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Abstract We analyze the global convergence properties of some variants of
regularized continuous Newton methods for convex optimization and mono-
tone inclusions in Hilbert spaces. The regularization term is of Levenberg-
Marquardt type and acts in an open-loop or closed-loop form. In the open-loop
case the regularization term may be of bounded variation.
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1 Introduction

Iterative algorithms and continuous dynamical systems have straight relation-
ships. Discretizing continuous dynamical systems gives rise to sequences of
iterates; conversely, an iterative algorithm may often be considered as a dis-
cretized version of a continuous dynamical system. Once this dynamical sys-
tem is identified, its asymptotic properties (and its Liapunov functions) can
give new insights into the properties of the algorithm. For example Cauchy’s
steepest descent algorithm is related to a “minus” gradient flow, which can be
extended to a differential inclusion equation for maximal monotone operators.

H. Attouch
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Newton’s method, however, requires a lot of regularity both in its discrete
and continuous version. To circumvent the ill-posedness of Newton’s method,
regularizations of some sort have to be used: regularization of the objective
function, hyperbolic regularization. . .

Levenberg-Marquardt regularization is well known for the discrete Newton
method. Recently, Attouch and Svaiter in [1] have introduced a Levenberg-
Marquardt regularization for the continuous Newton method that enjoys nice
properties: well-posedness, good asymptotic behavior, generality (it works for
maximal monotone operators). Yet the dynamics in [1] is nonautonomous; the
regularization coefficient is a function of the time variable and so, in control
terms, is of open-loop type. Another limitation of that dynamics is the absolute
continuity assumption on the regularization coefficient.

The main aim of the present work is to extend the results of [1] to a
Levenberg-Marquardt regularization of closed-loop type, i.e. depending on the
state of the system. We also extend the results of [1] to the nonautonomous
case in which the regularization parameter is of bounded variation.

2 Preliminaries: Theoretical Background

Let H be a real Hilbert space endowed with the scalar product 〈. , .〉 and
associated norm ‖x‖ =

√

〈x, x〉 for x ∈ H. Let A : H ⇉ H be a maximal
monotone operator. We are concerned with the existence, and the asymptotic
behavior (as t → +∞) of strong solutions of the differential inclusion

{

v(t) ∈ A(x(t))
G(x(t), v(t))ẋ(t) + v̇(t) + v(t) = 0

(1)

where G : H × H → [0,∞[ is, for v 6= 0, strictly positive. This differential
inclusion may be viewed as a perturbation of the following one

{

v(t) ∈ A(x(t))
v̇(t) + v(t) = 0.

(2)

For A = ∇f , the gradient of a twice differentiable function f , (2) reduces to
∇2f(x(t))ẋ(t) + ∇f(x(t)) = 0, the continuous Newton dynamics for f . Thus,
system (2) deserves to be called the continuous Newton dynamical system for
operator A. Unfortunately, (2) is ill-posed. Indeed, after an integration step, it
is equivalent to v(0)e−t ∈ A(x(t)), and so boils down to first knowing whether
the segment (0, v(0)) is included in the range of A, in which case, for each t, one
has to solve the above equation, and hopefully find a differentiable function of
t... These are questions far too general without extra particular assumptions
(see however [2,§ 3] for the case of a subdifferential operator). The ill-posedness
of system (2) is in sharp contrast to the richness of (1). Actually, the term
G(x(t), v(t))ẋ(t) acts as a Levenberg-Marquardt regularization, in a closed-
loop way, of the continuous Newton method, and can be seen as a feed-back
function of the current state (x(t), v(t)). This point of view may be convenient
for developing numerical schemes.
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Our approach relies heavily on [1], which concerns the open-loop case

{

v(t) ∈ A(x(t))
λ(t)ẋ(t) + v̇(t) + v(t) = 0.

(3)

Let us summarize the results obtained in [1]. If λ is positive, locally absolutely
continuous, then for any Cauchy data x(0) = x0, v(0) = v0, v0 ∈ A(x0), there
exists a unique strong global solution of (3). Moreover, if λ(t) tends to zero
not too fast, as t → ∞ (roughly speaking no faster than e−t), then v(t) → 0
strongly, and x(t) converges weakly to some equilibrium x∞ ∈ A−1(0), pro-
vided the latter set is nonempty. In [1] the main concern was precisely to
asymptotically stabilize the system, with λ(t) as small as possible, and thus
to keep close to the Newton dynamics. So doing, one can obtain continuous
and discrete Newton-like dynamics attached to solving the equation

find x ∈ H such that 0 ∈ Ax. (4)

In this paper, we show how to pass from an open-loop λ(t) to a closed-
loop regularization coefficient G(x(t), v(t)). The open-loop case λ(t) = e−t

is particularly convenient because (3) can then be integrated:
x(t) = (I + etA)−1(x0 + v0). The asymptotic convergence follows from classi-
cal results for resolvents of maximal monotone operators; see [3]. By contrast,
the closed-loop analysis requires a preliminary detailed study of the open-loop
case for λ belonging to an appropriate class of functions. Indeed, we use a fixed
point argument for an operator defined on that class.

Note that, even in the open-loop case, when choosing a particular λ, it
is important for numerical reasons to study the stability of the solution with
respect to perturbations of λ. This stability property is a key for our analysis.
It is worth noting that system (1) or (3) is a regularized continuous Newton
method; as such it allows one to handle general monotone maximal operators.
In contrast, nonsmooth Newton methods deal with operators with some regu-
larity and strive to find a substitute for the Newton direction; see [4] for recent
results and the references therein.

Let us list the main points of our study:

1) In Section 3 we review some facts concerning the Cauchy problem for
the open-loop regularized system (3). We first consider the case where λ is
locally absolutely continuous. In Theorem 3.1 we prove the Lipschitz contin-
uous dependence of the solution with respect to λ. This property will play a
key role in the study of the closed-loop case in the next section. Moreover, the
Lipschitz constant only depends on the L1 norm of the time derivative of λ.

This naturally leads us to extend our analysis to the case where λ is a
function with bounded variation (possibly involving jumps). We use a regular-
ization by convolution method in order to reduce to the smooth case, and then
pass to the limit in the equations. So doing, in Theorem 3.2 and Corollary 3.2,
we prove the existence and uniqueness of a strong solution for (3) with Cauchy
data.
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Using discontinuous controllers and feedbacks turns out to be an important
property in the stabilization of nonlinear systems; see [5] for a survey on this
active research field. The bounded variation case (where the system can be
stabilized by discontinuous controls) can be seen as intermediate between the
continuous and the discrete dynamics and this naturally paves the way to the
study of discrete algorithms.

2) In Section 4, Theorem 4.1, under general assumptions on G (essentially
local Lipschitz continuity), we prove the existence and uniqueness of a strong
global solution (x, v) : [0,∞[→ H × H to the closed-loop system (1), with
Cauchy data. The main argument of the proof is the Banach-Picard fixed-
point theorem.

3) In Section 5, we examine the asymptotic stabilization properties of tra-
jectories of system (1) in the particular case G(x, v) = α(‖v‖2), that is







v(t) ∈ A(x(t))
α(‖v(t)‖2)ẋ(t) + v̇(t) + v(t) = 0;
x(0) = x0, v(0) = v0 ∈ A(x0), v0 6= 0.

(5)

We first examine the case where α is continuously differentiable. Under the
sole assumption that α :]0,+∞[→]0,+∞[ is a C1 function, we show that
limt→∞ ‖v(t)‖ = 0. Thus, the asymptotic behavior of trajectories of system
(5) depends on the behavior of α near 0. Precisely, in Theorem 5.1 we show
that, if α is bounded above near 0, and

lim sup
r→0+

rα̇(r)

α(r)
<

1

2
, (6)

then, any trajectory of (5) weakly converges to a zero of A. In particular, for
0 < γ < 1, we obtain the asymptotic convergence of the system







v(t) ∈ A(x(t))
‖v(t)‖γ ẋ(t) + v̇(t) + v(t) = 0;
x(0) = x0, v(0) = v0 ∈ A(x0), v0 6= 0.

