1), we deduce that

lim infλ→0 φλ(uλ(t)) ≥ lim infλ→0 φλ0
(uλ(t)) = φλ0

(u(t)) .

Hence, recalling that φ = supλ>0 φλ, we get

lim inf
λ→0

φλ(uλ(t)) ≥ sup
λ0>0

φλ0
(u(t)) = φ(u(t)),

that is lim infλ→0 d2,λ ≥ d2.
Since u0 ∈ dom(φ) we have limλ→0 φλ(u0) = φ(u0), that is limλ→0 d3,λ = d3.
¿From Theorem 4.1 we know that auλ + byλ → au + by strongly in L2(0, t;H)
and that u̇λ → u̇ weakly in L2(0, t;H) (as λ → 0). It is then readily seen that
limλ→0+

∫ t
0 〈auλ + byλ, u̇λ〉dτ =

∫ t
0 〈au + by, u̇〉dτ , that is limλ→0 d4,λ = d4.

It remains to prove (c3). Indeed from (4.2), we know that, for a.e. t > 0, there
exists some ξ(t) ∈ ∂φ(u(t)) such that

u̇(t) + ξ(t) + au(t) + by(t) = 0. (4.24)

It is also clear that ξ(.) belongs to L2(0, T ;H) (by u̇ ∈ L2(0, T ;H) and by u and y
in C([0, T ];H)). By taking the scalar product with u̇(t), (4.24) entails for a.e. t ≥ 0,

|u̇(t)|2 + 〈ξ(t), u̇(t)〉 + 〈au(t) + by(t), u̇(t)〉 = 0. (4.25)

Since ξ ∈ L2(0, T ;H) and ξ(t) ∈ ∂φ(u(t)) a.e. t ≥ 0, according to [15, Lemma 3.3],
the function φ(u) is absolutely continuous, and the derivation formula (φ(u))′(t) =
〈ξ(t), u̇(t)〉 holds. Therefore, by integrating (4.25) on [0, t], t > 0, we obtain

∫ t

0
|u̇|2dτ + φ(u(t)) − φ(u0) +

∫ t

0
〈au + by, u̇〉dτ = 0,

which is the desired result d1 + d2 + d3 + d4 = 0.
Consequently, for all t > 0, we deduce (4.22) as well as limλ→0

∫ t
0 |u̇λ|2dτ =∫ t

0 |u̇|2dτ . The latter result together with (4.10) shows that, in the Hilbert space
L2(0, T ;H), we both have (as λ → 0) weak convergence of u̇λ to u̇, and convergence
of the norm of u̇λ to the norm of u̇. By a classical result we conclude that u̇λ → u̇
strongly in L2(0, T ;H), that is (4.21).
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Let us now prove that the energy-like functional E is essentially nonincreasing.
The function φλ being smooth, by (3.4), for any λ > 0 and any t ≥ s ≥ 0 we have

1
2 |u̇λ(t)|2 + b(φλ + Ψ)(uλ(t)) + (a + b)

∫ t
s |u̇λ(τ)|2dτ

≤ 1
2 |u̇λ(s)|2 + b(φλ + Ψ)(uλ(s)).

(4.26)

Moreover by (4.21) we know that there exists a subsequence (that we still denote
uλ) such that u̇λ(t) → u̇(t), for a.e. t > 0, strongly in H. Using also (4.22), we can
pass to the limit in the above inequality. We obtain that, for a.e. t and s verifying
t ≥ s > 0,

1
2 |u̇(t)|2 + b(φ + Ψ)(u(t)) + (a + b)

∫ t
s |u̇(τ)|2dτ

≤ 1
2 |u̇(s)|2 + b(φ + Ψ)(u(s)),

which yields the desired result . •

Remark 4.4 Writing (4.26) for s = 0 and t ≥ 0, we obtain

1

2
|u̇λ(t)|2 + b(φλ + Ψ)(uλ(t)) + (a + b)

∫ t

0
|u̇λ(τ)|2dτ ≤ Eλ(0).

Arguing as in the end of the proof of Proposition 4.2 (recall u0 ∈ dom ∂φ and (4.13))
we deduce for almost every t ≥ 0

1

2
|u̇(t)|2 + b(φ + Ψ)(u(t)) ≤ 1

2
(|∂φ(u0)

◦| + |au0 + by0|)2 + b(φ(u0) + Ψ(u0)).

4.4 Epigraphical approximations

The Moreau-Yosida approximation enjoys nice theoretical properties, but it may
be difficult to compute, and hence not convenient for numerical purpose. Instead
one can use a sequence of (smooth) potentials φn which Mosco-epiconverges to φ, a
notion which covers a large number of approximation methods, like exterior penal-
ization, barrier methods, viscosity methods, Galerkin method (see [5]). This fact is
illustrated in the next section.

Let us recall some classical facts concerning variational convergences for se-
quences of functions and operators (see [5], [6] for further details).

A sequence of convex lower semicontinuous functions φn : H → IR∪{+∞} is said
to Mosco-epiconverge to a convex lower semicontinuous function φ : H → IR∪{+∞}
if the following two convergence properties hold in IR ∪ {+∞}: for any u ∈ H
{

∃(un), un → u strongly in H, such that φn(un) → φ(u)
∀(vn) such that vn ⇀ u weakly in H, one has φ(u) ≤ lim inf φn(vn).

(4.27)

As shown in [5, Theorem 3.66], up to a normalization, this is equivalent to the conver-
gence of the subdifferential operators ∂φn → ∂φ in the graph sense (or equivalently
in the sense of resolvents). In particular, for any sequence (un, zn) ∈ H2

zn ∈ ∂φn(un), un → u strongly in H, zn → z weakly in H ⇒ z ∈ ∂φ(u). (4.28)
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Let us stress the fact that monotone convergence implies Mosco-epiconvergence,
see [5, Theorem 3.20].

Let us now fix our assumptions concerning the Mosco-approximation scheme of
system (4.2):

(M1) φn : H → IR ∪ {+∞} and φ : H → IR ∪ {+∞} are convex proper lower
semicontinuous functions such that the sequence (φn) Mosco-epiconverges to
φ;

(M2) there exists some m ∈ IR such that Ψ ≥ m, φ ≥ m, φn ≥ m for all n ∈ IN;

(M3) the sequence (φn)
n∈IN satisfies the following inf-compactness property:

supn |vn| < ∞ and supn φn(vn) < ∞ imply that the sequence (vn)
n∈IN is

relatively compact in H;

(M4) there exists a sequence (u0n, ξn) ∈ H2 such that: ξn ∈ ∂φn(u0n) (hence
u0n ∈ dom ∂φn), u0n → u0, the sequences (ξn), (φn(u0n)) are bounded.

In view of Theorem (4.1), system (4.2) admits a unique solution (u, y) ∈
C ([0,+∞[,H2

)
under the additional assumptions

(CP’) a and b are real numbers such that b > 0 and a + b ≥ 0;

(A1) Ψ : H → IR is a differentiable function with ∇Ψ Lipschitz continuous on
bounded sets.

Likewise, the approximate system




u̇n(t) + ∂φn(un) + aun + byn ∋ 0,
ẏn(t) −∇Ψ(un) + aun + byn = 0,
un(0) = u0n, yn(0) = y0.

