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the excitation frequencies of the order of the main frequency of transverse vibrations of the beam. In the paper by
Mailybaev and Seyranian [18] the stabilization conditions of statically unstable systems close to the critical point were
obtained for a wide range of excitation frequencies by analyzing the Floquet multipliers. An inverted double pendulum
was one of the simplest examples. It was shown that stabilization of the upper vertical unstable position is possible for
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low, medium and high excitation frequencies. A lower bound for the stabilization region was found.
In this paper we consider again the inverted double pendulum, and investigate the stability regions by looking also for

the upper bound. This is the main motive of the paper. Use is made of the Multiple Scale Method, which is able to highlight
the mechanism of stabilization, thus giving more insights in the physical problem. The application of the method, however,
is not straightforward when a 1:1 resonant case has to be analyzed. An adapted version of the algorithm, which is believed
to be new, is implemented here.

2. Mechanical model

An undamped inverted double pendulum is considered (Fig. 1), consisting of two masses m1 and m2, connected by rigid
weightless rods of length l1 and l2 with elastic joints of stiffnesses c1 and c2, respectively. In the gravitational field the
kinetic and potential energies for the system have the form

T ¼ 1
2 ðm1þm2Þl

2
1
_y1

2
þ1

2m2l22
_y2

2
þm2l1l2 _y1

_y2 cosðy1 y2Þ,

P¼ 1
2 c1y

2
1þ

1
2c2ðy2 y1Þ

2
þðm1þm2Þgl1 cos y1þm2gl2 cos y2, (1)

where y1, y2 are the rotation angles of the rods and the dot denotes differentiation with respect to the time t.
Inserting the Lagrange function L¼ T P in the Lagrange equations

d

dt

qL

q _yi

qL

qyi
¼ 0, i¼ 1;2, (2)

we obtain nonlinear equations of motion of the system as

ðm1þm2Þl
2
1y1þm2l1l2 cosðy1 y2Þy2þm2l1l2 sinðy1 y2Þ

_y2
2
þðc1þc2Þy1 c2y2 ðm1þm2Þgl1 siny1 ¼ 0,

m2l1l2 cosðy1 y2Þy1þm2l22y2 m2l1l2 sinðy1 y2Þ
_y1

2
c2y1þc2y2 m2gl2 siny2 ¼ 0: (3)

Let us assume that the support undergoes some vertical harmonic excitation z¼ a cos Ot, where a is small with respect
to the rods’ lengths. According to the d’Alembert principle, the relevant equations of motion have the previous form, with
g aO2 cos Ot instead of g.
Fig. 1. Inverted double pendulum.



We are interested in studying the stability of equilibrium of the system in the vertical position under excitation. For this
purpose we consider small oscillations of the pendulum around the vertical position y1 ¼ y2 ¼ 0 governed by the following
linear equations:

2 2
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ðm1þm2Þl1y1þm2l1l2y2þðc1þc2 ðm1þm2Þðg aO cos OtÞl1Þy1 c2y2 ¼ 0,

m2l1l2y1þm2l22y2 c2y1þðc2 m2ðg aO2 cos OtÞl2Þy2 ¼ 0: (4)

According to Lyapunov’s theorem [20], if the linearized system (4) is unstable with Floquet multipliers greater than 1 by
their absolute values, then the equilibrium y1 ¼ y2 ¼ 0 of the initial nonlinear system is unstable.

We consider the case of a double pendulum with equal lengths l1 ¼ l2 ¼ l and stiffnesses c1 ¼ c2 ¼ c. Then the linear
system of differential equations in the dimensionless matrix form will be as follows [18]:

MhþðCðpÞþd ~O
2

cos ~O ~tBÞh¼ 0 (5)

with the matrices

M¼
1þZ Z
Z Z

 !
, CðpÞ ¼

2p Z 1 p

p p Z

 !
, B¼

1þZ 0

0 Z

 !
(6)

and h¼ ðy1,y2Þ
T. Here the dot denotes differentiation with respect to the dimensionless time ~t ¼Ont, where On

¼ g=l
p

, and
the dimensionless parameters are defined as follows:

d¼
a

l
, p¼

c

m1gl
, ~O ¼

O
On

, Z¼ m2

m1
: (7)

Tildes will be omitted ahead. Eq. (5) is the governing equation of a linear, parametrically excited system.
Let p¼ p0 be the critical value of the nondimensional negative stiffness, such that when d¼ 0, the system (5) is stable at

pop0 and unstable at p4p0. This value was found in [18] to be

p0 ¼
3Zþ1þ 5Z2þ2Zþ1

p
2

: (8)

Let us consider parameter p close to the critical stability value p0

p¼ p0þDp, Dp51: (9)

Consequently, the stiffness matrix CðpÞ can be written as

CðpÞ ¼ C0þDpC1, (10)

where C0 ¼ Cðp0Þ and

C1 ¼
2 1

1 1

� �
: (11)

