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Abstract—The posteritical behavior of a 3D system of elastically restrained beams, which can
manifest overall and local modes, is analyzed. The secondary biturcation in the overall posteritical
range is studied. By applying the multiple scale perturbation method it is found that the amplitude
modulation phenomenon is governed by a ditferential equation of the second order. An approximate
analytical expression of the amplitude modulating function is obtained by the WKB asymptotic
method. The occurrence of a turning point which is responsible for the strong localization is
revealed. Close analogies with localization of vibrations in imperfect systems are highlighted.

I. INTRODUCTION

Systems which exhibit a great number of nearly simultancous modes are characterized in
the posteritical range by buckling patterns that strongly depend on the intensity of the load.
In particular, the deformation can localize in one or more regions of limited size, in contrast
with the periodic character of critical modes. The phenomenon is known as localization and
it has been studied both experimentally (Moxham, 1971) and theorctically. Tvergaard
and Needleman (1980) have made reference to diverse models of imperfect systems, with
nonlincaritics of the softening type, observing that the localization is the consequence of a
bifurcation which occurs immediately after attainment of the limit point, on the unstable
branch of the equilibrium path. A lincar combination of the primary periodic mode and of
the bifurcation mode can produce a preferential growth of one of the waves and thus explain
the localization tendency. Potier-Ferry (1987) has studied the posteritical behavior of a
beam on a nonlinear elastic soil, showing that, at the restraints, the hardening nonlincarities
can produce limit layers wherein the amplitude of the buckling is modulated. The local-
ization occurs in the presence of softening nonlincarities and is attributable to the high
modal density rather than to the insurgence of secondary bifurcation. Benito and Sridharan
(1983), Sridharan and Al (1985), Byskov (1988), Byskov er al. (1989) and Luongo and
Pignataro (1988) have analyzed the problems of interaction among local and overall
simultancous modes of assemblies of compressed plates ; in particular, in the last paper, it
is shown that the lincar combination of several critical modes gives rise to localized buckling.

In recent years, in parallel with these studies, research has been performed on problems
of localization of the oscillations in imperfect structures at high modal densities, such as
systems formed by a great number of weakly coupled substructures [sce, for instance, Pierre
and Cha (1989) and Cornwell and Bendinksen (1989)]. In such systems small local variations
in stiffness and/or mass destroy the periodic character of the vibration modes which localize
in onc or more region of the structure. The extent of the localization is proportional to
the ratio between the amplitude of the imperfections and the degree of coupling among
substructures. Hence localization increases with modal density. The phenomenon can be
explained on the basis of a lincar theory and is closely bound up with the insurgence of
turning points in the solution, as demonstrated by Luongo (1988).

An in-depth study of the analogics between the two problems lies outside the scope of
this paper. What is done here is to analyze the static phenomenon with the help of a specific
model. the aim being to demonstrate that, as in the dynamic problem, the localization
mechanism calls for satisfaction of two requisites: (a) that the system should be of high
modal density, and (b) that there should be present a *“structural irregularity™ in the broad
sensc. The example given concerns a 3D beam system on elastic soil which exhibits an



Fig. 1. 3D model of elustically restrained beams.

overall mode and several local modes that affect a single beam. The behavior of the model
is similar to the plate assembly studied in the paper by Luongo and Pignataro (1988).
However, here a secondary bifurcation along a nonlinear equilibrium path is dealt with. It
is assumed that the second bifurcation is close enough to the first to linearize the problem
in the amplitude of the overall mode which is taken as being the control parameter. The
equation that governs the secondary bifurcation has slowly and weakly varying coefficients
so that the effect of the primary bifurcation reflects in a “structural defect”™ which, together
with the high modal density, is responsible for the localization. Through the use of the
multiple scale perturbation method it is possible to determine an equation in the (variable)
amplitude of the secondary bifurcation mode ; as in the dynamic case, this lcads to a turning
point problem which is solved by the WK B method. It is shown that if the modal density
is sutliciently high, the amplitude of the mode tends rapidly to zero outside a small region
in which it is weakly variable ; the local buckling is thus localized.