(7)

Then, in Theorem 5.2, we examine the case where α : R
+ → R

+ is an in-
creasing function (with possible jumps). Denoting by [α] the extension of α
obtained by filling in the jumps of α, we obtain the existence of strong global
solutions of the closed-loop regularized Newton continuous dynamics







v(t) ∈ A(x(t))
[α] (‖v(t)‖2)ẋ(t) + v̇(t) + v(t) ∋ 0;
x(0) = x0, v(0) = v0 ∈ A(x0), v0 6= 0,

(8)

and analyze some of their convergence properties.

4) In Section 6, we illustrate our results in the case of convex-concave sad-
dle value problems. By taking advantage of the fact that the saddle points of a
convex-concave function L are the zeroes of the associated maximal monotone
operator A = (∂xL,−∂yL), we are able to develop a Newton-like approach for
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finding saddle points of convex-concave functions. In particular, we consider
the primal-dual Lagrangian approach to linearly constrained convex minimiza-
tion problems. Let us stress that our dynamics yields weakly convergent tra-
jectories. By contrast, the approach based on the semi-group generated by A,
only provides ergodic weak convergence of the trajectories.

5) Concerning Newton-type dynamics and the use of regularization meth-
ods let us mention two close companions of our dynamics:

a) In the case of convex optimization A = ∂f , the second-order continuous
Dynamical Inertial Newton system

γẍ(t) + λẋ(t) + ∇2f(x(t))ẋ(t) + ∇f(x(t)) = 0 (9)

has been introduced by Alvarez, Attouch, Bolte, and Redont in [6]; see also
[7,8]. This is the fundamental equation of (newtonian) mechanics with λẋ(t)
and ∇2f(x(t))ẋ(t) acting respectively as viscous and geometrical Hessian-
driven damping terms. This system enjoys remarkable asymptotic stabiliza-
tion properties. It can be equivalently written as a first order system in time
and space, which allows one to give it a sense when f is only assumed lower
semicontinuous (it is different from Minty’s transformation). Recently Maingé
in [9] has developed (9) with a general maximal monotone operator A (instead
of a subdifferential), and shown that system (3), in some instances, can be
obtained as the limit of (9) when γ tends to zero. Note that (3), as a decisive
advantage with respect to (9), is a first order system with respect to x, which
makes it simpler for numerical purpose. This hyperbolic regularization links
our dynamics with physics, and control of oscillating systems. In turn, it sug-
gests considering new stabilization procedures for (9), based on a closed-loop
control, for example λ(t) = α(‖∇f(x(t))‖2).

b) Another interesting dynamics, based on the regularization of the objec-
tive function f(·, ǫ) → f as ǫ → 0, has been developed by Alvarez and Pérez
in [2]:

∇2f(x(t), ǫ(t))ẋ(t) + ǫ̇(t)
∂2f

∂ǫ∂x
(x(t), ǫ(t)) + ∇f(x(t), ǫ(t)) = 0. (10)

By contrast with our approach, this dynamics involves both the regularizing
parameter ǫ(·) and its derivative, which may be a source of numerical diffi-
culties. On the other hand, this approach can handle general regularization
methods, like interior point methods.

3 Open-loop Regularization

In this section we consider the open-loop regularized system

v(t) ∈ A(x(t)) (11a)

λ(t)ẋ(t) + v̇(t) + v(t) = 0 (11b)

x(0) = x0, v(0) = v0, v0 ∈ A(x0), v0 6= 0. (11c)

We recall the notion of solution (see [1]) that we will use all along the paper.



6 H. Attouch et al.

Definition 3.1 Given T > 0 and (x0, v0) ∈ H × H, a function
(x, v) : [0, T ] → H×H is a strong solution of system (11) iff (x, v) is absolutely
continuous on [0, T ], (11a) is satisfied for all t ∈ [0, T ], (11b) is satisfied for
almost every t ∈ [0, T ] and the initial condition (11c) holds true.
A function (x, v) : [0,+∞[→ H × H is a strong solution of system (11) iff its
restriction to [0, T ] is a strong solution of (11) for any T > 0.

We first review some facts on the open-loop regularized system (11) when
λ is locally absolutely continuous. As a new result we show the Lipschitz
continuous dependence of the solution with respect to λ. This property will be
a key for the study of the closed-loop case in the next section. Then, we show
how to extend this analysis to the case where λ is a function with bounded
variation (possibly involving jumps). Here and subsequently we will often omit
the time variable t and write x, v. . . for x(t), v(t). . . when no ambiguity arises.

3.1 Absolutely Continuous Regularization Coefficient λ(·)

The next proposition subsumes those results of [1] to be used in the se-
quel. The linear space H × H is equipped with its usual Hilbertian norm
‖(ξ, ζ)‖ =

√

‖ξ‖2 + ‖ζ‖2.

Proposition 3.1 Let c0 > 0, λ : [0, T ] → [c0,∞). Then any strong solution
(x, v) of (11) verifies:

‖v(t)‖ ≥ e−t‖v0‖, ∀t ∈ [0, T ] (12a)

‖ẋ(t)‖ ≤ ‖v0‖
c0

, ‖v̇(t)‖ ≤ ‖v(t)‖ ≤ ‖v0‖, a.e. t in [0, T ] (12b)

‖(ẋ(t), v̇(t))‖ ≤ ‖v0‖
min{c0, 1}

:= L, a.e. t in [0, T ] (12c)

〈v(t), v̇(t)〉 ≤ 0 a.e. t in [0, T ], hence t 7→ ‖v(t)‖ is nonincreasing. (12d)

If λ is absolutely continuous, then there exists a unique pair
(x, v) : [0, T ] → H × H strong solution of (11) (hence (x, v) is L-Lipschitz
continuous).

Corollary 3.1 Let λ : [0,+∞[→ (0,+∞[ be absolutely continuous on each
bounded interval [0, T ], T > 0. Then there exists a unique strong solution
(x, v) : [0,+∞[→ H × H to system (11).

In next theorem we analyze the dependence of the pair (x, v) specified in
Proposition 3.1 on the function λ and the initial point (x0, v0). These results
will be instrumental for proving existence and uniqueness of strong solutions
of (1).

Theorem 3.1 Suppose that λ, η : [0, T ] → [c0,∞[ are absolutely continuous
functions, with T > 0 and c0 > 0. Let (x, v), (y, w) : [0, T ] → H × H be the
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respective strong solutions of the inclusions

λẋ + v̇ + v = 0, v ∈ A(x), x(0) = x0, v(0) = v0 (13)

ηẏ + ẇ + w = 0, w ∈ A(y), y(0) = y0, w(0) = w0. (14)

Define ϕ : [0, T ] → R by

ϕ =
√

c2
0‖x − y‖2 + ‖v − w‖2.

Then for any s ∈ [0, T ]

ϕ(s) ≤
∫ s

0





(‖v0‖ + ‖w0‖)
2c0

|λ(t) − η(t)| + ϕ(t)

√

1 +
|λ̇(t) + η̇(t)|2

4c2
0



 dt

+
λ(0) + η(0)

2
‖x0 − y0‖ + ‖v0 − w0‖. (15)

In particular, if x0 = y0, v0 = w0, then

‖ϕ‖L∞([0,T ]) ≤
‖v0‖
c0

exp

(

T +
‖λ̇ + η̇‖L1([0,T ])

2c0

)

‖λ − η‖L1([0,T ]). (16)

Proof To simplify the exposition, define γ : [0, T ] → R

γ =
λ + η

2
.

Using the assumptions λ, η ≥ c0 and the monotonicity of A (recall (13,14)) we
conclude that for any t ∈ [0, T ]

c0 ≤ γ, 〈x − y, v − w〉 ≥ 0.

Therefore

ϕ ≤
√

γ2‖x − y‖2 + ‖v − w‖2 ≤ ‖γ(x − y) + v − w‖. (17)

Direct algebraic manipulation of the first equalities in (13) and (14), together
with the above definition of γ, shows that for almost all t ∈ [0, T ]

d

dt
[γ(x − y) + (v − w)] = γ̇(x − y) − λ − η

2
(ẋ + ẏ) − (v − w).