At p¼ p0 and d¼ 0 the eigenfrequencies and corresponding eigenmodes for (5) are [18]

o1 ¼ 0, w1 ¼
p0

2p0þZþ1

 !
,

o2 �o¼ 5þ
1

Z

� �
p0 2ðZþ1Þ

s
, w2 ¼

Zþo2Zþp0

o2Zþp0

 !
: (12)

By introducing the linear transformation of coordinates, ðy1,y2Þ
T
¼WðX,YÞT, where W¼ ðw1,w2Þ is the modal matrix,

and ðX,YÞT the modal coordinate vector, and pre multiplying Eq. (5) by WT, the equations of motion, after rearrangement,
read

XþDpðc11Xþc12YÞþ
dO2

2
ðb11Xþb12YÞðeiOtþe�iOtÞ ¼ 0,

Y þo2YþDpðc21Xþc22YÞþ
dO2

2
ðb21Xþb22YÞðeiOtþe�iOtÞ ¼ 0, (13)

where cij are coefficients defined by the matrix C1 and the harmonic excitation has been expressed in complex form. Note
that the two equations (13) uncouple when Dp¼ 0 and d¼ 0.

3. The Multiple Scale Method: integer power expansion

To introduce a perturbation parameter e51 in the equations, we perform the rescaling d-ed and Dp-e2Dp, according
to [18]. As it will appear clearer later, this ordering sets the parameter Dp at the same order at which the first meaningful



information is supplied by the perturbation algorithm, as usually done in perturbation methods. According to the Multiple
Scale Method [19], we assume that the system’s dynamics depends on several independent time scales, namely

t0 ¼ t, t1 ¼ et, t2 ¼ e2t, . . . , (14)
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so that XðtÞ ¼ Xðt0ðtÞ,t1ðtÞ, . . .Þ, YðtÞ ¼ Yðt0ðtÞ,t1ðtÞ, . . .Þ. Consequently, by the chain rule, it follows that:

d

dt
¼
X1
k 0

ekdk,
d2

dt2
¼
X1
j 0

X1
k 0

ekþ jdkdj, (15)

where dk ¼ q=qtk. Then, we expand the configuration variables in series of integer powers of the perturbation parameter:

Xðt,eÞ ¼ X0ðt0,t1,t2, . . .ÞþeX1ðt0,t1,t2, . . .Þþe2X2ðt0,t1,t2, . . .Þþ � � � ,

Yðt,eÞ ¼ Y0ðt0,t1,t2, . . .ÞþeY1ðt0,t1,t2, . . .Þþe2Y2ðt0,t1,t2, . . .Þþ � � � : (16)

By substituting all these expressions in the equations of motion (13), and separately equating to zero terms with the same
power of e, we obtain a chain of perturbation in the unknowns Xk, Yk, namely

e0 :
d2

0X0 ¼ 0,

d2
0Y0þo2Y0 ¼ 0,

8<
:

e1 :
d2

0X1 ¼ 2d0d1X0
dO2

2
ðb11X0þb12Y0Þðe

iOt0þe�iOt0 Þ,

d2
0Y1þo2Y1 ¼ 2d0d1Y0

dO2

2
ðb21X0þb22Y0Þðe

iOt0þe�iOt0 Þ,

8>>><
>>>:

e2 :
d2

0X2 ¼ 2d0d1X1 2d0d2X0 d2
1X0 Dpðc11X0þc12Y0Þ

dO2

2
ðb11X1þb12Y1Þðe

iOt0þe�iOt0 Þ,

d2
0Y1þo2Y1 ¼ 2d0d1Y1 2d0d2Y0 d2

1Y0 Dpðc21X0þc22Y0Þ
dO2

2
ðb21X1þb22Y1Þðe

iOt0þe�iOt0 Þ,

8>>><
>>>:

^ (17)

The first two of Eqs. (17) are the generating equations of the perturbation process. They govern the dynamics of the
unexcited system ðd¼ 0Þ at the divergence bifurcation point ðDp¼ 0Þ, i.e. a marginally stable Hamiltonian system, in which
a couple of eigenvalues is zero, while the remaining two are purely imaginary. By disregarding the divergent solution,
proportional to t0, the generating solution reads

X0 ¼ Aðt1,t2, . . .Þ,

Y0 ¼ Bðt1,t2, . . .Þeiot0þc:c:,

(
(18)

where i is the imaginary unit and c.c. denotes the complex conjugate of the preceding terms. In it, Aðt1,t2, . . .Þ and
Bðt1,t2, . . .Þ are real and complex unknown amplitudes, respectively, whose modulation on the slower time scales must be
determined at the higher orders, as dependent on incremental parameter Dp, excitation amplitude d and frequency O.
These amplitudes are responsible for long time behavior (hence stability) of the first and second modes, respectively.
Substitution of Eqs. (18) in the e1 order perturbation equations (17) leads to

d2
0X1 ¼

dO2

2
b12BeiðOþoÞt0

dO2

2
b12BeiðO�oÞt0

dO2

2
b11AeiOt0þc:c:,

d2
0Y1þo2Y1 ¼ 2iod1Beiot0

dO2

2
b22BeiðOþoÞt0

dO2

2
b22BeiðO�oÞt0

dO2

2
b21AeiOt0þc:c:

8>>><
>>>:

(19)

where the overbar denotes complex conjugate.
Eqs. (19) suggest the following general discussion of the solution. In these equations, exponential terms appear on the

right members, of the type expðint0Þ, in which n¼ ð0,O,Oþo,O oÞ has the meaning of a forcing frequency, generated by
combinations of the natural and excitation frequencies. Therefore, the cases O¼o and O¼ 2o are detected as (first order)
resonance conditions (in which excitation frequency O o equates to 0 or o, respectively). However, if the perturbation
solution is carried out at the e2 order, new harmonics like 2Oþo, 2O o are expected to appear in the ‘known’ term, and
therefore a new (second order) resonance can be foreseen, namely O¼o=2. In all cases, in order for the series expansions
(16) to be uniformly valid, resonant terms of frequencies 0 and o that would lead to divergent solutions on the t0 scale
(secular terms), must be eliminated from the right hand side of the perturbation equations, thus leading to the desired
amplitude modulation equations. The perturbation scheme highlights the mechanism leading to stabilization: combina
tions of the frequencies producing a zero frequency, if of suitable sign, compensate for the lack of stiffness of the system.
As a drawback, the (originally) stable mode could be made unstable by the parametric excitation and that would limit the



range in which stabilization works. In the next sub sections three different cases will be analyzed: (a) the non resonant
case Oao,2o,o=2; (b) the first order resonant case O¼ 2o; (c) the second order resonant case O¼o=2. In contrast the
case O¼o, which calls for a special treatment, will be analyzed in the next section.
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3.1. Non resonant case

Here Oao,2o,o=2. The resonant forcing term of frequency o would cause secular, type t0eiot0 terms to appear in Y1.
To remove such secular terms we must enforce

d1B¼ 0: (20)

Note that, at this order, the dependence of A on the t1 scale is still undetermined. The solution for X1, Y1, by neglecting the
unessential complementary part (which repeats the generating solution), is

X1 ¼
dO2

2
b12

B

ðOþoÞ2
eiðOþoÞt0þ

dO2

2
b12

B

ðO oÞ2
eiðO�oÞt0þ

dA

2
b11eiOt0þc:c:,

Y1 ¼
dO2

2
b22

B

o2 ðOþoÞ2
eiðOþoÞt0

dO2

2
b22

B

o2 ðO oÞ2
eiðO�oÞt0

dO2

2
b21

A

o2 O2
eiOt0þc:c:

8>>>><
>>>>:

(21)

By substituting solutions (18), (21) into the e2 order equations (17) we obtain

d2
0X2 ¼ d2

1A Dpc11A
d2O4

2
b2

11

A

O2
b12b21

A

o2 O2

� �
þNRT,

d2
0Y2þo2Y2¼ 2iod2B Dpc22B

d2O4

4
b12b21

B

ðO oÞ2
þ

B

ðOþoÞ2

 ! 

þ
d2O4

4
b2

22

B

o2 ðO oÞ2
þ

B

o2 ðOþoÞ2

 !!
eiot0þc:c:þNRT,

8>>>>>>>>>><
>>>>>>>>>>:

(22)

where NRT means non resonant terms. To remove secular terms we write

d2
1A¼ C1ðd,O,DpÞA,

d2B¼ iC2ðd,O,DpÞB,

(
(23)

where the following quantities have been defined:

C1ðd,O,DpÞ ¼ Dpc11
d2O4

2

b2
11

O2

b12b21

o2 O2

� �
,

C2ðd,O,DpÞ ¼
1

2o
Dpc22þ

d2O4

4
b12b21

1

ðO oÞ2
þ

1

ðOþoÞ2

 !
b2

22

1

o2 ðO oÞ2
þ

1

o2 ðOþoÞ2

 ! ! !
: (24)

Eqs (23) govern the modulation on the t1 and t2 scales, for the two amplitudes, respectively. It is possible to come back
to the true time t by multiplying Eqs. (23) by e2 and reabsorbing the perturbation parameter by backward transformations,
ed-d, e2Dp-Dp, e2d2

1A-A, e2d2B- _B thus obtaining

A ¼ C1ðd,O,DpÞA,
_B ¼ iC2ðd,O,DpÞB:

(
(25)

The stability region for the system (25) in the parameter space is defined by the inequality C1o0. It turns out that
C1 ¼ 0 is the locus of the lower boundary of stability, and it coincides with the one obtained in [18], where use was made of
perturbation expansions of the Floquet multipliers.