Only the bifurcation analysis is performed here and no information is obtained about
the focal posteritical behavior of the system. Consequently, even though the bifurcation
mode may be highly localized in character, it does not mean that the structure would
collapse in such a focalized mode, since geometric nonlinearities could reduce the effects of
the amplitude modulation in the postbifurcation range

2O STRUCTURAL MODEL AND POSTCRITICAL BIFURCATION

Let us consider the model in Fig. I, consisting of two elastic beams connected by bars
which are rigid in the xyv plune and infinitely flexible out-of-plane. The beams are con-
tinuously restrained by elastic springs orthogonal to the plane and are compressed by forces
F. The structure is simply supported.

Two instability forms can occur: one of overall type, in which the structure behaves
as a single shear-indeformable built-up beam, the other of local type, in which each beam
buckles independently out-of-plane, restrained by the springs. From this point of view the
behavior of the structure is similar to that of compressed thin-walled beams that can exhibit
either overall instability ( Eulerian or flexural-torsional) or local instability of the component
plates.

In the system concerned overall instability occurs when F is equal to the Ealerian
critical load

F, = n*EAIl* |1} )

where / is the length, £ the elastic modulus and A the cross-sectional area of each beam,
whose dimensions are assumed to be negligible compared with the haltheight A; A/l « 1 is
also assumed. The overall critical mode associated with the load F, is

uy 2(x) = +von(h/l) cos (nx/l)
ry2(x) = vq sin (nx/l)

\1'1_3(,\') =0 (2)



where indexes 1 and 2 refer to the bottom and top beams, respectively, and ¢, is the midspan
deflection.
The local instability is governed by the equation of the beam on elastic soil

Elw™ +(Nw) +hkw =20 3)

where the apex denotes differentiation with respect to v, /is the inertia moment of the beam
with respect to the centroidal axis parallel to y, & is the stiffness of the springs and
N = F = const the axial force: moreover w = w,,. Assuming that the beams are simply
supported at the ends then w = w” = 0 in x = 0. /, so that eqn (3) admits the eigenfunction

w(x) = wy sin (nnx/{) Y

and the eigenvalue

hd b I Ty g
F = (n'ﬁ“+ }7377*) JKEI (5)

B = (/) JElK (6)

huas been posed. In eqn (4), n is an integer which must be determined by making F, a
minimum, so it depends on the dimensionless parameter fi. If the wavelength of the local
mode is small compared with the span of the beam, ie. 2 is large (c.g. n 2 20), a large
number of nearly simultancous modes exist, corresponding to loads close to

F,=2J/kEI (7

obtained by posing n = 1/f in eqn (5). In this case the parameter f§ assumes the meaning
of the ratio between the wavelengths of the local and overall modes, and by hypothesis is
a small quantity. Besides it is easy to see from eqn (§) that § is a measure of the modal
density of the system, that increases for decreasing values of the parameter.

In the paper by Luongo and Pignataro (1988), the postcritical behavior of thin-walled
compressed beams was analyzed assuming that the overall and local critical loads are
coincident. In particular, the nonlinear analysis of the multiple bifurcation has revealed the
occurrence of localization phenomena. Here we consider the case in which F, is shightly
higher than F, and limit ourselves to determining the secondary bifurcation point and the
assoctated critical mode that occurs for a load larger than the critical one. The (stable)
bifurcated path corresponding to the primary bifurcation is described by the parabola

F=Fc(l+?‘~ 5") (8)

along which, to within terms proportional to ¢j, the deflection of the system is given by
eqns (2). In the posteritical range, due to this displacement ficld, the normal force acting
on the two beams is varied by

AN, = FEAu,; = + F.(vy/h) sin (nx/]). (9)

Therefore the resultant force is N, ; = F+ AN, ; and so taking account of eqn (8), it is



N .= Fl +(vyih) sin (nx{)] (10)

where quadratic terms in ¢, have been omitted.