Since γ, x, y, v, w are absolutely continuous, the function γ(x−y)+(v−w) is
also absolutely continuous. As a consequence, integration of the above equality
on [0, s], for s ∈ [0, T ], yields

[γ(x − y) + (v − w)](s) − [γ(x − y) + (v − w)](0) =

−1

2

∫ s

0

(λ − η)(ẋ + ẏ)dt +

∫ s

0

(γ̇(x − y) − (v − w))dt.
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Hence

‖[γ(x − y) + (v − w)](s)‖ ≤ γ(0)‖x0 − y0‖ + ‖v0 − w0‖

+
1

2

∫ s

0

|λ − η|‖ẋ + ẏ‖dt +

∫ s

0

‖γ̇(x − y) − (v − w)‖dt. (18)

We know that (recall (12b))

‖ẋ‖ ≤ ‖v0‖/c0, ‖ẏ‖ ≤ ‖w0‖/c0, (19)

and, besides

‖γ̇(x − y) + w − v‖2 = |γ̇|2‖x − y‖2 + ‖v − w‖2 + 2

〈

c0(x − y),
γ̇

c0
(w − v)

〉

≤|γ̇|2‖x − y‖2 + ‖v − w‖2 + c2
0‖x − y‖2 +

|γ̇|2
c2
0

‖v − w‖2

=

( |γ̇|2
c2
0

+ 1

)

ϕ2. (20)

Inequation (15) is then a straight consequence of (17, 18, 19, 20).
Now, if x0 = y0 and v0 = w0, we derive from (15)

ϕ(s) ≤ ‖v0‖
c0

‖λ − η‖L1([0,T ]) +

∫ s

0

ϕ

√

|γ̇|2
c2
0

+ 1 dt.

Applying Gronwall’s inequality (see e.g. [3, Appendice 4]) yields

ϕ(s) ≤ ‖v0‖
c0

‖λ − η‖L1([0,T ]) exp

(

∫ s

0

√

|γ̇|2
c2
0

+ 1 dt

)

.

With

√

|γ̇|2
c2
0

+ 1 ≤ 1 + |γ̇|/c0, we finally have, for any s ∈ [0, T ]

ϕ(s) ≤ ‖v0‖
c0

‖λ − η‖L1([0,T ]) exp

(

T +
‖γ̇‖L1([0,T ])

c0

)

whence (16). ⊓⊔
Remark 3.1 It is worth noticing that, besides the Lipschitz continuous de-
pendence with respect to λ of the solution (x, v) of (11), Theorem 3.1 also
provides its continuous dependence with respect to the initial data (x0, v0).
More precisely, if (xn, vn) (resp. (x, v)) is the solution of (11) corresponding
to the Cauchy data (x0n, v0n) (resp. (x0, v0)), as a direct consequence of (15)
and the Gronwall lemma we obtain for all T > 0

(A ∋ (x0n, v0n) → (x0, v0)) ⇒ (xn, vn) → (x, v) uniformly on [0, T ].

Note also that, by contrast with the steepest descent dynamics [3], there is no
regularizing effect on the initial condition: there is no way to define a solution
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of (11) for x0 ∈ dom A \ dom A since in that case, for any approximating
sequence x0n ∈ dom A and v0n ∈ A(x0n), one has limn ‖v0n‖ = +∞, which
by (12a) would imply the blow-up of the sequence (xn, vn) as n → +∞, on
any finite time interval.

The next proposition gives a condition on λ yielding limt→+∞ v(t) = 0 for the
strong solution (x, v) of system (11). It will prove useful in Section 5.

Proposition 3.2 Let λ : [0,+∞[→]0,+∞[ be absolutely continuous on each
bounded interval [0, T ], T > 0; let (x, v) : [0,+∞[→ H ×H be the strong solu-
tion of system (11). Suppose A−1(0) 6= ∅. Then ‖v‖ ∈ L2(0,+∞),
‖v(t)‖ = O(1/

√
t) as t → +∞ and limt→+∞ v(t) = 0 under any of the two

conditions
a) λ is nonincreasing;
b) λ̇ ∈ L1(0,+∞) and there exists λ∞ = limt→+∞ λ(t) > 0.

Proof The existence and uniqueness of the strong solution (x, v) follows from
Corollary 3.1. Take ‖v‖ ∈ L2(0,+∞) for granted; since ‖v‖ is nonincreasing
(recall (12d)) we have

∫ +∞

0

‖v(s)‖2ds ≥
∫ t

0

‖v(s)‖2ds ≥ t‖v(t)‖2, ∀t ≥ 0.

Hence ‖v(t)‖ = O(1/
√

t) as t → +∞ and limt→+∞ v(t) = 0.
a) ‖v‖ ∈ L2(0,+∞) is proved in [1, Lemma 3.4].
b) Set λ̇+ = max(λ̇, 0), λ̇− = max(−λ̇, 0), so that λ̇ = λ̇+ − λ̇− and λ̇+,

λ̇− belong to L1(0,+∞). Define Λ(t) =
λ∞

2
+

∫ ∞

t

λ̇−(s)ds and note λ(t) =
(

λ∞

2
−
∫ ∞

t

λ̇+(s)ds

)

+ Λ(t). The following facts are straightforward:

i) Λ̇ = −λ̇−;
ii) Λ is bounded below by λ∞

2 and λ is bounded above by λ(0) +
∫∞

0
|λ̇(s)|ds;

hence there exists some constant l such that 0 < l ≤ Λ(t)
λ(t) , ∀t ≥ 0;

iii) there exists some τ ≥ 0 such that Λ(t)
λ(t) ≤ 1, ∀t ≥ τ .

Fix x̂ ∈ A−1(0). Define g(t) = 1
2‖(x(t)− x̂) + v(t)

λ(t)‖2 and H(t) = Λ2(t)g(t).

We have

g =
1

2
‖x − x̂‖2 +

1

λ
〈v, x − x̂〉 +

1

2λ2
‖v‖2.

Using (11b) we have, after some calculations

ġ = −
(

1

λ
+

λ̇

λ2

)

〈v, x − x̂〉 −
(

1

λ2
+

λ̇

λ3

)

‖v‖2.
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Hence we deduce

Ḣ = Λ2ġ + 2ΛΛ̇g

= −‖v‖2

{

Λ2

λ2
+

Λ2λ̇+

λ3
+

Λλ̇−

λ2

(

1 − Λ

λ

)

}

−〈v, x − x̂〉
{

Λ2

λ
+

Λ2λ̇+

λ2
+

Λλ̇−

λ

(

2 − Λ

λ

)

}

− ‖x − x̂‖2Λλ̇−.

Noting 〈v, x− x̂〉 ≥ 0 (because v ∈ Ax, 0 ∈ Ax̂ and A is monotone) and taking
into account the above-mentioned facts on λ and Λ, we deduce first

Ḣ ≤ −‖v‖2 Λ2

λ2
,

and next

dH

dt
(t) + l2‖v(t)‖2 ≤ 0, for a.e. t ≥ τ

l2
∫ t

τ

‖v(s)‖2ds ≤ H(τ) − H(t) ≤ H(τ), ∀t ≥ τ.

Hence
∫∞

τ
‖v(s)‖2ds < +∞. ⊓⊔

3.2 Bounded Variation Regularization Coefficient λ(·)

Let us now suppose that λ : [0, T ] →]0,∞[ is of bounded variation on [0, T ],
where T > 0. That is TV (λ, [0, T ]) < +∞, where TV (λ, [0, T ]) is the total
variation of λ on [0, T ]:

TV (λ, [0, T ]) = sup

p
∑

i=1

|λ(τi) − λ(τi−1)|

the supremum being taken over all p ∈ N and all strictly increasing finite
sequences τ0 < τ1 < · · · < τp of points of [0, T ]. Function λ may involve
jumps. We also suppose that λ is bounded away from 0:

inf λ([0, T ]) > 0.