3.2. Resonant case O¼ 2o

To express the closeness of O to 2o we introduce a small detuning es and let O¼ 2oþes. With this position, Eqs. (19)
now reads

d2
0X1 ¼

dO2

2
b12BeiðOþoÞt0

dO2

2
b12BeiðO�oÞt0

dO2

2
b11AeiOt0þc:c:,

d2
0Y1þo2Y1 ¼ 2iod1B

dO2

2
b22Beist1

 !
eiot0

dO2

2
b22BeiðOþoÞt0

dO2

2
b21AeiOt0þc:c:

8>>>><
>>>>:

(26)



By removing secular terms we shall have

2iod1B¼
dO2

2
b22Beist1 , (27)
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while, again, modulation of A is undetermined at this order. Truncation of the analysis at this level already furnishes useful
information. By using the inverse transformations ed-d, es-s, t1-et, ed1B- _B we shall obtain an equation in the original
quantities:

2io _B ¼
dO2

2
b22Beist : (28)

To transform Eq. (28) in an autonomous form, let B¼ Reist=2 and, to pass to real quantities, let R¼ uþ iv. Then we can
write the system of equations for the new variables:

_u ¼
s
2
þ
dO2

4o
b22

 !
v,

_v ¼
s
2
þ
dO2

4o b22

 !
u

8>>>>><
>>>>>:

(29)

from which

u ¼ Cðd,OÞu, v ¼ Cðd,OÞv, (30)

where Cðd,OÞ ¼ ððdO2=4oÞb22Þ
2
ðs=2Þ2. The condition Cðd,OÞ ¼ 0 determines the upper boundary of stability near the

principal parametric resonance O¼ 2o. Note that Cðd,OÞ is, of course, independent of Dp, which has been scaled at the
e2 order. However, it would be impossible to use the rescaling Dp-eDp, since this would entail the appearance of a
resonant term, Dpc11X0, in the first equation, that could not be removed, due to the fact that d0d1X0 ¼ 0. To investigate the
role played by Dp and to evaluate the dynamics of A, we have to resort to the e2 order.

After removing secular terms (27) the solution for X1, Y1 takes the form

X1 ¼
dO2

2ðOþoÞ2
b12BeiðOþoÞt0þ

dO2

2ðO oÞ2
b12BeiðO�oÞt0þ

d
2

b11AeiOt0þc:c:,

Y1 ¼
dO2

2ðo2 ðOþo2Þ
2
Þ

b22BeiðOþoÞt0
dO2

2ðo2 O2
Þ
b21AeiOt0þc:c:

8>>>><
>>>>:

(31)

By substituting solution (31) into the e2 equations (17) we obtain

d2
0X2 ¼ d2

1A Dpc11A
d2O2

2
b2

11þb12b21
O2

O2 o2

 !
AþNRT,

d2
0Y2þo2Y2 ¼ d2

1B Dpc22B
d2O4

4
b12b21

1

ðOþoÞ2
þ

1

ðO oÞ2

 !
b2

22

o2 ðOþoÞ2

 !
B 2iod2B

 !
eiot0þc:c:þNRT:

8>>>>><
>>>>>:

(32)

Elimination of secular terms leads to

d2
1A¼ Dpc11A

d2O2

2
b2

11þb12b21
O2

O2 o2

 !
A,

2iod2B¼ d2
1B Dpc22B

d2O4

4
b12b21

1

ðOþoÞ2
þ

1

ðO oÞ2

 !
b2

22

o2 ðOþoÞ2

 !
B:

8>>>>><
>>>>>:

(33)

By using the inverse transformations ed-d, e2Dp-Dp, t1-et, es-s and reconstruction

A ¼ e2d2
1A,

_B ¼ ed1Bþe2d2B (34)

we shall obtain two independent equations in the real (not rescaled) quantities

A ¼ ~C 1ðd,O,DpÞA,

_B ¼
idO2

4o b22 1
s

2o

� �
Beistþ i ~C 2ðd,O,DpÞB,

8><
>: (35)

where

~C 1ðd,O,DpÞ ¼ Dpc11
d2O2

2
b2

11þb12b21
O2

O2 o2

 !
,



~C 2ðd,O,DpÞ ¼
1

2o
Dpc22þ

d2O4

4
b12b21

1

ðOþoÞ2
þ

1

ðO oÞ2

 !
b2

22

o2 ðOþoÞ2

 ! !
: (36)

As a first result of the higher order analysis, a new equation for amplitude A, uncoupled from that of B, has been
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determined. The dynamics of A is governed by coefficient ~C 1ðd,O,DpÞ in the first of Eqs. (36); however it should be noted
that this coefficient coincides with coefficient C1ðd,O,DpÞ defined by the first of Eqs. (24), relevant to the non resonant
case. Therefore, stability of the first mode is not affected by resonance O¼ 2o, and instability occurs at the lower bound
previously determined. As a second result of the more refined analysis, Dp now appears in the modulation equation for
amplitude B.

By proceeding as for Eq. (28), we obtain

u ¼ ~C ðd,O,DpÞu, v ¼ ~C ðd,O,DpÞv, (37)

where ~C ðd,O,DpÞ ¼ ððdO2=4oÞb22ð1 s=2oÞÞ2 ðs=2 ~C 2Þ
2. Now the condition ~C ðd,O,DpÞ ¼ 0 determines the upper bound

ary of stability. Note that the ~C ðd,O,DpÞ and Cðd,OÞ only differ for e2 order quantities.