By assuming r, > 0. the secondary bifurcation occurs when the critical equilibrium is
reached in the bottom beam. which is more compressed than the top beam. The condition
of critical equilibrium must be formulated referring to the varied configuration of the beam.
which is compressed and bent in the xy plane, and therefore concerns the stability of an
arch for out-of-plane displacements. If the cross-section is symmetric with respect to the v
axis, the critical mode consists of a lateral deflection and twisting of the beam. Nevertheless,
in the problem under consideration, it is possible to show that the angle of twist is small,
of order ¢, 4. and its influence in the force equilibrium is small. of order (¢, 'h)°. so that it
can be neglected. Therefore. the bifurcation condition corrected to first order is expressed
in the single variable w and 1s still given by eqn (3). except for the normal force which is
now a function of x according to eqn (10). By referring to the bottom beam and omitting
index 1, from eqn (10) we obtain

(M) = Fow” + Fo(eo/i)[w sin (x:D)). (n
Besides, assuming that F; is close to £, then
Fr=FL1+7) (12)
with 0 < 7 <« |, and egn (3) can be put in the form
LIw™ + Fw” +kw+ F 0o/ sin (rx/l) =y]w’} . (13)

Equation (13), with associated boundary conditions, is a linear cigenvalue problem in vy /h
and in the cigenfunction w(x). The first three terms constitute the equation of the beam on
clastic sotl subjected to the locul critical load. Of the last two terms, which are small
compared with the others, the first one represents the effect of the primary bifurcation
(which is the cause of the variable coctlicients in the equation) and the second the effect of
the closeness of two critical toads, These terms can be considered as perturbations of the
equation of the beam on elastic soil and represent, in one sense, “defects™ of the geometric
stiffness of the system. It will be seen successively that the perturbations and the high modal
density are responsible for the localization,

In the following sections eqn (13) is solved by applying first the Galerkin technique
and then the multiple scale perturbation method.

3. GALERKIN SOLUTION

The unknown function w(x) in eqn (13) is expressed by the serics expansion

we= Y (¢/)w, (14)

1=l

where w, = sin (Jax//) are the cigenfunctions of eqn (3), in which N is a constant. Note
that, for convenience, cocflicients ¢, have been divided by j.

By applying the standuard Galerkin technique, and accounting for the orthogonality
propertics of the cigenfunctions w,, the following algebraic eigenvalue problem, of infinite
dimension. is obtained

Y oltu+a)d, =24y, =0 (i=1.2..). (15)

sl

Here J,, is the Kronecker symbol and
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Ly = J‘ sin ié cos iné cos jnl dS
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zm (IijCVCn) (16)

where i >» 1, j>» | have been considered. Moreover, the following positions have been
introduced

1 vy 7
===, N= o3 17
Fa TR (7
together with
F,—F, Ly iy  (nY .
"= FF = {[() * (})]"‘}" | (9

In eqns (15) 4 is the eigenvalue and i and o, are parameters. The parameter u has the
meaning of the ratio between a measure of the “imperfection™ y and a measure of the modal
density . the eigenvalue problem depends on this ratio, in analogy with problems of dynamic
localization. Parameters g, instead. account for the small differences between the higher
local critical loads F, and the lower critical load £,

By considering only M terms in the series (14), eqns (15) become an M x M cigenvalue
problem. Since matrix [x,,] is symmetrical and positive definite, egns (15) admit M real
solutions with A, > 0 corresponding to as many secondary bifurcations. Here we are inter-
ested in the minimum 4, i.e. 4, which corresponds to the first bifurcation. By numerically
solving the eigenvalue problem the following results are obtained.

(a) Only the hurmonics with wavenumber j which is close to » give significant contributions
to the solution. In fact, coetlicients ¢, rapidly decrease for increasing values of the
differences | j—n].

(b) For a fixed # and an increasing number M of harmonics, 4, very rapidly converges to
an asymptotic value which depends on y. Table 1 shows, for various y, the A,/u ratios
obtained considering j = n,n+2,..., n+2m in the eigenvalue problem. It is seen that
the rate of convergence decreases for increasing g; however, in the range examined,
M =2m+1 = 11 harmonics are sufficient to furnish a good approximation of the
eigenvalue. Similar results are obtained for the corresponding eigenvector.

(c) The eigenvalue 4, is practically independent of n. In fact, by varying 2 from 25 to 100,
/4y varies by only a few units per thousand. This result can be explained by the fact that
coeflicients x,; do not depend on n [see eqn (16)] while parameters o, are weakly
dependent on n for j close to n, i.e. in correspondence with the most important
harmonic components. In fact, by posing j = ntk, with k « n, eqn (18) furnishes
6, = 2k’ +Ok/n).