The following lemma gathers some classical facts concerning the approxima-
tion of functions of bounded variation by smooth functions (see for example
[10, Theorem 10.1.2.], [11,12]) together with some technical results useful for
the sequel. For convenience of the reader we give a self-contained proof.
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Lemma 3.1 Let λ : [0, T ] →]0,∞[ be of bounded variation on [0, T ]. Then,
there exists a sequence (λn)n∈N, with λn ∈ C∞([0, T ]) for each n ∈ N, such
that
(i) inf λ([0, T ]) ≤ λn(t) ≤ supλ([0, T ]), ∀t ∈ [0, T ], ∀n ∈ N.

In particular, λn ≥ 0 if λ ≥ 0;
(ii) λn → λ in Lp(0, T ) for any 1 ≤ p < ∞;

(iii) TV (λn, [0, T ]) =
∫ T

0
|λ̇n(t)|dt ≤ TV (λ, [0, T ]).

Proof Extend λ to the function λ̄ defined on R by

t ≤ 0 : λ̄(t) = λ(0)

0 ≤ t ≤ T : λ̄(t) = λ(t)

T ≤ t : λ̄(t) = λ(T ).

Function λ̄ is of bounded variation on R. Let (ρn)n∈N be a mollifying sequence
(ρn ∈ C∞

c (R), ρn ≥ 0,
∫

ρn = 1 and support(ρn) ⊆ [−sn, sn] with sn > 0,
sn → 0). Classically, the convolution λn = ρn ∗ λ̄ belongs to C∞(R) and its
restriction to [0, T ] satisfies (i) and (ii).
Choose points τ0 < τ1 < . . . < τp in [0, T ]:

p
∑

i=1

|λn(τi) − λn(τi−1)| ≤
p
∑

i=1

∫

R

|λ̄(τi − t) − λ̄(τi−1 − t)|ρn(t)dt

=

∫ sn

−sn

(

p
∑

i=1

|λ̄(τi − t) − λ̄(τi−1 − t)|
)

ρn(t)dt.

If |t| ≤ sn, we have

p
∑

i=1

|λ̄(τi − t) − λ̄(τi−1 − t)|

≤ TV (λ̄, [−sn, T + sn])

= TV (λ̄, [−sn, 0]) + TV (λ̄, [0, T ]) + TV (λ̄, [T, T + sn])

= TV (λ, [0, T ]).

Hence
p
∑

i=1

|λn(τi) − λn(τi−1)| ≤ TV (λ, [0, T ])

and consequently TV (λn, [0, T ]) ≤ TV (λ, [0, T ]). Owing to λn being continu-

ously differentiable, TV (λn, [0, T ]) =
∫ T

0
|λ̇n|dt. ⊓⊔

Lemma 3.2 Let zn, z ∈ C([0, T ],H) be such that zn → z uniformly and
(zn)n∈N is L-Lipschitz continuous for some positive constant L independent
of n ∈ N. Let λn → λ in L2(0, T ). Then λnżn converges weakly to λż in
L2(0, T ;H).
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Proof Classically, żn → ż in the distribution sense, and the sequence (żn) re-
mains bounded in L∞(0, T ;H), hence in L2(0, T ;H). Therefore żn converges
weakly to ż in L2(0, T ;H). Now, given any ζ ∈ Cc(]0, T [,H), λnζ → λζ
strongly in L2(0, T ;H); as a consequence

∫ T

0

〈ζ, λnżn〉 =

∫ T

0

〈ζλn, żn〉 →
∫ T

0

〈ζλ, ż〉 =

∫ T

0

〈ζ, λż〉.

Hence λnżn ⇀ λż weakly in L2(0, T ;H), since (λnżn)n∈N is bounded in
L2(0, T ;H), and Cc(]0, T [,H) is dense in L2(0, T ;H). ⊓⊔

Theorem 3.2 Let λ : [0, T ] → (0,∞) be of bounded variation on [0, T ], and
suppose c0 = inf λ([0, T ]) > 0. Then there exists a unique
(x, v) : [0, T ] → H × H strong solution of the differential inclusion

v(t) ∈ A(x(t)), 0 ≤ t ≤ T (21a)

λ(t)ẋ(t) + v̇(t) + v(t) = 0, a.e. 0 ≤ t ≤ T (21b)

x(0) = x0, v(0) = v0, v0 ∈ A(x0), v0 6= 0 (21c)

Moreover (x, v) is L-Lipschitz continuous, with L = ‖v0‖/min(c0, 1).

Proof Existence: According to Lemma 3.1, there exists a sequence (λn)n∈N

in C∞([0, T ], [c0,+∞[) which converges to λ in Lp(0, T ) for p ≥ 1 and satisfies
the additional condition

∫ T

0

∣

∣

∣λ̇n(t)
∣

∣

∣ dt ≤ TV (λ). (22)

For each λn there exists a unique (xn, vn) solution of the differential inclusion

vn(t) ∈ A(xn(t)), 0 ≤ t ≤ T (23a)

λn(t)ẋn(t) + v̇n(t) + vn(t) = 0, a.e. 0 ≤ t ≤ T (23b)

xn(0) = x0, vn(0) = v0. (23c)

We will show that (xn, vn) converges uniformly to a solution of (21).
Consider, in C([0, T ],H × H), the norm

‖(z, w)‖c0
= max

t∈[0,T ]

√

c2
0‖z(t)‖2 + ‖w(t)‖2.

It is equivalent to the sup norm in C([0, T ],H × H). Using Theorem 3.1(16)
and (22) we deduce that for any n, m and for any t ∈ [0, T ] we have

‖(xn, vn)(t) − (xm, vm)(t)‖c0
≤ ‖v0‖

c0
exp

(

T +
‖λ̇n + λ̇m‖1

2c0

)

‖λn − λm‖1

≤ ‖v0‖
c0

exp

(

T +
TV (λ)

c0

)

‖λn − λm‖1,
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where ‖.‖1 = ‖.‖L1(0,T ). Hence (xn, vn) is a Cauchy sequence with respect
to the sup norm. Therefore, (xn, vn) converges uniformly to some continuous
(x, v) : [0, T ] → H×H. Using Proposition 3.1 we have that (xn, vn) is Lipschitz
continuous with constant L = ‖v0‖/min(c0, 1). Therefore, (x, v) is L-Lipschitz
continuous.
Now Lemma 3.2 ensures that λnẋn and v̇n converge weakly to λẋ and v̇ in
L2(0, T ;H); hence letting n → ∞ in (23b), we obtain (21b). Finally, since the
graph of A is closed, (23a) entails (21a).

Uniqueness. We adapt the proof of Theorem 3.1, using differential and
integral calculus for BV functions which involves differential measures. A con-
venient reference is [13].

Define λ− : [0, T ] 7→ [c0,+∞[ by

λ−(0) = λ(0)

0 < t ≤ T : λ−(t) = lim
ε>0, ε→0

λ(t − ε).

Let (x, v), (y, w) : [0, T ] → H × H be two strong solutions of (21). Explicitly:

λẋ + v̇ + v = 0 a.e.; v(t) ∈ A(x(t)) ∀t; x(0) = x0, v(0) = v0

λẏ + ẇ + w = 0 a.e.; w(t) ∈ A(y(t)) ∀t; y(0) = x0, w(0) = v0.

Since λ = λ− a.e., we also have

λ−ẋ + v̇ + v = 0 and λ−ẏ + ẇ + w = 0 a.e.

and consequently

λ−(ẋ − ẏ) + (v̇ − ẇ) + v − w = 0 a.e. (24)

In terms of differential measures on [0, T ] we have ([13, Proposition 11.1])

d
[

λ−(x − y) + (v − w)
]

= λ−d(x − y) + (x − y)dλ− + d(v − w). (25)

Integrating the left hand term on [0, s) and taking the initial condition into
account, we obtain for s ∈ [0, T ] ([13, Corollary 8.2])
∫

[0,s[

d
[

λ−(x − y) + (v − w)
]

= λ−(s)(x(s) − y(s)) + (v(s) − w(s)). (26)

Now integrating the right hand term of (25) on [0, s) and taking (24) into
account, we get

∫

[0,s[

[

λ−d(x − y) + (x − y)dλ− + d(v − w)
]

=

∫

[0,s[

[

λ−d(x − y) + d(v − w)
]

+

∫

[0,s[

(x − y)dλ−

=

∫

[0,s[

[

λ−(ẋ − ẏ) + (v̇ − ẇ)
]

dt +

∫

[0,s[

(x − y)dλ−

= −
∫

[0,s[

(v − w)dt +

∫

[0,s[

(x − y)dλ−. (27)
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From (25, 26, 27) we deduce

λ−(s)(x(s) − y(s)) + (v(s) − w(s)) =

∫

[0,s[

(x − y)dλ− −
∫

[0,s[

(v − w)dt.