(4.29)

admits a unique solution (un, yn) ∈ C ([0,+∞[,H2
)
.

We will also need the following technical assumption

(H) H is separable.

Theorem 4.2 Under assumptions (M1-M2-M3-M4, CP’, A1, H), for any T > 0,
the solution (un, yn) of the approximate problem (4.29) converges uniformly on [0, T ]
to (u, y), the solution of system (4.2). Moreover

u̇n → u̇ strongly in L2([0, T ],H). (4.30)

Proof: Let (un, yn) be the solution of (4.29). In view of remark (4.4) we have

1

2
|u̇n(t)|2 + b(φn + Ψ)(un(t)) ≤ 1

2
(|∂φn(u0n)◦| + |au0n + by0|)2 + b(φn + Ψ)(u0n).

¿From assumption (M4) (notice in particular |∂φn(u0n)◦| ≤ |ξn|) we deduce that
there exists a constant C ∈ IR+ such that, for all n ∈ IN and almost all t ≥ 0

1

2
|u̇n(t)|2 + b(φn + Ψ)(un(t)) ≤ C. (4.31)
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¿From (4.31), and the uniform minorization assumption (M2), we obtain that the
sequences (u̇n), (un) are uniformly bounded on each bounded interval [0, T ]. By
the second equation of (4.29) we infer the uniform boundedness of (yn) and (ẏn)
on [0, T ]. Let us now argue with T > 0 fixed. Returning to (4.31), from (M2) and
(CP’), we obtain the existence of some C1 ∈ IR+ such that for all n ∈ IN

φn(un(t)) ≤ C1 ∀t ∈ [0, T ]. (4.32)

¿From the inf-compactness assumption (M3) we deduce that the sequence (un)
satisfies the conditions of the Ascoli-Arzela theorem on [0, T ]. Hence there exist
u ∈ C([0, T ],H) and a subsequence unk

such that

unk
→ u uniformly on [0, T ]. (4.33)

¿From the second equation of (4.29) we immediately obtain

ynk
→ y uniformly on [0, T ]. (4.34)

Further, from the uniform boundedness of (u̇n, ẏn) and from the absolute continu-
ity of (un, yn) on [0, T ], we deduce the absolute continuity of (u, y) on [0, T ] and
(u̇nk

, ẏnk
) ⇀ (u̇, ẏ) in L2([0, T ],H2).

For simplicity of notation, we write un and yn (instead of unk
and ynk

). We now
argue in the space L2([0, T ],H) and consider An, A the maximal monotone operator
extensions of ∂φn, ∂φ to L2([0, T ],H) (as in the proof of Theorem 4.1). Actually An

and A are convex subdifferential operators; namely: An = ∂Fn, A = ∂F (see [15,
Proposition 2.16]) where

Fn(v) =
∫ T
0 φn(v(s))ds, if φn(v) ∈ L1([0, T ],H), +∞ elsewhere,

F(v) =
∫ T
0 φ(v(s))ds, if φ(v) ∈ L1([0, T ],H), +∞ elsewhere.

(4.35)

Thus the first inclusion in (4.29) also reads

−(u̇n + aun + byn) ∈ ∂Fn(un) in L2([0, T ],H).

Now, the sequence Fn Mosco-epiconverges to F in L2([0, T ],H) (see [6, Corollaire
1.17], where assumption (H) is used). On the one hand −(u̇n +aun + byn) converges
weakly to −(u̇ + au + by) in L2([0, T ],H). On the other hand un converges strongly
to u in L2([0, T ],H). From the weak-strong closedness property (4.28) we deduce

−(u̇ + au + by) ∈ ∂F(u) in L2([0, T ],H);

explicitly
u̇(t) + ∂φ(u(t)) + au(t) + by(t) ∋ 0, for a.e. t > 0.

Passing to the limit on the second equation of (4.29) is immediate, because ∇Ψ is
continuous on H. Hence (u, y) is the solution of system (4.2) with Cauchy data
u(0) = u0 (recall (M4)) and y(0) = y0. By uniqueness of the solution of system
(4.2) (Theorem 4.1), the whole sequence (un, yn) has a unique limit point, and we
conclude by a standard compactness argument that (un, yn) converges uniformly to
(u, y) on [0, T ], where (u, y) is the solution of system (4.2). Following the same
argument as in the proof of Proposition 4.2, we then pass from the weak to the
strong convergence of sequence (u̇n) in L2([0, T ],H) . •
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5 A nonlinear hyperbolic model for viscoelastic mate-

rial with unilateral constraint

We consider the vibration problem for a viscoelastic membrane clamped on its
boundary and with unilateral conditions (obstacle problem). We wish to study
this problem in light of the results of Section 4.
Let us specify the notations and the functional setting. Let Ω be a bounded domain
in IRn whose boundary ∂Ω is locally C1. Take H equal to the Hilbert space L2(Ω)
of the Lebesgue square integrable functions on Ω. Let χ : Ω → IR be an obstacle
function, which is supposed to be regular, say χ ∈ H1

0 (Ω) ∩ H2(Ω). Let

K =
{
v ∈ H1

0 (Ω) : v(x) ≥ χ a.e. x ∈ Ω
}

(5.1)

be the constraint set of admissible deplacements. Clearly, K 6= ∅, since χ ∈ K.
Let us define the internal energy functional φ : L2(Ω) → IR ∪ {+∞} by

φ(v) =






1
2

∫
Ω |∇v(x)|2dx if v ∈ K

+ ∞ if v ∈ L2(Ω), v /∈ K.

One can easily verify that φ is a convex l.s.c. (lower semi-continuous) function on
L2(Ω). Indeed, for any λ ∈ IR, by coerciveness of φ on H1

0 (Ω) (which itself is a conse-
quence of Poincaré inequality) we have that the sublevel set

{
v ∈ L2(Ω) : φ(v) ≤ λ

}

is bounded in H1
0 (Ω) and hence weakly relatively compact in H1

0 (Ω). The conclusion
follows from the lower semicontinuity of φ for the weak topology of H1

0 (Ω) (note that
K is a closed convex subset of H1

0 (Ω)).
Let us compute the subdifferential operator ∂φ. Making a translation in H1

0 (Ω), we
need only consider the case χ = 0. Set u = ũ + χ. An elementary computation
shows that

z ∈ ∂φ(u) ⇔ z + ∆χ ∈ ∂φ̃(ũ) (5.2)

where

φ̃(v) =






1
2

∫
Ω |∇v(x)|2dx if v ≥ 0 on Ω

+ ∞ otherwise.