Table 1. Convergence of the minimum eigenvalue

(n =25)
Anlpt
it m=2 m=13 =5 m=7

10 1.3251 13251 13251 13251
100 11050 1.1040 11040 1.1040
200 1.0762  1.0730 10728 .0728
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(d) For increasing u. the A,/ ratio decreases and tends towards | when p— o0 (Fig. 2,
curve A), i.e. for very high modal density. If this asymptotic result is used, vofft = 7 is
obtained from eqn (17), then the bifurcation load £, on the postbuckling equilibrium
path follows from eqn (8):

Fo=F (1+”: f’:J) 19
I Y 8,:; . ( )

Since (W/)* « 1. F, < F, from comparison with eqn (12). The secondary bifurcation
therefore oceurs at a lower load than that which would occur in the absence of an
interaction, with a consequent reduction in the stable part of the bifurcated path.

{¢) At the bifurcation, the local deflection of the beam is represented by an osciflating
function with strong modulated amplitude (Fig. 3). The modulation depends only on
the value of the parameter y, not on the number n of the halfwaves of the local critical
mode, as it appears by comparing curves with the same values of g

4. AMPLITUDE MODULATION OF THE LOCAL BUCKLING: GOVERNING EQUATION

The analysis performed in the previous section necessarily requires numerical calculus
to solve an eigenvalue problem. Besides the solution is represented by a linear combination
of functions, so it is not very suitable for concisely describing the phenomenon. For these
reasons it is better to follow another procedure, similar to that adopted by Potier-Ferry
(1987) for a nonlinear differential equation with constant coetlicients.

To this end it is convenient {o render egn (13) dimensionless by introducing the new
variables

S=ax/(pl), w=w/l (20)
where Tis a length. In terms of dimensionless variables, remembering that n = 1/f, the local
critical mode is of the type sin £ and the overall one is sin fi¥. In terms of new variables,
eqn (13) is written as

w20 4w = =2 (4sin fx— 0w 2h

with the boundary conditions
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having omitted the tilde and having still denoted by an apex ditferentiation with respect to
the dimensionless variable. Equations (6), (7) and (17) have also been taken into account
and y « 1 has been considered.

The coctlicients of eqn (21) vary slowly and weakly. This suggests use of the multiple
scale perturbation method (Nayfeh, 1973), which permits attainment of a differential
equation in the variable amplitude of the mode. The unknown function is expanded in a f§
series

w=fwi+B7wr+ By +O(8Y) (23)
and is assumed to depend on several variables x,. x,..., related to x by equations

Xo=X, X, =fix, x;=p8x 24)
X, represents the fast variable, associated with the law of the local mode; x, the slow
variable, associated with the law of the overall mode {and coefficients of eqn (21)]; x.is a

slower variable. Using the chain rule the derivatives are transformed according to

d*/dx* = Do +2D5, + (D} +2D5) + -
d"/d-"'l = Dl‘mno +4/’D:)om +ﬁ:(6D(‘m| 1 +4D(Jmnz) + (29)

where the operator D denotes differentiation with respect to the variables having the same



indexes. By substitutingeqn (23) ineqn (21) and taking into account egns (23). the following
perturbation equations are obtained :
B :Lw) =0
B L(w:) = —4(Djogs + Dy )w,
BiL(ws) = — (6D, +2D3)w, —HDigo: + D),
—HDigor + D3, = 2D, (4 sin x; — ) Dyw] (26)

where L = D00+ 2Dy + 1. In the same way the boundary conditions to be imposed in
x =0, n/ff result in;

foow, =0, Diyw, =0
f;: LWL = 0. DS“““Z = _205‘“"
/;1 Twy =10, Dlzl()“.] = —2051“': ‘(Dfl +2D¢:|:)"'1~ (27

The solution to eqns (26a) and (27a) 15
wy o= a{xy, x;)sinx,. (28)

It is therefore a sinusoidal function the amplitude of which is modulated on the slow scales.
Note that in eqn (28) the phase was not introduced because in egn (26) only even deriva-
tives appear. Therefore, at the order ', no phase modulation exists but only amplitude
modulation.

By substituting eqn (28) into eqn (26b). accounting for (Dige + D3 )w, =0 und
integrating, the following general solution is obtiined

wy = A o) F ol o) sin g 2%
where h and ¢ are arbitrary functions of the slow variables x|, v, moreover
h(0.0) = — D, a(0,0), b(n, fin) = —Dyu(n, fin) (30)

must hold good 1o satisty boundary conditions (27b).