Whence

‖λ−(s)(x(s)−y(s))+(v(s)−w(s))‖ ≤
∫

[0,s[

‖x−y‖|dλ−|+
∫

[0,s[

‖v−w‖dt. (28)

Define ϕ(s) =
(

c2
0‖x(s) − y(s)‖2 + ‖v(s) − w(s)‖2

)1/2
. The same reasoning as

in Theorem 3.1 (eq. (17)) yields

ϕ(s) ≤ ‖λ−(s)(x(s) − y(s)) + (v(s) − w(s))‖, ∀s ∈ [0, T ].

Besides we also obviously have ϕ(s) ≥ c0‖x(s)−y(s)‖ and ϕ(s) ≥ ‖v(s)−w(s)‖.
Hence, with (28)

ϕ(s) ≤ 1

c0

∫

[0,s[

ϕ|dλ−| +
∫

[0,s[

ϕdt =

∫

[0,s[

ϕdµ, (29)

where dµ denotes the nonnegative measure 1
c0
|dλ−| + dt.

If ϕ 6≡ 0 on [0, T ], define t0 = inf{t ∈ [0, T ], ϕ(t) > 0}. Note t0 < T and
ϕ(t0) = 0, since ϕ is continuous. With (29) we then have

ϕ(s) ≤
∫

]t0,s[

ϕdµ, t0 < s ≤ T. (30)

In view of
∫

]t0,t0]
dµ = 0 and of the right continuity at t0 of t →

∫

]t0,t]
dµ

([13, Proposition 9.1]), there exists some t1 ∈]t0, T ] such that
∫

]t0,t1]
dµ < 1/2.

Let M be an upper bound of ϕ on [0, t1]; from (30) we deduce, for s ∈]t0, t1]

ϕ(s) ≤ M

∫

]t0,s[

dµ ≤ M

∫

]t0,t1]

dµ ≤ M

2
.

Hence M/2 is also an upper bound of ϕ on [0, t1], which necessarily entails
M = 0 and ϕ ≡ 0 on [0, t1]. But this is a contradiction with the very definition
of t0. Hence ϕ ≡ 0 and (x, v) ≡ (y, w) on [0, T ]. ⊓⊔
Theorem 3.2 has a natural global version formulation:

Corollary 3.2 Suppose that λ : [0,∞[→]0,∞[ is of bounded variation on
[0, T ] and inf λ([0, T ]) > 0 for any T < ∞. Let (x0, v0) ∈ A and v0 6= 0.
Then there exists a unique (x, v) : [0,∞[→ H × H strong solution of the dif-
ferential inclusion

λẋ + v̇ + v = 0, v ∈ A(x), x(0) = x0, v(0) = v0 (31)

where the first equality holds for almost all t ∈ [0,∞[, and the inclusion holds
for all t ∈ [0,∞[.
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4 A Closed-loop Regularized Newton Dynamics: Existence and
Uniqueness

We come to the central topic of the paper which is the existence and unique-
ness of a global solution of the Cauchy problem for (1). We consider the case
where G is Lipschitz continuous on bounded sets. In the next section we study
convergence properties of the trajectories for a particular G, possibly discon-
tinuous.

Let us state some assumptions, definitions and facts in force in this para-
graph:
(i) v0 ∈ Ax0, v0 6= 0;
(ii) G : H × (H \ {0}) →]0,∞[ satisfies a) and b):

a) for any 0 < r < R, G is Lipschitz continuous on the bounded set

{(x, v) ∈ H × H, ‖x‖ ≤ R; r ≤ ‖v‖ ≤ R} ;

b) for any δ > 0,

inf {G(x, v) | (x, v) ∈ H × H, ‖v‖ ≥ δ} > 0.

We are concerned by the strong solutions of

G(x, v)ẋ + v̇ + v = 0, v ∈ A(x), x(0) = x0, v(0) = v0. (32)

Specifically, (x, v) is a strong solution of (32) iff it is a strong solution of (11)
with λ = G(x, v).

Theorem 4.1 Suppose (i), (ii). Then, for any (x0, v0) ∈ A, v0 6= 0, the sys-
tem (32) has a unique strong global solution (x, v) : [0,∞[→ H ×H. Moreover
t 7→ G(x(t), v(t)) is Lipschitz continuous on any bounded time interval.

Proof Let us first prove local existence and uniqueness of a strong solution
(x, v) to (32). To that end, we fix T0 > 0, and look for some time interval
[0, T ], T < T0 with T small enough, in order to be able to apply the Banach-
Picard fixed point theorem in C([0, T ];H × H) equipped with the sup norm.
In view of (ii)(b) we have

∃c0 > 0 / (ξ, ζ) ∈ H × H, ‖ζ‖ ≥ ‖v0‖e−T0 ⇒ G(ξ, ζ) > c0. (33)

Without restriction of generality we suppose c0 ≤ 1; note also G(x0, v0) > c0.

For any T ∈ (0, T0] define ST as the set of functions (x, v) : [0, T ] 7→ H × H
satisfying

i) (x, v) is Lipschitz continuous;
ii) x(0) = x0, v(0) = v0;
iii) ‖v(t)‖ ≥ ‖v0‖e−t for all t ∈ [0, T ];

iv) ‖v̇(t)‖ ≤ ‖v0‖, ‖ẋ(t)‖ ≤ ‖v0‖
c0

for almost every t ∈ [0, T ].
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Equipped with the distance induced by the sup norm,

‖(x, v)‖∞ = sup
0≤t≤T

‖(x(t), v(t))‖,

ST is a closed subset of the Banach space (C([0, T ];H×H), ‖(x, v)‖∞). Hence,
ST is a complete metric space. Any (x, v) ∈ ST takes its values in

B =
{

(ξ, ζ) ∈ H × (H \ {0}) / ‖(ξ, ζ) − (x0, v0)‖ ≤ T
‖v0‖
c0

; ‖ζ‖ ≥ ‖v0‖e−T0

}

.

According to assumption (ii)(a), G is Lipschitz continuous on B. Let L0 denote
its Lipschitz constant on B .
Let (x, v) ∈ ST ; v does not vanish on [0, T ]. Hence λ = G(x, v) is defined on
[0, T ] and verifies λ > c0, in view of (33); moreover it is absolutely continuous as
the composition of two Lipschitz continuous functions. Hence, with Proposition
3.1, there exists a unique strong solution (X,V ) to (11), which further belongs
to ST . Let us examine the continuity of the map

ΨT : (x, v) ∈ ST → (X,V ) ∈ ST

we have just defined. Let ((x, v), (y, w)) ∈ ST ×ST , and set (X,V ) = ΨT (x, v),
(Y,W ) = ΨT (y, w), λ = G(x, v), η = G(y, w). We have (note that λ, η are

L0
‖v0‖
c0

-Lipschitz continuous):

‖λ − η‖L1(0,T ) ≤ T‖λ − η‖L∞(0,T ) ≤ TL0‖(x, v) − (y, w)‖∞;

‖λ̇‖L1(0,T ) ≤ T‖λ̇‖L∞(0,T ) ≤ TL0
‖v0‖
c0

;

‖η̇‖L1(0,T ) ≤ TL0
‖v0‖
c0

;

‖λ̇ + η̇‖L1(0,T ) ≤ 2TL0
‖v0‖
c0

.

Hence, in view of (16)

c0‖(X,V ) − (Y,W )‖∞ ≤ ‖v0‖
c0

exp

(

T +
TL0‖v0‖

c2
0

)

TL0‖(x, v) − (y, w)‖∞.