Note that φ̃ = φ1 + φ2, where φ1 is the Dirichlet energy and φ2 is the indicator
function of the positive cone in L2(Ω). As a key property, we use that contractions
operate with respect to the Dirichlet energy ( [8] Theorem 5.8.2), in particular

‖v ∨ 0‖H1 ≤ ‖v‖H1 ∀v ∈ H1(Ω), (5.3)

where v ∨ 0 is the positive part of v. Noticing that, for any λ > 0, (I + λ∂φ2)
−1v =

v ∨ 0, we deduce that, for any v ∈ domφ1 = H1
0 (Ω), for any λ > 0

φ1

(
(I + λ∂φ2)

−1v
)
≤ φ1(v). (5.4)

Following [15, Prop. 2.17] (see also [16, Thm. 9]), we can apply the additivity rule for
the subdifferential of the sum of two convex lsc. functions, namely ∂φ̃ = ∂φ1 + ∂φ2.
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We use the description of the subdifferential of φ1 given in [17] (which makes use
of the regularity assumption on ∂Ω, and Agmon-Douglis-Nirenberg regularity result
for the Poisson equation on Ω) to obtain
z ∈ ∂φ(u) ⇔ ũ ∈ H2(Ω) ∩ H1

0 (Ω), ũ ≥ 0 on Ω, and there exists µ ∈ L2(Ω) such
that 




z + ∆χ = −∆ũ − µ on Ω,

µ ≥ 0 on Ω

µũ = 0 on Ω.

(5.5)

Equivalently z ∈ ∂φ(u) ⇔ u ∈ H2(Ω) ∩ H1
0 (Ω), u ≥ χ on Ω, and there exists

µ ∈ L2(Ω) such that 



z = −∆u − µ on Ω,

µ ≥ 0 on Ω

µ(u − χ) = 0 on Ω,

(5.6)

which provides the description of the subdifferential operator ∂φ in the space L2(Ω).
Let us now consider the external energy potential Ψ : L2(Ω) → IR, which is pre-
scribed to be convex and differentiable. For example, take f ∈ L2(Ω) and

Ψ(v) =

∫

Ω
j(v(x))dx −

∫

Ω
f(x)v(x)dx, (5.7)

with j : r ∈ IR 7→ j(r) ∈ IR a convex function, whose derivative p = j′ satisfies the
following growth condition: there exists some constant k ∈ IR+ such that, for any
r, s ∈ IR

|p(r) − p(s)| ≤ k|r − s|. (5.8)

(In contrast with the finite dimensional setting, in infinite dimensional spaces the
local Lipschitz property of the gradient does not give much more modelling pos-
sibilities than the corresponding global Lipschitz property). The gradient of Ψ is
described as follows

z = ∇Ψ(u) ⇔ z(x) = p(u(x)) − f(x) a.e. x ∈ Ω. (5.9)

We are ready to apply the results of Section 4. Given parameters α ≥ 0 and β > 0,
we consider the system






u̇(t) + β∂φ(u(t)) +

(
α − 1

β

)
u(t) +

1

β
y(t) ∋ 0,

ẏ(t) − β∇Ψ(u(t)) +

(
α − 1

β

)
u(t) +

1

β
y(t) = 0.

(5.10)

By Theorem 4.1, there exists a unique global strong solution (u, y) of system (5.10).
Let us interpret (5.10) by using description (5.6) of ∂φ. By making the same transfor-
mation as in Section 2 (equivalence of the two systems), we obtain at least formally
(some derivations have to be justified)




ü(t) − β∆u̇(t) − βµ̇(t) + αu̇(t) + p(u(t)) + (−∆u(t) − f(t) − µ(t)) ∋ 0 on Ω,

µ(t) ≥ 0 on Ω

u(t) ≥ χ on Ω

µ(t)(u(t) − χ) = 0 on Ω.
(5.11)
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This system must be interpreted rigorously as (5.10). Moreover the following shock

law holds (lazy system): Set X(t) = −
(
α − 1

β

)
u(t) − 1

β
y(t), by Proposition 4.1,

u̇+(t) = X(t) − P∂φ(u(t))(X(t)). (5.12)

By (5.6), and after computation of a projection in L2(Ω) (which indeed can be
localized) we obtain

u̇+(t, x) =





X(t) + ∆u(t, x), if u(t, x) > χ(x)

sup{X(t, x) + ∆u(t, x); 0} if u(t, x) = χ(x).

Numerically, we can compute an approximate trajectory by using the approximation
of system (5.10) obtained by replacing φ by the penalization

φn(v) =
1

2

∫

Ω
|∇v(x)|2dx +

n

2

∫

Ω
((v(x) − χ(x))−)2dx. (5.13)

The assumptions of Theorem 4.2 are satified: monotone convergence implies Mosco-
epiconvergence, and the inf-compactness property is satisfied (thanks to the Rellich-
Kondrachov theorem). By contrast with the Moreau-Yosida approximation, the
above penalization approach is convenient for computation. It yields the following
system





u̇(t) − β∆u(t) + n (u(t) − χ)− +

(
α − 1

β

)
u(t) +

1

β
y(t) = 0,

ẏ(t) − β∇Ψ(u(t)) +

(
α − 1

β

)
u(t) +

1

β
y(t) = 0.

(5.14)

In [33], Petrov-Schatzman use a different method (Fourier analysis) and contact law,
in the study of a viscoelastic monodimensional bar with unilateral conditions.

6 Impact dynamics with restitution coefficient

Let us give an illustration of our approach in a finite dimentional setting H = IRn.
Specifically, we consider the following differential inclusion problem which arises in
the modelling of nonelastic shocks:





ü(t) + αu̇(t) + ∂δK(u(t)) + ∇Ψ(u(t)) ∋ 0,

u̇(t+) = −eu̇N (t−) + u̇T (t−) for any t such that u(t) ∈ ∂K.
(6.1)

In (6.1), K is a closed convex subset of H, ∂K denotes the boundary of K, ∂δK

is the Fenchel subdifferential of the indicator function δK of K, (∂δK(u) is the
outward normal cone to K at point u). The parameter e ∈ (0, 1) is a restitution
coefficient (of the normal velocity). This latter system models the evolution of a
mechanical system with inertia, whose state u(t) is forced to remain in K. The
system is subject to different forces: the inertia force (involving the acceleration,
for simplicity the inertia matrix has been taken equal to the identity), a potential
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driving force −∇Ψ(u), and a viscous friction force f = −αu̇. When the system hits
the boundary at u(t), it is subject to a reaction force (which belongs to −∂δK(u(t))),
with a shock law which can be described as follows: u̇T (t−), the tangential velocity
of u̇(t−), is preserved, while u̇N (t−), the normal velocity of u̇(t−), is reversed and
multiplied by a restitution coefficient e ∈ (0, 1). One can consult [1,14,19,28] for an
extended presentation of the theory of impact dynamics.