In order to make the asymptotic expansion {23) uniformly valid in the interval
0< vy € n/f, blx,. x5) =0 is assumed. In addition ¢(x,, x;) = 0 is chosen, since the
function ¢ sin x, repeats the f-order solution (28). In conclusion, the fi*-order equations
yicld w, = 0 together with D u = 0 at the boundaries.

By replacing w, and w. in eqn (26¢) and imposing the coeflicients of sin x; to be zero
{solvability condition), it follows that

da Vs Ya =0 31
A (ASIN X - )a =

dvita 1 )
where @ = a{x,) has been assumed, because the dependence on x, remains undetermined
at this order. The differential equation (31). integrated with the boundary conditions

da du
I, = P = 9
dx, 0) =0, ax (r} =0 (32)

permits the determination of the function a{x,). i.e. the law of amplitude modulation.



5. ANALYSIS OF AMPLITUDE MODULATION: THE TURNING POINT PROBLEM

Equations (31) and (32) constitute a second-order boundary value problem with
variable coefficients. which can be put in the form

da
do +f(x))a=0 (33)
A

da da

—(0) = —(n/2) = 34

d-\‘l(O) 0. dx, (n/2) =0 (34)

where
f(x,) = (A cos x, —p). (35)

Note that the origin of the abscissa x, has been shifted to the midspan and only
symmetrical solutions, to which lower eigenvalues 4, correspond, are considered.

A preliminary numerical solution of the problem (33)-(34) has been performed. The
solution has been obtained by a shooting method. by employing a Runge-Kutta method
to solve the initial-value problem and the bisection procedure to satisfy the condition at the
endpoint of the interval. Results obtained are in excellent accord with those of the Galerkin
solution, to within an error of some units per thousand, so they are not shown here. This
analysis confirms the validity of the multiple scale perturbation approach and confirms that
the phenomenon is in fact governed by the amplitude moduliation differential egn (33). In
particular, by remembering egns (20a) and (24b), it is scen that the amplitude modulating
function a(x,) does not depend on n = 1/f8, as previously found by the Galerkin analysis.

With the aim of furnishing a simple, analytical solution to the boundary value problem
(33) -(34), we first distinguish two cases:

(1) A< p:because f(x)) < 0in the whole domain, the solution a(x,) ts exponential ;

{b) A2 u: thereis a point x, = A (turning or transition point) where f(A) = 0; because
the function changes sign in [0, /2] the solution is oscillating for x, < A and exponential
for x, > A.

However, in case (a) no solutions to the boundary value problem exist. In fact, due to
J(xy) <0, from eqns (33) and (34a) it follows that d*a/dxi > 0 in the whole interval {if
a(0) > 0], so that eqn (34b) cannot be satisfied.

The turning point problem, case (b), can instead be solved by applying the WKB
perturbation method, provided p assumes sufficiently large values. An application of the
method has been presented in a paper by the author (Luongo, 1988) where details of the
procedure are given.

The WKB solution reads:

a(xy) = (f(x))""*egcos (Y (x))+ /) +cy sin (Y, (x))+1/4)] (v, < A)
a(x)) = (=f(x))) ey expa(x,) + ey exp (—¢s(x)))] (x, >4A) (36)

where ¢, and ¢, are arbitrary constants and

Y1

l/f.(.\':)=J N/IGLN ‘//I(xl)=‘[ VAYIGEN 37

A

Ineqns (37) A = A(4) = arcos (ut/4) is the abscissa of the turning point, which is unknown,
because of its dependence on A.

Equations (36) are singular at x, = A so that they are not valid near the transition
point. In this region there exists a transient condition that can be accurately described by
the Airy functions. or equally by the Bessel functions, that are not reported here [sce, for



instance, Handbook of Mathemutical Functions (1972)). The solutions in the inner and outer
regions are then matched by applying the matching principle (Nayfeh, 1973).