3.3. Resonant case O¼o=2

In this case we have O¼o=2þes. Since this is a second order resonance, the first order solution (21) still holds in this
case. By substituting the solutions for X0, Y0 and X1, Y1 into the e2 order equations (17), and accounting for the closeness of
O to o=2, we obtain

d2
0X2 ¼ d2

1A Dpc11A
d2O4

2

b2
11

O2

b12b21

o2 O2

� �
A

d2O4

4

b11b12

ðO oÞ2
b12b22

o2 ðO oÞ2

 !
Be2ist1þBe�2ist1
� �

þNRT,

d2
0Y2þo2Y2¼ 2iod2B Dpc22B

d2O4

4

b11b21

O2

b21b22

o2 O2

� �
Ae2ist1

 

d2O4

4

b12b21

ðOþoÞ2
þ

b12b21

ðO oÞ2
b2

22

o2 ðOþoÞ2
b2

22

o2 ðO oÞ2

 !
B

!
eiot0þc:c:þNRT:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(38)

By removing secular terms and using the inverse transformations ed-d, e2Dp-Dp, t1-et, es-s, e2d2
1A-A, e2d2B- _B

we obtain the system of equations:

A ¼ a1A a2ðBe2istþBe�2istÞ,

_B ¼
ia3

2o
Bþ

ia4

2o
Ae2ist ,

8><
>: (39)

where

a1 ¼Dpc11þ
d2O4

2

b2
11

O2

b12b21

o2 O2

� �
,

a2 ¼
d2O4

4

b11b12

ðO oÞ2
b12b22

o2 ðO oÞ2

 !
,

a3 ¼Dpc22þ
d2O4

4

b12b21

ðOþoÞ2
þ

b12b21

ðO oÞ2
b2

22

o2 ðOþoÞ2
b2

22

o2 ðO oÞ2

 !
,

a4 ¼
d2O4

4

b11b21

O2

b21b22

o2 O2

� �
: (40)

By letting B¼ Re2ist , with R¼ uþ iv, we can rewrite the system (39) in the matrix form _x ¼Hx, where vector x and
matrix H are

x¼

A
_A

u

v

0
BBB@

1
CCCA, H¼

0 1 0 0

a1 0 2a2 0

0 0 0 2O o a3

2o
a4

2o 0 2Oþoþ a3

2o 0

0
BBBBBB@

1
CCCCCCA
: (41)



The characteristic equation for the matrix H will have only even powers of the characteristic number l:

l4
þC1l

2
þC2 ¼ 0, (42)

where
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C1 ¼ a1þa3þðo 2OÞ2þ
a2

3

4o2

2Oa3

o
,

C2 ¼
ð4Oo 2o2 a3Þð4a1oO 2a1o2þ2a2a4 a1a3Þ

4o2
(43)

and arguments d,O,Dp of C1, C2 have been understood.
In this case the condition for stability requires that the following inequalities hold simultaneously:

C140, C240, C2
1 4C240: (44)

4. The Multiple Scale Method: fractional power expansion

The resonant case O¼o is now addressed. This is a special case in which the (standard) procedure of the previous

section fails. Indeed, when O¼o is substituted in Eqs. (19), a resonant term of frequency 0 appears in the X1 equation

which cannot be removed from the right hand side, since no amplitude derivatives such d1A are available in the equation.
This is a consequence of the fact that d0d1X0 ¼ 0 in the first equation (since the associated natural frequency is zero), while
d0d1Y0a0 in the second equation (since the relevant natural frequency is not zero). Therefore, the drawback is just due to
the static instability (divergence) manifesting itself at p¼ p0. This circumstance is in strict similarity with perturbations
from the defective (not semisimple) eigenvalues, encountered in algebraic problems [20,21], as well as in nonlinear
dynamical system [22], where fractional power expansions, instead of integer power, must be used. Fractional powers of
suitable order, indeed, introduce intermediate steps between the generating equation and the resonant equation, that
permits the appearance of key terms, able to remove the resonance. As a result of this idea, we will expand Xðt,eÞ, Yðt,eÞ in
series of e1=2:

Xðt,eÞ ¼ X0ðt0,t1,t2, . . .Þþe1=2X1ðt0,t1,t2, . . .ÞþeX2ðt0,t1,t2, . . .Þþe3=2X3ðt0,t1,t2, . . .Þþ � � � ,