6.1 The Paoli-Schatzman model

In [29], Paoli and Schatzman considered differential inclusion problems of the form




ü(t) + ∂δK(u(t)) ∋ f(t, u(t), u̇(t)),

u̇(t+) = −eu̇N (t−) + u̇T (t−) for any t such that u(t) ∈ ∂K.
(6.2)

As a key ingredient of their approach, they introduced an approximate version of
(6.2) given by the following second-order differential equation

üλ(t) +
2ǫ√
λ

G((I − PK)uλ(t), u̇λ(t)) +
(I − PK)uλ(t)

λ
= f(t, uλ(t), u̇λ(t)). (6.3)

In (6.3), λ is a positive (penalization) parameter, I is the identity mapping, PK is
the metric projection from H onto K, the parameter ǫ is linked with e by

ǫ = −(log e)/
√

π2 + (log e)2, (6.4)

and G is the mapping defined for any (v,w) ∈ H2 by

G(v,w) =
(v,w)v

|v|2 if v 6= 0, G(v,w) = 0 otherwise. (6.5)

It is proved in [29] (when H is finite dimensional) that the solution uλ of (6.3) admits
a sub-sequence that converges (in some sense) as λ → 0+ to a solution of (6.2).
In the one-dimensional setting one can perform an explicit computation of the
trajectories of system (6.3), which shows the relevancy of this approach: Take
H = IR,K = IR+, f = 0; set sgn−(v) = 0 if v ≥ 0, 1 otherwise. Equation (6.3)
becomes

üλ(t) +
2ǫ√
λ

u̇λ(t)sgn−(uλ(t)) +
1

λ
uλ(t)sgn−(uλ(t)) = 0. (6.6)

For given Cauchy data uλ(0) = u0 > 0, u̇λ(0) = u̇0 < 0, the analytic solution of
equation (6.6) is given by

uλ(t) =





u0 + tu̇0 if t ∈ [0, τ ]

u̇0

√
λ√

1−ǫ2
e
−ǫ t−τ

√

λ sin
(√

1−ǫ2√
λ

(t − τ)
)

if t ∈ [τ, τλ]

−u̇0(t − τλ) exp
(
− πǫ√

1−ǫ2

)
if t ∈ [τλ,+∞].

(6.7)

where τ = −u0

u̇0
, τλ = τ + π

√
λ√

1−ǫ2
.

As λ → 0, we have τλ → τ , uλ → u, and u̇(τ+) = −eu̇(τ−) with e and ǫ tied by
(6.4).
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6.2 A model based on the Hessian-damping

Relying on this type of idea, we wish to propose an approximating process of practi-
cal interest regarding the evolution problem (6.1). To that end, we denote by ΦK,λ

the Moreau-Yosida approximation of δK (the indicator function of K ⊂ H) defined
for any v ∈ H and any λ > 0 by ΦK,λ(v) = (1/2λ)dist2(v,K). It is a classical result
that ΦK,λ is a C1 function whose gradient is given by ∇ΦK,λ(v) = (1/λ) (v − PKv).
A main observation which was done in [4] is that, if K is a half space

1√
λ

G((I − PK)uλ(t), u̇λ(t)) =
√

λ∇2ΦK,λ(uλ(t))u̇λ(t), (6.8)

whenever the Hessian ∇2ΦK,λ(.) is defined at uλ(t). Thus, we propose to consider
the following system

üλ(t) + αu̇λ(t) + 2ǫ
√

λ∇2ΦK,λ(uλ(t))u̇λ(t) + ∇ΦK,λ(uλ(t)) + ∇Ψ(uλ(t)) = 0 (6.9)

as a hopefully simpler approach to (6.1).
It is worth recalling that (6.9) was discussed in [9], only in the special instance

Ψ = 0, ǫ = 0. Thanks to Theorem 2.1, we can equivalently formulate equation (6.9)
as a first order system. Setting β = 2ǫ

√
λ, b = 1/β and a = α − 1/β, we obtain





u̇λ(t) + 2ǫ
√

λ∇ΦK,λ(uλ(t)) +

(
α − 1

2ǫ
√

λ

)
uλ(t) +

1

2ǫ
√

λ
yλ(t) = 0,

ẏλ(t) − 2ǫ
√

λ∇Ψ(uλ(t)) +

(
α − 1

2ǫ
√

λ

)
uλ(t) +

1

2ǫ
√

λ
yλ(t) = 0.

(6.10)

Clearly, (6.9) does not make sense when ∇2ΦK,λ(.) is not defined at uλ(t), which
precisely occurs when uλ(t) hits the boundary of K! By contrast, system (6.10)
can always be defined. This naturally suggests using (6.10) (with no occurrence of
the Hessian of Φλ) in order to approximate the differential inclusion (6.1). From a
theoretical viewpoint, it would be of great interest to establish rigourously the link
(by making λ → 0+) between trajectories of (6.10) and trajectories of (6.1). This
requires further studies which are out of the scope of the present article

We conclude this section by showing some numerical experiments (Figures 1,
2). Recall that ΦK,λ ≡ 0 on K, so that ∇ΦK,λ ≡ 0 and ∇2ΦK,λ ≡ 0 on int(K)
(the interior of K). Hence, as long as uλ(t) lies in int(K), for some positive time
t, it satisfies (see (6.9)) üλ(t) + αu̇λ(t) + ∇Ψ(uλ(t)) = 0. It is then clear that the
trajectories of (6.10) are independent of the parameters ǫ and λ as long as the state
uλ(t) remains in int(K). These trajectories are influenced by ǫ, λ and the term
∇2ΦK,λ(uλ(t)) only when uλ(t) is located outside int(K).

Impacts in a disk: Figures 1, 2 illustrate some trajectories uλ = (u1, u2)
verifying system (6.10) when H = IR2, K is the disk of center (0, 0) and radius 1,
and Ψ is the convex function defined for any (u1, u2) ∈ IR2 by Ψ(u1, u2) = 0.0025 ∗
((u1 − u01)

2 + (u2 − u02)
2) for several data (u01, u02) ∈ IR2. The initial conditions

are uλ(0) = (0.5, 0) and yλ(0) = −2ǫ
√

λ
(

2ǫ
√

λ

2αǫ
√

λ−1
+ (0, 0.1)

)
, which ensures that

u̇λ(0) = (0, 0.1).
In Figure 1, (u01, u02) = (0, 0), the minimum of Ψ over K is attained at (0, 0)

which belongs to the set K. After a finite number of shocks the constraint K is no
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more active and the trajectories converge to (0, 0). It can be noticed that the normal
velocity of uλ, up to a shock, increases with respect to the restitution coefficient e.

In Figure 2, (u01, u02) = (−1,−1), the minimum of Ψ over H = IR2 is attained
outside K. In that case, the constraint is active at the optimum which is equal to

(−
√

2
2 ,−

√
2

2 ). We observe many shocks (whose number increases as the shocks tend
to be elastic) which are located close to the constrained optimum.

Figure 1: Evolution of the profile of uλ(t) = (u1(t), u2(t)) for several values of the restitution
coefficient e. The other parameters are λ = 0.001 and α = 0.01.

7 Convergence and asymptotic stabilization

In this section we investigate the asymptotic behaviour of the trajectories of sytem
(3.1), and to keep the exposition within reasonable length the potential Φ is sup-
posed smooth. Some of the results established here require the following additional
conditions:

(A4) Θ := Φ + Ψ is a convex function;

(CPP) a and b are real numbers such that b > 0 and a + b > 0.

¿From now on we make the standing assumptions (A1)-(A4) and (CPP). Note
that Φ and Ψ + Φ are assumed to be convex while Ψ may be nonconvex.
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Figure 2: Evolution of the profile of uλ(t) = (u1(t), u2(t)) for several values of e (with λ = 0.001

and α = 0.01). On each sub-figure, uλ(t) converges as t → +∞ to (−
√

2

2
,−

√

2

2
), the

minimizer of Ψ over K.

7.1 Weak convergence

Our analysis is mainly based upon Lyapunov techniques. These approaches are
widely used for investigating asymptotic properties of dissipative systems, one may
consult [3, 11,13,20–23] for related studies.