By imposing the boundary conditions (34) the following algebraic equations in the two
arbitrary constants are obtained

(wSin 00479 cos ((0) +n/4) ){“'} B {O} 38)
Xy exp 'ﬁ:(ﬂ/’z) —(12/2) eXp (—[f/:(niz)) . - ’ (

“’Ahere

na = LEAB (39)

By requiring the determinant of the matrix of the coefficients to vanish the following
characteristic equation is obtained

tan (Y (0) +r/4) = 2(x,/x;) exp (2¢2(n/2)). (40)

Equation (40) must be solved for the cigenvalue 4, accounting for the positions (37) and
A = A(2). However, an approximate solution can be obtained, y being large by hypothesis.
By assuming /4 = O(p) then % /o, = O(1) and ¥, (7/2) = O(\/E) so that eyn (40) admits
the approximate solution tan (¢, (0) +n/4) = o, i.c.

Y0y =mk=3/4 (k=12...)
¢, =0, ¢y=1. 4

Note that egns (41) exactly satisfy only the condition of symmetry (38a) at x; = 0, not the
boundary condition (38b); however, they are a good approximation of the solution when
¥ (m/2) is sufliciently large. Note also that the eigenvalue problem admits infinite solutions,
each corresponding to a bifurcation,

Equation (41a) can be casily solved in closed form for the eigenvalue A if f(x,) is
approximated by a parabola in the interval {0, A(4)], with an error whose size decreases
with decrease in A, i.e. the greater the localization of the mode. By proceeding in this way
we obtain from eqn (35)

Slx)) = AA —xi)/4 42)
where
A% = 2(1 —=pu/i). (43)

Introducing eqn (42) in eqn (37a) and integrating we obtain ,(0) = n/,/AA%/8; after
replacing in eqn (41), in which & = |, and accounting for eqn (43) we finally get

o= b Sut (44)

where 1/2 and 1/4 can eventually be neglected with respect to u. Introducing egn (44) in
eqn (43) the abscissa of the turning point is determined as a function of y. Equation (44)
is plotted in Fig. 2, curve B, and compared with the Galerkin solution [or, equally. with
the numerical solution of eqns (33). (34)]. It is scen that the WK B approximation is very
good when u > 20, despite the many assumptions made in the analysis.
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Fig. 4. Amplitude modulating functions ; analytical and numerical solutions.

The curves a(x,) determined for different values of i from eqns (36) and those obtained
by numerically integrating eqns (33)-(34) are plotted in Fig. 4 vs the original abscissa x.
When p = 20, the differences between the two solutions are noticeable, because of the error
associated with the boundary conditions at x, = =/2. However, when p tncreases, the error
rapidly tends to zero and the two curves approach cach other. Obviously, a more accurate
analytical solution can be obtained it eqns (38) -(40) are solved exactly.

Figure 4 shows that the degree of localizition increases with g, and it is rather high
even for relatively small g For example, for a ratio Fi/F, = 1.1 and a local mode with
wavenumber = 10, i.e. for a modal density that is not very high, it ensues that y = 0.1,
# = 0.1 and so g = 10 from eqn (17b). For the same ratio between the critical loads and
higher modal density, e.g. #n = 20, then u = 40 and the local deflection is strongly localized ;
the corresponding amplitude of the overall mode is obtained from eqns (17a) and (44):
ro/h =01, e vo/h <y

The “exact™ amplitude modulating functions relative to g = 20, 100 are also reported
in Fig. 5. for compurison with the Galerkin solution. It is apparent that they accurately
describe the buckling patterns,
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Fig. 5. Galerkin solutions (oscillating functions) and perturbative solutions (amplitude modulating
functions).



6. CONCLUSIONS

The postcritical behavior of a 3D system of elastically restrained beams, characterized
by a high modal density. is analyzed. The point of secondary bifurcation associated with
local instability is determined on the bifurcated branch corresponding to an overall insta-
bility mode. Analysis of the local buckling has highlighted amplitude modulation phenom-
ena and localization due to two concomitant causes : (1) high modal density of the system,
and (b) variable geometric stiffness due to the effect of primary bifurcation. The magnitude
of the localization has been found to depend on the ratio involving the difference between
two critical loads. which is assumed to be small. and a parameter which decreases as the
modal density increases.

The analysis has been conducted first by means of the Galerkin technique. then by the
asymptotic multiple scale method. which has permitted determination of the second-order
differential equation that governs the amplitude modulation. As in parallel studies in a
dynamic field. it is found that the phenomenon is described by a turning point problem
which can be solved by the WKB method.
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