So, for any T ∈]0, T0] small enough, say 0 < T ≤ T1, ΨT : ST → ST is a con-
traction and admits a unique fixed point, which is moreover a strong solution
to (32). This proves existence.
Now, in view of Proposition 3.1, for T ≤ T1 any strong solution of (32) neces-
sarily belongs to ST and must coincide with the fixed point of ΨT . This proves
uniqueness.
Let us now consider a maximal solution of (32)

(x, v) : [0, Tm[→ H × H, v(t) 6= 0.
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The existence of a maximal solution follows from a classical argument relying
on the local existence and uniqueness result. Let us prove that the maximal
solution is a global solution, i.e., Tm = +∞. Define

λ : [0, Tm[→ [0,∞[, λ(t) = G(x, v).

Then, as already observed in the above argument, t 7→ λ(t) is locally Lipschitz
continuous and hence absolutely continuous on bounded closed sub-intervals
of [0, Tm[. Since t 7→ (x(t), v(t)) is also a strong solution of (11), using (12a)
of Proposition 3.1 we have

‖v(t)‖ ≥ ‖v0‖e−t, ∀t ∈ [0, Tm[.

If Tm < ∞, define

δ =
‖v0‖

2
e−Tm .

Using the two equations above we conclude that

(x, v) ∈ H × (H \ Bδ(0) ), ∀t ∈ [0, Tm[.

Therefore, there exists ε > 0 such that

λ(t) = G(x, v) > ε, ∀t ∈ [0, Tm[.

Using Proposition 3.1 again, we conclude that t 7→ (x(t), v(t)) is Lipschitz
continuous on [0, Tm[. Therefore, there exists

(x̄, v̄) = lim
t→Tm

(x(t), v(t)).

Moreover, since the graph of A is closed, v̄ ∈ A(x̄) and from the preceeding
argument, v̄ 6= 0. Therefore, the differential inclusion

G(z, w)ż + ẇ + w = 0, w ∈ A(z), z(0) = x̄, w(0) = v̄

has a strong solution (z, w) : [0, T ′[→ H × H, for some T ′ > 0, which allows
one to extend (x, v) to [0, Tm +T ′[, contradicting the maximality of (x, v). ⊓⊔

5 Convergence and Optimization Properties of a Closed-loop
Regularized Newton Dynamics

Let A : H ⇉ H be a maximal monotone operator. We assume that the set of
equilibria S = A−1(0) is nonempty. We consider the differential inclusion

v(t) ∈ A(x(t)), (34a)

α
(

‖v(t)‖2
)

ẋ(t) + v̇(t) + v(t) = 0, (34b)

x(0) = x0, v(0) = v0, v0 ∈ A(x0), v0 6= 0, (34c)

where α : [0,+∞[→ [0,+∞[ is a given function. For this particular choice of
the feed-back regularization function G(x, v) = α(‖v‖2), we shall be able to
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analyze the convergence properties of the system. In the following paragraphs
we successively examine the case where α is continuously differentiable and
the case where α is only a BV function.
As a model example of our study, we will consider

α(s) = csθ (35)

for some c, θ > 0. The point is to determine for which values of θ the trajec-
tories of system (34) converge to an element of S.
When A = ∇f and f : R

n → R is a convex, twice differentiable function,
system (34) becomes

α(‖∇f(x(t))‖2)ẋ(t) + ∇2f(x(t))ẋ(t) + ∇f(x(t)) = 0. (36)

In that case S is the set of minimizers of f , and the asymptotic stabilization
property is equivalent to the asymptotic optimization of f .

5.1 Smooth Feed-back Function

Note that (34) is a particular case of the differential inclusion (32) with
G(x, v) = α(‖v‖2). This particular G satisfies condition (ii)(a) of Section 4,
but it may fail to satisfy (ii)(b), if lim infr→+∞ α(r) = 0. In that case, v0 being
fixed, define β(r) = α(r) if 0 ≤ r ≤ ‖v0‖2 and β(r) = α(‖v0‖2) if r ≥ ‖v0‖2.
Any strong solution (x, v) of (34) is also a strong solution of (34) with β in
place of α, and vice versa (this is a consequence of ‖v‖ being decreasing). Since
β satisfies (ii)(a) and (ii)(b), function G(x, v) = α(‖v‖2) actually is relevant
to Theorem 4.1, and system (34) has a unique solution (x, v) : [0,∞[→ H×H.
Define

λ(t) = α(‖v(t)‖2).

Then λ : [0,∞[→ [0,∞[ is absolutely continuous on bounded sets and (x, v) is
the unique strong global solution of the system

v ∈ A(x);

λẋ + v̇ + v = 0;

v(0) = v0 ∈ A(x0), v0 6= 0.

In order to obtain convergence of the trajectories of system (34), we now appeal
to Theorem 3.7 of [1], which tells us that if A−1(0) 6= ∅, if λ(·) is bounded
from above on [0,+∞[ and if

lim inf
t→+∞

λ̇(t)

λ(t)
> −1, (37)

then x(t) converges weakly to a zero of A, as t goes to +∞.
We are now in a position to state our main result.
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Theorem 5.1 Let us suppose A−1(0) 6= ∅ and that α :]0,+∞[→]0,+∞[ is a
C1 function. Let (x, v) be the unique global strong solution to (34). Then
a) v satisfies

lim
t→+∞

‖v(t)‖ = 0. (38)

b) Let us suppose moreover that α is bounded above in a neighbourhood of 0
and

lim sup
r→0+

rα̇(r)

α(r)
<

1

2
. (39)

Then, x(t) weakly converges to a zero of A, as t → +∞.

Proof The existence and uniqueness of the strong global solution (x, v) to (34)
is clear from the previous discussion.
a) Since ‖v‖ is decreasing, p = limt→+∞ ‖v(t)‖ exists. We reason by contra-
diction and suppose p 6= 0.

We have λ̇ = 2α̇
(

‖v‖2
)

〈v, v̇〉 and since 〈v, v̇〉 ≤ 0 (recall (12c)) we have
further

|λ̇| ≤ 2|α̇
(

‖v‖2
)

|(−〈v, v̇〉)
∫ t

0
|λ̇(s)|ds ≤ maxp2≤r≤‖v0‖2 |α̇(r)|

[

‖v0‖2 − ‖v(t)‖2
]

, ∀t ≥ 0.

Hence λ̇ ∈ L1(0,∞). Since we have moreover limt→+∞ λ(t) = α(p2) > 0 (and
also A−1(0) 6= ∅), applying Proposition 3.2, we obtain p = 0, a contradiction.
b) In view of 〈v, v̇〉 ≤ 0 and of ‖v̇‖ ≤ ‖v‖ (see (12b)) we have

λ̇ ≥ 2α̇+
(

‖v‖2
)

〈v, v̇〉 ≥ −2α̇+
(

‖v‖2
)

‖v‖‖v̇‖ ≥ −2α̇+
(

‖v‖2
)

‖v‖2.

Since limt→+∞ ‖v(t)‖ = 0, a sufficient condition ensuring (37) is
lim infr→0+ −2rα̇+(r)/α(r) > −1, or equivalently

lim sup
r→0+

rα̇+(r)

α(r)
< 1/2. (40)

Since α̇ ≤ α̇+ this condition obviously implies (39). But negating (40) implies
the existence of a sequence rn > 0 tending to 0 as n → +∞ and such that

rnα̇+(rn)

α(rn)
>

1

2
− 1

n
.

Then α̇(rn) = α̇+(rn) > 0, and we obtain the negation of (39). So (39) and (40)
are equivalent. Moreover, λ is bounded on [0,+∞[, since
limt→+∞ ‖v(t)‖ = 0 and α is bounded near 0. With [1, th. 3.7], this prop-
erty, together with A−1(0) 6= ∅ and (39)⇒(37), implies the weak convergence
of x(t) to a zero of A, as t → +∞. ⊓⊔

Let us return to our model example.
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Corollary 5.1 Take α(r) = rθ. Then the conclusion of Theorem 5.1 holds
for θ < 1

2 . Equivalently, for 0 < γ < 1, there is asymptotic stabilization of the
system







v(t) ∈ A(x(t))
‖v(t)‖γ ẋ(t) + v̇(t) + v(t) = 0;
x(0) = x0, v(0) = v0 ∈ A(x0), v0 6= 0.