With any element q ∈ H and any classical solution (u, y) of (3.1), we associate
the real-valued function F defined for t ≥ 0 by

F (t) = 〈q −u(t), au(t) + by(t)〉+
(a + b)

2
|u(t)− q|2 −Φ(u(t))−

∫ t

0
|u̇(s)|2ds. (7.11)

In order to set up our main convergence result, we first establish a lemma underlining
the dissipative nature of system (3.1).

Lemma 7.1 For any t ≥ 0, the time derivative of F is given by

Ḟ (t) = −b〈∇Θ(u(t)), u(t) − q〉, (7.12)

where Θ := Φ + Ψ. Hence, F is nonincreasing provided that q ∈ S := (∇Θ)−1(0).
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Proof: Derivating F we obtain (we drop variable t for simplicity)

Ḟ (t) = −〈u̇, au + by〉 + 〈q − u, au̇ + bẏ〉 + (a + b)〈u − q, u̇〉 + 〈u̇ + au + by, u̇〉 − |u̇|2
= −〈u − q, b(ẏ − u̇)〉
= −b〈u − q,∇Θ(u)〉 (according to (3.2)).

From the convexity of Θ (hence the monotonicity of ∇Θ), we deduce that F (.) is
nonincreasing whenever q ∈ S. •

Let us state our main convergence result.

Theorem 7.1 Suppose that conditions (A1)-(A4) and (CPP) are satisfied. Then,
the unique classical global solution (u, y) of problem (3.1) satisfies:

(r1) Convergence of the energy E = bΘ(u) + (1/2)|u̇|2:

lim
t→+∞

E(t) = b inf
H

Θ, lim
t→+∞

Θ(u(t)) = inf
H

Θ, lim
t→+∞

|u̇(t)| = 0.

If, in addition, the set S of minimizers of Θ := Φ + Ψ is nonempty, then we have:

(r2) u, y, ẏ ∈ L∞([0,+∞),H);

(r3) Estimates on the energy decay:

E(.) − b inf
H

Θ ∈ L1(0,+∞), Θ(u) − inf
H

Θ ∈ L1(0,+∞);

lim
t→+∞

t(E(t) − b inf
H

Θ) = lim
t→+∞

t(Θ(u(t)) − inf
H

Θ) = lim
t→+∞

t|u̇(t)|2 = 0;

(r4) Convergence of the trajectory:
u(t) weakly converges to some element u∞ in S as t goes to infinity, provided
that one of the following additional conditions is satisfied:

(i1) S is a singleton;
(i2) ∇Φ or ∇Ψ is weakly (sequentially) closed; i. e. ∇Φ or ∇Ψ is sequentially

continuous from H endowed with its weak topology to H endowed with its weak
topology.

(i3) Ψ is convex.

Proof: (r1) By convexity of Θ and Φ, given any (z, q) ∈ H2, we have

Θ(q) ≥ Θ(z) + 〈∇Θ(z), q − z〉
Φ(q) ≥ Φ(z) + 〈∇Φ(z), q − z〉. (7.13)

Moreover, by the first equation of (3.1), the quantity F (t) given by (7.11) can be
rewritten as (for simplicity we often ignore the dependency of u, u̇. . . on t)

F (t) = −〈q − u,∇Φ(u)〉 − 〈q − u, u̇〉+
(a + b)

2
|u− q|2 −Φ(u)−

∫ t

0
|u̇(s)|2ds. (7.14)

On the one hand, from the second inequality in (7.13), we deduce that

F (t) ≥ −Φ(q) + 〈u − q, u̇〉 +
(a + b)

2
|u − q|2 −

∫ t

0
|u̇(s)|2ds. (7.15)
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Recalling u̇ ∈ L2(0,+∞;H) (Theorem 3.1-r2) and setting C = −Φ(q)−∫∞0 |u̇(s)|2ds,
we obtain

F (t) ≥ C +
d

dt

(
1

2
|u − q|2

)
. (7.16)

On the other hand the energy mapping E(.) = bΘ(u(.))+(1/2)|u̇(.)|2 is nonincreasing
and bounded below (Theorem 3.1-r3 and (A3)); hence E∞ := limt→+∞ E(t) exists,
so we have Θ(u) ≥ (1/b)E∞ − (1/2b)|u̇|2. This inequality, combined with the first
one in (7.13), yields

bΘ(q) − E∞ ≥ −(1/2)|u̇|2 + b〈∇Θ(u), q − u〉.

Integrating between 0 and t, and using (7.12), we obtain

t(bΘ(q) − E∞) ≥ −(1/2)

∫ t

0
|u̇(s)|2ds + b

∫ t

0
〈∇Θ(u(s)), q − u(s)〉ds

≥ −(1/2)

∫ ∞

0
|u̇(s)|2ds + F (t) − F (0). (7.17)

Combining (7.16) with (7.17), and setting C1 = C − (1/2)
∫∞
0 |u̇(s)|2ds − F (0), we

deduce t(bΘ(q) − E∞) ≥ C1 + d
dt

(
1
2 |u − q|2

)
. By integrating this inequality from 0

to t, we obtain

t2

2
(bΘ(q) − E∞) ≥ C1t + (1/2)|u(t) − q|2 − (1/2)|u0 − q|2,

which readily entails bΘ(q)−E∞ ≥ 2C1

t
− 1

t2
|u0−q|2. Whence we deduce b inf Θ ≥ E∞

(in view of the arbitrariness of t > 0 and q ∈ H). Joining this last estimate to the
inequality bΘ(u) ≤ E gives us the chain of inequalities

lim sup
t→+∞

bΘ(u(t)) ≤ lim sup
t→+∞

E(t) = E∞ ≤ b inf Θ ≤ lim inf
t→+∞

bΘ(u(t)), (7.18)

which allows to conclude limt→∞ bΘ(u(t)) = limt→∞ E(t) = b inf Θ. It follows im-
mediately from the definition of E that limt→+∞ |u̇(t)| = 0.

(r2) The functional F is nonincreasing if q ∈ S (by Lemma 7.1). Therefore we
deduce from (7.15)

F (0) ≥ C − |u − q| × |u̇| + (1/2)(a + b)|u − q|2.

We know from Theorem 3.1-r2 that u̇ ∈ L∞(0,+∞;H). Therefore the inequality
above shows that |u− q| is bounded on [0,+∞[, and so is |u|. Let us now turn to y.
The second equation in (3.1) can be solved in closed form

y(t) = y0e
−bt +

∫ t

0
(∇Ψ(u(s)) − au(s))e−b(t−s)ds. (7.19)

The boundedness of u and assumption (A1) entail the boundedness of y. It follows
from the second equation of (3.1) that ẏ also is bounded.