Yðt,eÞ ¼ Y0ðt0,t1,t2, . . .Þþe1=2Y1ðt0,t1,t2, . . .ÞþeY2ðt0,t1,t2, . . .Þþe3=2Y3ðt0,t1,t2, . . .Þþ � � � , (45)

where

t0 ¼ t, t1 ¼ e1=2t, t2 ¼ et, . . . (46)

are fractional times. The chain rule now reads

d

dt
¼
X1
k 0

ek=2dk,
d2

dt2
¼
X1
j 0

X1
k 0

eðkþ jÞ=2dkdj (47)

and the perturbation equations are

e0 :
d2

0X0 ¼ 0,

d2
0Y0þo2Y0 ¼ 0,

8<
:

e1=2 :
d2

0X1 ¼ 2d0d1X0,

d2
0Y1þo2Y1 ¼ 2d0d1Y0,

8<
:

e1 :
d2

0X2 ¼ 2d0d2X0 d2
1X0 2d0d1X1

dO2

2
ðb11X0þb12Y0Þðe

iOt0þe�iOt0 Þ,

d2
0Y2þo2Y2 ¼ 2d0d2Y0 d2

1Y0 2d0d1Y1
dO2

2
ðb21X0þb22Y0Þðe

iOt0þe�iOt0 Þ,

8>>><
>>>:

e3=2 :
d2

0X3 ¼ 2d1d2X0 2d0d3X0 2d0d2X1 d2
1X1 2d0d1X2

dO2

2
ðb11X1þb12Y1Þðe

iOt0þe�iOt0 Þ,

d2
0Y3þo2Y3 ¼ 2d1d2Y0 2d0d3Y0 2d0d2Y1 d2

1Y1 2d0d1Y2
dO2

2
ðb21X1þb22Y1Þðe

iOt0þe�iOt0 Þ,

8>>><
>>>:



e2 :

d2
0X4 ¼ 2d1d3X0 d2

2X0 2d0d4X0 2d0d3X1 2d1d2X1 2d0d2X2 d2
1X2

2d0d1X3 Dpðc11X0þc12Y0Þ
dO2

2
ðb11X2þb12Y2Þðe

iOt0þe�iOt0 Þ,

2 2 2 2

8>>>>>>>>><
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d0Y4þo Y4 ¼ 2d1d3Y0 d2Y0 2d0d4Y0 2d0d3Y1 2d1d2Y1 2d0d2Y2 d1Y2

2d0d1Y3 Dpðc21X0þc22Y0Þ
dO2

2
ðb21X2þb22Y2Þðe

iOt0þe�iOt0 Þ,

>>>>>>>>>:
^ (48)

From the equations of e0 order we have again the generating solution

X0 ¼ Aðt1,t2, . . .Þ,

Y0 ¼ B0ðt1,t2, . . .Þeiot0þc:c:,

(
(49)

which substituted in the equations of e1=2 order leads to

d2
0X1 ¼ 0,

d2
0Y1þo2Y1 ¼ 2iod1B0eiot0þc:c:

8<
: (50)

Elimination of secular terms requires d1B0 ¼ 0 and the solution for (50) is

X1 ¼ 0,

Y1 ¼ B1ðt1,t2, . . .Þeiot0þc:c:

(
(51)

Note that, differently from the previous section, we have now introduced the complementary solution for Y1, for
reasons that will be clarified later. An analogous term for X1 could, of course, be considered, but it would turn out to be
inessential.

By substituting O¼oþe1=2s into (48) for the e1 order equations we obtain

d2
0X2 ¼

1

2
d2

1A
dO2

2
b11AeiOt0

dO2

2
b12B0ðe

iðOþoÞt0þeiðo�OÞt0 Þþc:c:,

d2
0Y2þo2Y2 ¼ 2ioðd2B0þd1B1Þ

dO2

2
b21Aeist1

 !
eiot0

dO2

2
b22B0ðe

iðOþoÞt0þeiðo�OÞt0 Þþc:c:

8>>>><
>>>>:

(52)

After removing secular terms:

d2
1A¼

dO2

2
b12ðB0e�ist1þB0eist1 Þ,

2ioðd2B0þd1B1Þ ¼
dO2

2
b21Aeist1 , (53)

the solution for (52) will be

X2 ¼
d
2

b11AeiOt0þ
dO2

2ðOþoÞ2
b12B0eiðOþoÞt0þc:c:,

Y2 ¼
dO2

2ðo2 ðOþoÞ2Þ
b22B0eiðOþoÞt0

dO2

2ðo2 ðO oÞ2Þ
b22B0eiðo�OÞt0þc:c:

8>>>><
>>>>:

(54)

From the second of Eqs. (53) it follows that if B1 were omitted, and due to the fact that d1B0 ¼ 0, then d1A¼ 0 would
follow, inconsistently with the first of Eqs. (53).