(41)

Note that, when A is the subdifferential of a convex function f , the convergence
of the values f(x(t)) to infH f is obtained under the sole assumption that α
is nondecreasing.

Proposition 5.1 Suppose that A = ∂f where f : H → R∪{+∞} is a convex
lower semicontinuous function. Assume α :]0,+∞[→]0,+∞[ nondecreasing.
Let (x, v) be the global strong solution of (34). Then
(i) f(x(t)) decreases to infH f as t → +∞;
(ii) if f is bounded from below, then ‖v(.)‖ ∈ L2(0,+∞) and v(t) → 0 as
t → +∞.

Proof Since ‖v‖ is nonincreasing, λ = α(‖v‖2) is also nonincreasing, and
[1, Theorem 4.1 ] applies. ⊓⊔

5.2 Bounded Variation Feed-back Function

In this paragraph, H is a finite-dimensional Hilbert space. We consider the
closed-loop regularized continuous Newton dynamics

v ∈ A(x), α(‖v(t)‖2)ẋ(t) + v̇(t) + v(t) = 0, x(0) = x0, v(0) = v0, (42)

where v0 ∈ A(x0), v0 6= 0 and α : R
+ → R

+ is only supposed to be a
nondecreasing function (with possible jumps). By using regularization by con-
volution, αn = ρn ∗α → α, we are reduced to the situation αn smooth, studied
in the previous paragraph. The question is to pass to the limit as n → +∞,
because of the possible discontinuities of α.
Let us introduce some notations: for r > 0 we set α−(r) = lims→r, s<r α(s),
the left limit of α at r, and α+(r) = lims→r, s>r α(s), the right limit of α at r.
Since α is nondecreasing these limits exist, and α−(r) ≤ α+(r) for each r > 0.
We set

[α](r) = [α−(r), α+(r)].

In the following theorem, we establish existence of a strong (i.e. absolutely
continuous on compact subintervals of [0,+∞)) solution to system (42) in
a relaxed sense, and provide some information concerning its asymptotical
behavior. Note that we do not claim uniqueness of the solution.

Theorem 5.2 Suppose that H is finite-dimensional and that
α : [0,+∞[→ [0,+∞[ is a nondecreasing function (possibly discontinuous).
Then
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(i) there exists a global strong solution (x, v) : [0,∞[→ H × H of system (42)
in the following sense

v(t) ∈ A(x(t)) for all t ≥ 0 (43a)

[α](‖v(t)‖2)ẋ(t) + v̇(t) + v(t) ∋ 0 for almost all t ≥ 0 (43b)

x(0) = x0, v(0) = v0 ∈ A(x0), v0 6= 0. (43c)

Moreover (x, v) is Lipschitz continuous on any bounded interval of [0,+∞[.
Precisely equation (43b) means that there exists a nonincreasing function
λ : [0,+∞[→]0,+∞[ such that

λ(t) ∈ [α]
(

‖v(t)‖2
)

for all t ≥ 0

λ(t)ẋ(t) + v̇(t) + v(t) = 0 for almost all t ≥ 0.

(ii) t 7→ ‖v(t)‖2 is a nonincreasing function and α(‖v‖2)ẋ + v̇ + v = 0 almost
everywhere on each interval where t 7→ ‖v(t)‖2 is strictly decreasing.
(iii) if A−1(0) 6= ∅, then ‖v(t)‖ → 0 as t → +∞.

Proof Extend α to the function ᾱ defined on R by

t ≤ 0 : ᾱ(t) = 0;

t > 0 : ᾱ(t) = α(t).

Function ᾱ is nondecreasing. Let (ρn)n∈N be a mollifying sequence (see
Lemma 3.1). Classically, the convolution αn = ρn ∗ ᾱ belongs to C∞(R), αn is
nondecreasing, and αn(r) > 0 for r > 0.
Let us apply Theorem 4.1 with G(x, v) = αn(‖v‖2). Clearly
G : H × (H \ {0}) →]0,∞[ is locally Lipschitz continuous and for any δ > 0

inf {G(x, v) | x, v ∈ H, ‖v‖ ≥ δ} ≥ αn(δ2) > 0.

Thus, for each n ∈ N there exists a unique global strong solution
(xn, vn) : [0,+∞[→ H × H of

vn ∈ A(xn), αn(‖vn‖2)ẋn + v̇n + vn = 0, xn(0) = x0, vn(0) = v0 (44)

Let us first restrict t to [0, T ] for some arbitrary fixed T > 0 and gather some
facts about xn, vn and λn = αn

(

‖vn‖2
)

.
From (12a, 12c) we deduce for any t ∈ [0, T ] and any n ∈ N

e−T ‖v0‖ ≤ ‖vn(t)‖ ≤ ‖v0‖.

Since αn is nondecreasing, we infer for any t ∈ [0, T ] and any n ∈ N

αn

(

e−2T ‖v0‖2
)

≤ λn(t) ≤ αn

(

‖v0‖2
)

. (45)

By the definition of αn = ρn ∗ ᾱ (recall support(ρn) ⊆ [−sn, sn], sn > 0,
sn → 0) and due to ᾱ being nondecreasing we have

αn

(

e−2T ‖v0‖2
)

≥ ᾱ
(

e−2T ‖v0‖2 − sn

)

≥ α
(

1
2e−2T ‖v0‖2

)

= c0 > 0 (46)

αn

(

‖v0‖2
)

≤ ᾱ
(

‖v0‖2 + sn

)

≤ α
(

‖v0‖2 + 1
)

= d0 (47)
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where the second inequalities are true as soon as n is so large, say n ≥ N0, that
sn ≤ min

(

1, 1/2e−2T ‖v0‖2
)

. From (45, 46, 47) we obtain for any t ∈ [0, T ] and
n ≥ N0

0 < c0 ≤ λn(t) ≤ d0 (48)

whence we also derive, since λn is nonincreasing

TV(λn, [0, T ]) ≤ d0. (49)

Applying Proposition 3.1 with λ = λn, we infer, for all t ∈ [0, T ] and n ≥ N0

‖(ẋn, v̇n)‖ ≤ ‖v0‖
min{c0, 1}

= L. (50)

Hence, the sequence (xn, vn) : [0, T ] → H × H is equi-Lipschitz continuous,
with values in a bounded subset of H × H, as (xn(0), vn(0)) = (x0, v0). Since
H is finite-dimensional, the sequence (xn, vn) satisfies the assumptions of the
Ascoli-Arzela theorem, and consequently is relatively compact in C([0, T ],H)
for the topology of the uniform convergence on [0, T ].

Moreover, with (48) and (49), the sequence λn satisfies the assumptions
of Helly’s first theorem ([14, p. 222]) and, thus, it admits a subsequence that
converges pointwise on [0, T ] to a nonincreasing function 1.

We now allow t to vary in [0,+∞[. After considering successive intervals of
the form [0, pT ], p ∈ N, and after extraction of a diagonal sequence, we infer
the existence of a subsequence (xnk

, vnk
, λnk

) : [0,∞[→ H×H×]0,+∞[ and of
functions (x, v) ∈ C([0,+∞[,H × H) and λ : [0,+∞[→]0,+∞[ nonincreasing
such that

(xnk
, vnk

) → (x, v) uniformly on [0, T ] for all T > 0,

λnk
(t) → λ(t) for all t ≥ 0.

Without ambiguity we now omit the subscript k. From (50) we deduce that
(x, v) is L-Lipschitz continuous on each [0, T ]. By the closedness property of
A and vn ∈ A(xn), we immediately infer (43a).

The most delicate point is to pass to the limit (n → ∞) on the equation

λnẋn + v̇n + vn = 0, (51)

so as to prove (43b).
(i) Lebesgue’s dominated convergence theorem ensures λn → λ in

L2(0, T ) for any T > 0. Lemma 3.2 allows one to pass to the limit in the
sense of distributions on (51)

λ(t)ẋ(t) + v̇(t) + v(t) = 0 for almost all t ≥ 0.