(r3) Fix q ∈ S. The functional F is bounded below (use (7.16) and (r2)), besides
it is nonincreasing; hence = limt→+∞ F (t) exists. Thus, the nonnegative mapping
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t → 〈∇Θ(u(t)), u(t)−q〉 belongs to L1(0,+∞) (in light of Lemma 7.1). Moreover, by
(7.13), and recalling Θ(q) = inf Θ, we have 0 ≤ Θ(u)− inf Θ ≤ 〈∇Θ(u), u− q〉. This
clearly shows that Θ(u) − inf Θ belongs to L1(0,+∞), and so does E − b inf Θ (as
E − b inf Θ = (1/2)|u̇|2 + b(Θ(u)− inf Θ), with u̇ ∈ L2(0,+∞;H)). It turns out that
the function E − b inf Θ is nonnegative, nonincreasing and belongs to L1(0,+∞). It
follows immediately that

∫ 2t

t
(E(s) − b inf Θ)ds ≥ t(E(2t) − b inf Θ) ≥ 0.

Noticing that the above integral vanishes as t → +∞, we deduce that so does the
quantity t(E(2t) − b inf Θ).
Now write t(E(t)−b inf Θ) = (t/2)|u̇(t)|2 +bt(Θ(u(t))− inf Θ) and observe that each
term in the sum is nonnegative to conclude that each of them vanishes, as t → +∞.

(r4) The set of weak cluster-points of (u(t)t≥0) in H is nonempty, because u ∈
L∞(0,+∞;H) (by (r2)). Let us prove that any of these weak cluster-points belongs
to S. Let tn → +∞ and u ∈ H be such that u(tn) ⇀ u weakly in H (as n → +∞).
From Θ(u(tn)) → infH Θ (by (r1)) and by the weak lower semi-continuity of Θ, we
have infH Θ = lim infn→+∞ Θ(u(tn)) ≥ Θ(u) ≥ infH Θ. Hence Θ(u) = infH Θ, i. e.
u ∈ S.
Consequently, to obtain the weak convergence of u(t) (as t → +∞) to some element
in S, we just need to prove the uniqueness of a weak cluster-point under each of the
additional conditions (i1)-(i3). This already settles point (i1).

Let us turn to points (i2), (i3). Set γ = a+b
2 and for any q and z in H define

A(z, q) = γ|z − q|2 + N(z, q), where N(z, q) = 〈∇Φ(z), z − q〉 − Φ(z) + Φ(q).

Clearly, from (7.14), F (t) can be alternatively expressed as

F (t) = A(u(t), q) − Φ(q) − 〈q − u(t), u̇(t)〉 −
∫ t

0
|u̇(s)|2ds. (7.20)

Taking q in S, and recalling u ∈ L∞(0,∞;H), limt→+∞ |u̇(t)| = 0, u̇ ∈ L2(0,∞;H)
and that limt→+∞ F (t) exists, we immediately deduce

limt→+∞ A(u(t), q) exists. (7.21)

Note also
〈∇Θ(u(t)), u(t) − q〉 → 0 as t → +∞. (7.22)

Indeed, this function is integrable and globally Lipschitz continuous (as a conse-
quence of u and u̇ being bounded together with ∇Θ being Lipschitz continuous on
bounded sets).

Now let v̄ and w̄ be two weak cluster-points of (u(t))t≥0. That is, there exist
two positive sequences (sn) and (tn) such that sn → +∞, u(sn) ⇀ v̄ and tn → +∞,
u(tn) ⇀ w̄ (as n → +∞). Define

Rn = A(u(tn), w̄)−A(u(sn), w̄)−A(u(tn), v̄)+A(u(sn), v̄)+2γ〈u(tn)−u(sn), w̄− v̄〉
(7.23)
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Taking (7.21) into account and passing to the limit in this equality readily yields

lim
n→+∞

Rn = 2γ|v̄ − w̄|2. (7.24)

Purely algebraic computations show that Rn also admits the following expressions

Rn = −〈∇Φ(u(tn)) −∇Φ(u(sn)), w̄ − v̄〉 (7.25)

Rn = 〈∇Ψ(u(tn)) −∇Ψ(u(sn)), w̄ − v̄〉
+〈∇Θ(u(tn)), u(tn) − w̄〉 − 〈∇Θ(u(tn)), u(tn) − v̄〉 (7.26)

−〈∇Θ(u(sn)), u(sn) − w̄〉 + 〈∇Θ(u(sn)), u(sn) − v̄〉
Rn = N(u(tn), w̄) − N(u(sn), w̄) − N(u(tn), v̄) + N(u(sn), v̄) (7.27)

Now we are in a position to conclude.

(i2) If ∇Φ is weakly sequentially continuous, then from (7.24) and (7.25) we
deduce 2γ|v̄ − w̄|2 = −〈∇Φ(w̄) −∇Φ(v̄), w̄ − v̄〉; hence w̄ = v̄, since Φ is convex.

If ∇Ψ is weakly sequentially continuous, then from (7.26) and (7.22) we de-
duce limn→+∞ Rn = 〈∇Ψ(w̄) − ∇Ψ(v̄), w̄ − v̄〉. But the latter quantity is equal to
−〈∇Φ(w̄)−∇Φ(v̄), w̄ − v̄〉 in view of ∇Θ(w̄) = ∇Θ(v̄) = 0. We conclude as above .

(i3) For any q in S, (7.22) can be rewritten as

lim
t→+∞

(〈∇Φ(u(t)) −∇Φ(q), u(t) − q〉 + 〈∇Ψ(u(t)) −∇Ψ(q), u(t) − q〉) = 0.

Since Ψ and Φ are assumed to be convex, each term in the sum above is nonnegative;
hence

lim
t→+∞

〈∇Φ(u(t)) −∇Φ(q), u(t) − q〉 = 0. (7.28)

For any z and q in H, a simple computation (using the convexity of Φ) yields
0 ≤ N(z, q) ≤ 〈∇Φ(z) − ∇Φ(q), z − q〉. In particular, when q belongs to S, with
(7.28) we deduce limt→+∞ N(u(t), q) = 0. Noticing that v̄ and w̄ belong to S, by
using the expression of Rn given in (7.27) we readily obtain limn→+∞ Rn = 0, which
in light of (7.24) yields v̄ = w̄. •

Remark 7.1 Condition (i2) of Theorem 7.1 always holds when H is finite dimen-
sional.

Remark 7.2 Specifically, when Φ is twice-differentiable, Theorem 7.1 allows to
cover the asymptotic behaviour of the second-order equation (1.1). To that end,
take β > 0, α > 0, initial data u(0) = u0 and u̇(0) = v0 in H, and consider system
(3.1) with Φ and Ψ replaced by βΦ and βΨ, respectively, b = 1/β, a = α − 1/β,
and the initial data u(0) = u0 and y(0) = −(1/b)(v0 + β∇Φ(u0) + au0). As a
direct consequence of Theorems 7.1 and 2.1, the classical solution of (1.1) enjoys the
properties stated for u in Theorem 7.1.

The following result provides additional information concerning the asymptotic
convergence properties of Φ(u(.)) and Ψ(u(.)) when Φ and Ψ are convex.
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Proposition 7.1 Suppose in addition to conditions (A1)-(A4) and (CPP) that
Ψ is convex and that S, the set of minimizers of Θ := Φ + Ψ, is nonempty. Let
(u, y) be a classical global solution of system (3.1) such that u(t) weakly converges
to some element u∞ in S as t goes to infinity. Then, the following holds:

lim
t→+∞

Φ(u(t)) = Φ(u∞) and lim
t→+∞

Ψ(u(t)) = Ψ(u∞).