In the next step we obtain the system of equations for X3, Y3:

d2
0X3 ¼ 2d1d2A idOb11d1AeiOt0

dO2

2
b12B1ðe

iðOþoÞt0þeiðo�OÞt0 Þþc:c:,

d2
0Y3þo2Y3 ¼ ð 2ioðd3B0þd2B1Þ d2

1B1Þe
iot0

dO2

2
b22B1ðe

iðOþoÞt0þeiðo�OÞt0 Þþc:c:,

8>>><
>>>:

(55)

from which, by removing secular terms

2d1d2A¼
dO2

2
b12ðB1e�ist1þB1eist1 Þ,

2ioðd3B0þd2B1Þ ¼ d2
1B1 (56)



we have the solution

X3 ¼
id
O

b11d1AeiOt0þ
dO2

2ðOþoÞ2
b12B1eiðOþoÞt0þc:c:,

8>>>><
(57)
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Y3 ¼
dO2

2ðo2 ðOþoÞ2Þ
b22B1eiðOþoÞt0

dO2

2ðo2 ðo OÞ2Þ
b22B1eiðo�OÞt0þc:c:

>>>>:
The equations of the e2 order will be treated next:

d2
0X4 ¼ d2

2A 2d1d3A Dpc11A
d2O2

2
b2

11AþNRT,

d2
0Y4þo2Y4 ¼ ð 2ioðd4B0þd3B1Þ d2

2B0 2d1d2B1þg1B0þg2B0e2ist1 Þeiot0þc:c:þNRT,

8><
>: (58)

where

g1 ¼ dpc22þ
d2O2

4

b12b21

ðOþoÞ2
þb2

22

1

o2 ðOþoÞ2
þ

1

o2 ðO oÞ2

 ! !
,

g2 ¼
d2O2

4

b2
22

o2 ðO oÞ2
: (59)

Elimination of secular terms leads to

d2
2Aþ2d1d3A¼ Dpc11A

d2O2

2
b2

11A,

2ioðd4B0þd3B1Þ ¼ d2
2B0 2d1d2B1þg1B0þg2B0e2ist1 : (60)

To recombine all the previous results, and in line with the second of Eqs. (45), (49) and (51), let us introduce the total
amplitude B¼ B0þe1=2B1. Then, by using the inverse transformations ed-d, e2Dp-Dp, t1-e1=2t, e1=2s-s and
reconstruction

A ¼ ed2
1Aþe3=22d1d2Aþe2ðd2

2Aþ2d1d3AÞ,

_B ¼ eðd2B0þd1B1Þþe3=2ðd3B0þd2B1Þþe2ðd4B0þd3B1Þ (61)

we shall obtain equations in the true (not rescaled) quantities

A ¼ a1Aþa2ðBe�istþBeistÞ,

_B ¼ ia3Aeistþa4
_Aeistþ ia5Bþ ia6Be2ist , (62)

where

a1 ¼ Dpc11þ
d2O2

2
b2

11

 !
, a2 ¼

dO2

2
b12,

a3 ¼
dO2

4o b21 1
s

2o þ
s

2o

� �2
� �

, a4 ¼
dO2

8o2
b21 1

s
o

� �
,

a5 ¼
1

2o Dpc22þ
d2O4

4
b12b21

1

4o2
þ

1

ðOþoÞ2

 !
b2

22

1

o2 ðOþoÞ2
þ

1

o2 ðO oÞ2

 ! ! !
,

a6 ¼
d2O4

8o
b12b21

4o2

b2
22

o2 ðO oÞ2

 !
: (63)

By substituting B¼ Reist , where R¼ uþ iv, we can recast the system (62) in matrix form, similar to the resonant case
O¼o=2. Then we will have the same stability conditions

C140, C240, C2
1 4C240, (64)

where the coefficients are re defined as follows:

C1 ¼ a1þa2
5 a2

6 2a5ðO oÞþðO oÞ2 2a2a4,

C2 ¼ ðO o a5þa6Þða1ða5þa6 ðO oÞÞ 2a2a3Þ: (65)



5. Numerical results

In this section, we will show numerical results for a sample inverted double pendulum. A selected system with mass
ratio Z¼ 5 was considered, for which the nondimensional stiffness assumes the critical value (Eq. (8)) p0 ¼ 13:831 and
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the stable frequency (the third of Eqs. (12) the value o¼ 7:741. Then, a small perturbation of the stiffness Dp¼ 0:1 was
introduced, in order to make the system statically unstable, and the boundaries of the dynamic re stabilization region
were sought in the plane of the excitation frequency O and the nondimensional excitation amplitude d.