1 The compact imbedding of BV([0, T ]), the space of real-valued functions of bounded vari-
ation on [0, T ] equipped with the topology of the intermediate convergence, into L1(0, T ) (see
e.g. [10, Theorem 10.1.4], [11,12]) yields a subsequence of λn converging almost everywhere
on [0, T ].



Closed-loop Regularized Newton Method for Monotone Inclusions 23

Let us prove λ(t) ∈ [α](‖v(t)‖2) for all t ≥ 0. Since vn(t) → v(t), there exists
ǫn > 0, ǫn → 0 such that

‖v(t)‖2 − ǫn ≤ ‖vn(t)‖2 ≤ ‖v(t)‖2 + ǫn. (52)

Fix t > 0. By the definition of αn, for n large enough, we have

αn(‖vn(t)‖2) =

∫ sn

−sn

α
(

‖vn(t)‖2 − s
)

ρn(s)ds.

Since α is nondecreasing and with (52) we deduce that

α
(

‖v(t)‖2 − ǫn − sn

)

≤ αn(‖vn(t)‖2) ≤ α
(

‖v(t)‖2 + ǫn + sn

)

.

By passing to the limit as n → ∞ we obtain

α−
(

‖v(t)‖2
)

≤ λ(t) ≤ α+
(

‖v(t)‖2
)

,

whence λ(t) ∈ [α](‖v(t)‖2).
(ii) Since ‖vn‖ is nonincreasing and vn converges to v uniformly on boun-

ded intervals, ‖v‖ is nonincreasing. Suppose that τ 7→ ‖v(τ)‖2 is strictly de-
creasing on some interval [s, t]. Then the set {τ ∈ [s, t] : α is discontinuous
at ‖v(τ)‖2} is at most countable. On the complement of this set, the same
argument as above yields

α(‖v(τ)‖2) = lim αn(‖vn(τ)‖2)

whence λ(τ) = α(‖v(τ)‖2).
(iii) Let us fix x̂ ∈ A−1(0). Following the argument of [1, Lemma 3.4], for

each n ∈ N, we introduce the Liapunov function

hn(t) :=
1

2
‖λn(t)(xn(t) − x̂) + vn(t)‖2.

Differentiating hn, and using (44) we obtain

d

dt
hn(t) =〈λn(t)(xn(t) − x̂) + vn(t), λn(t)ẋn(t) + v̇n(t)〉

+ λ̇n(t)〈λn(t)(xn(t) − x̂) + vn(t), xn(t) − x̂〉
= − 〈λn(t)(xn(t) − x̂) + vn(t), vn(t)〉

+ λ̇n(t)
[

λn(t)‖xn(t) − x̂‖2 + 〈vn(t), xn(t) − x̂〉
]

.

By monotonicity of A and 0 ∈ A(x̂), vn(t) ∈ A(xn(t)), we have

〈xn(t) − x̂, vn(t)〉 ≥ 0.

Moreover, λn being a nonincreasing function, we deduce

d

dt
hn(t) + ‖vn(t)‖2 ≤ 0.
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After integration with respect to t of the above inequality, using that hn(t) is
nonnegative, and that supn hn(0) = supn

1
2‖λn(0)(x0 − x̂) + v0‖2 < +∞ we

deduce

sup
n

∫ ∞

0

‖vn(t)‖2dt < +∞.

This immediately implies that ‖v(·)‖2 ∈ L1(0,+∞). Since t 7→ ‖v(t)‖ is de-
creasing, we conclude limt→+∞ v(t) = 0. ⊓⊔

6 A continuous Newton-like Dynamics for Convex-concave Saddle
Value Problems

The theory of maximal monotone operators allows one to treat in a unified
way convex optimization, convex-concave saddle value problems, and fixed
point theory of nonexpansive mappings. Let us recall that, given a general
closed convex-convave bivariate function L, the operator A = (∂xL,−∂yL) is
maximal monotone; see [15,16]. Let us take advantage of this flexible frame-
work, and illustrate the results of the preceding sections by considering the
Lagrangian (convex-concave) approach to convex linearly constrained mini-
mization problems:

Given

• X, Y , Z Hilbert spaces,

• f : X → R and g : Y → R convex, C2 functions,

• A : X → Z and B : X → Z continuous linear operators,

consider the following (primal) minimization problem (see [17] for various ap-
plications):

min {f(x) + g(y) : Ax − By = 0} . (53)

This is equivalent to the convex-concave saddle value problem

min
x,y

max
z

{f(x) + g(y) + 〈z,Ax − By〉} , (54)

which is associated to the Lagrangian function L : X × Y × Z → R

L(x, y, z) = f(x) + g(y) + 〈z,Ax − By〉 . (55)

L is convex with respect to (x, y) and linear (hence concave) with respect to
z. The maximal monotone operator A : X × Y × Z → X × Y × Z which is
associated to L is given by

A(x, y, z) =
(

∇f(x) + tAz,∇g(y) − tBz,By − Ax
)

(56)

where tA and tB are respectively the transpose operators of A and B. Solutions
of (54) are the zeros of A, and we suppose that this solution set S = A−1(0)
is non empty.
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Take H = X × Y × Z. The open-loop regularized Newton dynamics (11a),
(11b) can be written as







λ(t)ẋ + ∇2f(x)ẋ + tAż + ∇f(x) + tAz = 0
λ(t)ẏ + ∇2g(x)ẏ − tBż + ∇g(y) − tBz = 0
λ(t)ż + Bẏ − Aẋ + By − Ax = 0.

(57)

Theorem 3.7 of [1] tells us that, if λ(·) is bounded from above on [0,+∞[ and

lim inf
t→+∞

λ̇(t)

λ(t)
> −1,

then (x(t), y(t), z(t)) converges weakly to a zero of A, as t goes to +∞. Note
that we obtain weak convergence of the primal and dual trajectories respec-
tively to the primal and dual solutions. This makes contrast with the semi-
group approach (semi-group of contractions generated by A) which only pro-
vides weak ergodic convergent trajectories.
Set v = (∇f(x) + tAz,∇g(y) − tBz,By − Ax), and consider the closed-loop
dynamics







α(‖v‖2)ẋ + ∇2f(x)ẋ + tAż + ∇f(x) + tAz = 0
α(‖v‖2)ẏ + ∇2g(x)ẏ − tBż + ∇g(y) − tBz = 0
α(‖v‖2)ż + Bẏ − Aẋ + By − Ax = 0.

(58)

Take α(r) = rθ. By Theorem 5.1, for any θ ≥ 0, we have limt→+∞ ‖v(t)‖ = 0
(indeed this holds true for any real θ). By Corollary 5.1, the asymptotic con-
vergence of (x(t), y(t), z(t)) to a zero of A (which is assumed to be nonempty)
is obtained by taking θ < 1

2 . Equivalently

λ(t) =
(

‖∇f(x) + tAz‖2 + ‖∇g(y) − tBz‖2 + ‖By − Ax‖2
)θ

. (59)

7 Conclusion

The analysis of the continuous dynamics may serve as a guideline and an
incentive to study some related questions for discrete dynamics.

a) Our approach can be traced back to the Levenberg-Marquardt regular-
ization of the Newton method; see [18,19]. For equations governed by mono-
tone operators, it gives an original and rather simple hint to the delicate ques-
tion: at each step k = 1, 2... how to choose the regularizing parameter λk? In
accordance with the continuous case, it is a natural, and open question, in the
discrete case, to try to take, in an adaptive way, at step k, λk = a‖∇f(xk−1)‖θ,
with θ strictly less than 1. Among the rich literature devoted to this question
for general non-linear problems, one can consult [20–22], [23, Chapter 10].

b) Note that systems (57) and (58) naturally suggest corresponding dis-
crete dynamics and algorithms. The result would be new splitting algorithms
involving in a decomposable way regularized Newton steps with respect to the
functions x 7→ f(x) and y 7→ g(y), with, at each step, updating of the dual
variable z. Clearly, this is a topic for further research.
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