Proof: By the weak lower semi-continuity of Φ and Ψ, we have
Φ(u∞) ≤ lim inft→+∞ Φ(u(t)) and Ψ(u∞) ≤ lim inft→+∞ Ψ(u(t)). These inequal-
ities, together with infH Θ = Θ(u∞) = Φ(u∞) + Ψ(u∞) (theorem 7.1-r1), imply

lim sup
t→+∞

Φ(u(t)) = lim sup
t→+∞

(Φ(u(t)) + Ψ(u(t)) − Ψ(u(t)))

≤ lim sup
t→+∞

(Φ(u(t)) + Ψ(u(t))) − lim inf
t→+∞

Ψ(u(t))

≤ Φ(u∞) + Ψ(u∞) − Ψ(u∞) = Φ(u∞)

Clearly, we deduce limt→+∞ Φ(u(t)) = Φ(u∞), and it is then a simple matter to
obtain limt→+∞ Ψ(u(t)) = Ψ(u∞), which is our claim . •

7.2 Strong convergence

Let us now reinforce the assumptions on potentials Φ and Ψ in order to obtain strong
convergence results. The following classical notions will be helpful:

A function φ : H → IR is said to be boundedly inf-compact if for any R > 0 and
any λ ∈ IR, the set {x ∈ H : φ(x) ≤ λ; |x| ≤ R} is relatively compact for the strong
topology of H.

A function φ : H → IR is said to be uniformly convex at q ∈ H if ∇φ is uniformly
monotone at q, i.e., there exists some ω : IR+ → IR+ which is nondecreasing, and
vanishes only at 0, such that for any v ∈ H

〈∇φ(v), v − q〉 ≥ ω(|v − q|). (7.29)

Clearly q is the unique possible minimum point of φ. This property is satisfied if φ
is strongly convex, i.e., there exists some positive constant c such that φ − c|.|2 is
convex.

Theorem 7.2 Suppose that conditions (A1)-(A4) and (CPP) are satisfied and
that S, the set of minimizers of Θ := Φ + Ψ, is nonempty. Suppose, in addition,
that one of the following assumptions is satisfied:

i) Θ : H → IR is boundedly inf-compact;
ii) Θ : H → IR is uniformly convex at some q ∈ H.

Then, the unique classical solution (u, y) of system (3.1), is such that u(t) strongly
converges to some element u∞ in S as t goes to infinity. Moreover, the auxiliary
variable y(t) strongly converges in H, as t → +∞, to y∞ = −1

b
(∇Φ(u∞) + au∞).

Proof: i) By Theorem 7.1-r1-r2, u is a bounded minimizing trajectory for Θ.
Since Θ is boundedly inf-compact, u(t) admits strong cluster points as t → ∞,
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which are also minimizers of Θ (same reasoning as in Theorem 7.1-r4). Now, using
(7.24), (7.25), the strong continuity and the monotonicity of ∇Φ (as in the proof
of Theorem 7.1-r4-i2), one easily obtains that there exists a unique limit point of
t 7→ u(t) (for the strong topology of H). As a consequence, strong convergence holds.

ii) The assumption S 6= ∅ and the uniform convexity of Θ at q yield S = {q}.
Then (7.22) and (7.29) (with Θ in place of φ) entail ω(|u(t) − q|) → 0 as t → ∞,
which forces |u(t) − q| → 0.

Let us consider the first equation of (3.1), u̇(t)+∇Φ(u(t))+au(t)+by(t) = 0, and
use that u(t) strongly converges to some u∞, while u̇(t) strongly converges to zero.
Hence, by using the continuity property of ∇Φ, we obtain that the auxiliary variable
y(·) strongly converges in H at t → +∞ to some y∞ which satisfies ∇Φ(u∞)+au∞+
by∞ = 0, which is our claim. •

Remark 7.3 In the assumptions of Theorem 7.2, functions Φ and Ψ play symmetric
roles. It is worth noticing that it is enough that one of the two functions is boundedly
inf-compact to ensure that the sum is boundedly inf-compact (just argue by using
a continuous affine minorant of the other function).
Similarly, if one of the two functions is strongly convex, so is their sum. Indeed in
the next section, in the study of the exponential stabilization, we shall see that the
strong convexity assumption can be formulated in a weaker local way.

7.3 Exponential stabilization

The following assumption will be needed in this section.

(A5) S, the set of minimizers of Θ, is a singleton {q}, and Θ satisfies

There exist R > 0 and σ > 0 such that

|v − q| ≤ R ⇒ 〈∇Θ(v), v − q〉 ≥ σ|v − q|2. (7.30)

Note that assumption (A5) holds if Θ(.)− σ
2 |.|2 is convex, i.e. Θ is strongly convex.

Lemma 7.2 Suppose the condition (A5) is satisfied. Then, for any positive real C,
there exists some γC > 0 such that, for any v ∈ H satisfying |v − q| ≤ C,

〈∇Θ(v), v − q〉 ≥ γC |v − q|2. (7.31)

Precisely, one can take γC = σρ where ρ ∈ (0,min{1, R
C
}). Function Θ satisfies

further, for |v − q| < C,

Θ(v) − Θ(q) ≥ γC

2
|v − q|2. (7.32)

Proof: Let v ∈ H be such that |v − q| ≤ C and set z = ρv + (1 − ρ)q with some
positive value ρ ∈ (0,min{1, R

C
}). Clearly, besides ρ ∈ (0, 1), we have ρ ≤ R/C, and

so |z − q| = ρ|v − q| ≤ R (as |v − q| ≤ C). Furthermore, from the convexity of Θ
(hence 〈∇Θ(v), v − z〉 ≥ 〈∇Θ(z), v − z〉) , we have

〈∇Θ(v), v − q〉 = 〈∇Θ(v), v − z〉 + 〈∇Θ(v), z − q〉
≥ 〈∇Θ(z), v − z〉 + 〈∇Θ(v), z − q〉
= 〈∇Θ(z), v − q〉 + 〈∇Θ(z), q − z〉 + 〈∇Θ(v), z − q〉.
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Observing that z − q = ρ(v − q), we equivalently obtain

〈∇Θ(v), v − q〉 ≥ (1/ρ)〈∇Θ(z), z − q〉 − 〈∇Θ(z), z − q〉 + ρ〈∇Θ(v), v − q〉
= (1/ρ − 1)〈∇Θ(z), z − q〉 + ρ〈∇Θ(v), v − q〉.

Since ρ ∈ (0, 1), we can obviously rewrite this latter inequality as

〈∇Θ(v), v − q〉 ≥ (1/ρ)〈∇Θ(z), z − q〉.

Therefore, recalling that |z − q| ≤ R, and using (A5), we deduce that

〈∇Θ(v), v − q〉 ≥ σ(1/ρ)|z − q|2,

hence, by |z − q| = ρ|v − q| we are led to (7.31). As a consequence, for |v − q| < C,
we additionally obtain

Θ(v) − Θ(q) =
∫ 1
0 〈∇Θ(q + t(v − q)), v − q〉dt

≥ ∫ 1
0 γt|v − q|2dt = γ

2 |v − q|2,

which completes the proof. •

Theorem 7.3 Under assumptions (A1) (A2) (A3) (A4) (A5) (CPP), the solution
(u, y) to system (3.1) is such that u(t) converges exponentially to q as t → ∞.
Moreover the energy E(t) and Θ(u(t)) converge exponentially to inf Θ, and |u̇(t)|
converges exponentially to zero as t → ∞.

Proof: Let u be the first component of the solution to system (3.1).We recall that
the trajectory t 7→ u(t) is bounded, that is (for any t ≥ 0) |u(t) − q| ≤ C for some
positive constant C. Set γC = σρ, with ρ ∈ (0,min{1, R

C
}), where σ and R are given

by condition (A5). Hence from Lemma 7.2 for t ≥ 0,

〈∇Θ(u(t)), u(t) − q〉 ≥ γ|u(t) − q|2, (7.33)

and
Θ(u(t)) − Θ(q) ≥ γ

2
|u(t) − q|2. (7.34)

¿From now on, for sake of simplicity of notations, we take Θ(q) = 0 and we will
often omit argument t ∈ [0,+∞[ of function u.
Function u is bounded ((r2) Thm. 7.1) and ∇Φ is Lipschitz continuous on bounded
subsets, hence, with the first equation of system (3.1), u̇ is absolutely continuous.
The energy E(t) = bΘ(u)+ 1

2 |u̇(t)|2 is also absolutely continuous, time differentiable
almost everywhere, and satisfies in view of (3.4)

Ė(t) + (a + b)|u̇(t)|2 ≤ 0 a.e. t ∈ [0,+∞[.

Set

G(t) = F (t) +

∫ t

0
|u̇|2 + Φ(q) (cf. (7.11))

=
a + b

2
|u − q|2 + 〈u − q, u̇〉 + [〈∇Φ(u), u − q〉 − Φ(u) + Φ(q)] (cf. (7.14))
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Function G is time differentiable with derivative Ġ satisfying (recall (7.12))

Ġ(t) + b〈∇Θ(u(t)), u(t) − q〉 = |u̇(t)|2, ∀t ∈ [0,+∞[.

Combining derivatives Ė and Ġ yields

Ė +
a + b

2
Ġ +

a + b

2

[
|u̇|2 + b〈∇Θ(u), u − q〉

]
≤ 0, a.e. on [0,+∞[. (7.35)

Our goal is to show |u̇|2 + b〈∇Θ(u), u − q〉 ≥ δ[E + a+b
2 G] for some δ > 0, to derive

from (7.35) a differential inequation for E + a+b
2 G and further for function 1

2 |u− q|2
showing that the latter has exponential decay.
In view of the convexity of Θ (hence 〈∇Θ(u), u − q〉 ≥ Θ(u)) and from (7.33) we
first derive for t ∈ (0,+∞[

|u̇|2 + b〈∇Θ(u), u − q〉 =

(
1

4
|u̇|2 +

b

2
〈∇Θ(u), u − q〉

)

+

(
3

4
|u̇|2 +

b

2
〈∇Θ(u), u − q〉

)

≥
(

1

4
|u̇|2 +

b

2
Θ(u)

)
+

(
3

4
|u̇|2 +

bγ

2
|u − q|2

)

≥ 1

2

[
E + m

(
|u̇|2 + |u − q|2

)]
, (7.36)

with m = min
(

3
2 , bγ

)
.

We now turn to G. Let L be a Lipschitz constant of ∇Φ on some bounded set
containing u; we have

0 ≤ Φ(q) − Φ(u) + 〈∇Φ(u), u − q〉 =

∫ 1

0
〈∇Φ(u + s(q − u)) −∇Φ(u), q − u〉ds

≤
∫ 1

0
Ls|q − u|2ds =

L

2
|q − u|2.

Hence for any constant M ≥ a+b+L+1
2 , we have

G ≤ a + b

2
|u − q|2 +

1

2
|u − q|2 +

1

2
|u̇|2 +

L

2
|q − u|2 ≤ M

(
|u − q|2 + |u̇|2

)
.

Combining the inequation above with (7.36) yields

|u̇|2 + b〈∇Θ(u), u − q〉 ≥ 1

2

[
E +

m

M
G

]
=

m

M(a + b)

[
M(a + b)

2m
E +

a + b

2
G

]
.

Choosing now M = max(a+b+L+1
2 , 2m

a+b
), so that M(a+b)

2m
E ≥ E, since M(a+b)

2m
≥ 1

and E ≥ 0, we obtain

|u̇|2 + b〈∇Θ(u), u − q〉 ≥ m

M(a + b)

[
E +

a + b

2
G

]
.

Finally, we deduce from (7.35), with δ = m
2M

Ė +
a + b

2
Ġ + δ

[
E +

a + b

2
G

]
≤ 0.
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Let us integrate this inequation between 0 and t. Since E is and G are absolutely
continuous, we obtain

E(t) +
a + b

2
G(t) ≤ e−δt

(
E(0) +

a + b

2
G(0)

)
,∀t ∈ [0,+∞[. (7.37)

Owing to the nonnegativity of E and 〈∇Θ(u), u − q〉 − Φ(u) + Φ(q), we have

a + b

2

[
a + b

2
|u − q|2 + 〈u − q, u̇〉

]
≤ E +

a + b

2
G;

hence, with C = 2
a+b

E(0) + G(0)

(a + b)
1

2
|u(t) − q|2 + 〈u(t) − q, u̇(t)〉 ≤ Ce−δt.

Integrating between 0 and t readily yields

1

2
|u(t) − q|2 ≤ 1

2
|u0 − q|2e−(a+b)t +

C

a + b − δ

(
e−δt − e−(a+b)t

)
.

Noticing that δ ≤ a+b
4 , in view of M ≥ 2m

a+b
, we obtain the simpler bound

1

2
|u(t) − q|2 ≤ 1

2
|u0 − q|2e−(a+b)t +

4C

3(a + b)
e−δt = O(e−δt). •

Let us now return to (7.37) which gives the exponential decay of E(t) + a+b
2 G(t).

Using the formulation of G, the nonnegativity of [〈∇Φ(u), u − q〉 − Φ(u) + Φ(q)],
and the exponential decay of |u(t) − q| which has just been obtained, we finally
obtain that the energy E(t) and Θ(u(t)) converge exponentially to Θ(q) = inf Θ,
and |u̇(t)| converges exponentially to zero as t → ∞. •

References

[1] P. Alart, O. Maisonneuve, R.T. Rockafellar, Nonsmooth Mechanics and Analysis, Advances in
Mechanics and Mathematics, 12, Springer, 2006.
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[17] H. Brézis, Problèmes unilatéraux, J. Math. Pures et Appl., 51, (1972), pp. 1-168.

[18] A. Cabot, L. Paoli, Asymptotics for some vibro-impact problems with a linear dissipation term,
J. Math. Pures Appl., 87, (2007), pp. 291–323.

[19] S. Faik, H. Witteman, Modeling of impact dynamics: A literature survey, - 2000 International
ADAMS User Conference, 2000.

[20] J.K. Hale, Asymptotic behavior of dissipative systems, Math. surveys Monogr., 25, AMS,
Providence, RI, 1987.
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