In order to validate the asymptotic results supplied by the Multiple Scale Method, a comparison was performed with
exact numerical results furnished by Floquet theory of ordinary differential equations with periodic coefficients [20].
According to this method, a matrix XðtÞ of independent solutions for the linear system (5), satisfying the initial conditions
Xð0Þ ¼ I, was numerically computed in a period T ¼ 2p=O for each set of the control parameters O, d; then the Floquet (or
monodromy) matrix F¼XðTÞ was evaluated. For algorithmic purposes, a small damping was added to the system, able to
change marginal into asymptotic stability. The latter was investigated by checking that all the multipliers r (i.e. the roots
of the characteristic polynomial of F) were, in modulus, less than 1. Fig. 2 provides an overall view of the system behavior.
Here, the grey zone denotes the stable region, obtained according to the Floquet method, while continuous lines represent
the analytical stability boundaries furnished by the Multiple Scale Method. Agreement between the two results appears to
be excellent at low excitation level, and qualitatively good at moderately high levels. It is seen that re stabilization can
occur at any excitation frequencies (as found in [18]), except for frequencies close to, and less than, the resonant value
O¼o, as well as for frequencies close to the resonant value O¼ 2o. Low excitation frequencies require a comparatively
higher level of amplitude, with respect to middle and high frequencies. This threshold represents a lower bound which is
well described by the non resonant solution (Eqs. (25)), which coincides with the one obtained in [18]. As revealed by the
perturbation procedure, re stabilization at the lower bound is due to the creation of a zero frequency, produced by the
combination of natural and excitation frequencies, which is able to make up for the lack of stiffness of the associated static
system. In contrast, the stable natural frequency plays a passive role in the stabilization phenomenon, since, although it
contributes to the solution (see the coefficient C1 in the first of Eqs. (24)), the modulation equations (25) are uncoupled,
and the amplitude B(t) is harmonic. Fig. 2, however, also reveals the existence of upper bounds for the excitation level,
which originate from the resonant values O¼o=2,o,2o. Here, differently from the lower bound, the phenomenon is
strongly affected by the behavior of the (otherwise stable) mode. In other words, re stabilization that would occur for a
single d.o.f. system with zero frequency, cannot occur, since the second mode is rendered unstable by the parametric
excitation. It should be noted that a narrow island of stable solutions (already observed in [18]) does exist at the middle
frequencies; however, since it occurs at high excitation levels it cannot be captured by the perturbation method.
Fig. 2. Stability regions and analytical stability boundaries for sample system Z 5, Dp 0:1.

Fig. 3. Stability regions and analytical stability boundaries around O 2o: first-order asymptotic solution (a) and second-order asymptotic solution (b).



Some zooms of Fig. 2 are also shown in subsequent pictures. Fig. 3(a,b) displays the analytical stability boundaries close
to the resonance O¼ 2o, both for the first order solution (Fig. 3(a), Eqs. (30)), and the second order solution (Fig. 3(b),
Eqs. (37)). Here the agreement with exact results is excellent, already at the lower order. Second order expansion also leads to
spurious solutions, as well known in the literature (see [23] for a discussion) and therefore disregarded in Fig. 3(b).

Fig. 4. Stability regions around O o=2: asymptotic solution (a) and Floquet solution (b).

Fig. 5. Stability regions around O o: asymptotic solution (a) and Floquet solution (b).
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An expansion of the neighborhood of O¼o=2 is also shown in Fig. 4(a,b). In particular, Fig. 4(a) shows the stable zone
as obtained by inequalities (44), whereas Fig. 4(b) displays the exact solution. It appears that the two solutions are in good
accordance; in particular, the existence of a narrow stability zone, not appreciable in the scale of Fig. 2, is revealed,
breaking the main instability region.

Finally, a magnification of the region close to O¼o is depicted in Fig. 5(a,b), comparing results following from
inequalities (64) (Fig. 5(a)) and the Floquet method (Fig. 5(b)). The perturbation solution is able to capture two interesting
features of the exact solution, namely: (a) stabilization occurs on the right side only of the resonant value; (b) a very thin
zone of stable solutions exists at a higher level. Note that we also have good quantitative agreement in the resonance
condition, but far from the resonance at O48 we have only qualitative agreement.

6. Conclusions

In this paper, the phenomenon of dynamic stabilization of a (statically) unstable two d.o.f. system, already addressed in

[18], was studied. The perturbation Multiple Scale Method was used here, which is able to provide both the lower and the

upper bounds of the stability regions in the plane of parameters, thus completing and enriching the investigation carried
out in [18], where the sensitivities of the Floquet multipliers were instead used. The following main results were achieved:

1. The Multiple Scale Method reveals the intimate essence of the re stabilization phenomenon, which is connected to the
creation of zero frequencies originated by the combination of the natural and excitation frequencies. This result is
consistent with the concept of ‘effective mechanical stiffness’ of parametrically excited systems, discussed in the
literature [12,15,16]. Depending on the parameters, the ‘apparent’ stiffness can be lower or higher than the elastic

stiffness, this entailing a beneficial or detrimental effect of the excitation.



2. Stabilization, however, is limited by the occurrence of dynamic instability of the second mode, which occurs close to
resonant values. Here, boundary curves originate, which constitute an upper bound far from resonance.

3. Non-straightforward perturbation algorithms were implemented, leading to amplitude modulation equations valid in
the non-resonant and resonant cases. The method requires a proper ordering of the parameters, and a proper use of
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4.

Th

sup
integer or fractional power expansions, accounting for the (defective) nature of the double-zero eigenvalue, similar to
what happens in bifurcation theory of the eigenvalues of algebraic systems, as well as in the bifurcation of autonomous
systems. Differently from the last case, however, the so-called ‘arbitrary constants’, rising from the complementary

solution of the perturbation equations, here play a fundamental role, so that they cannot be neglected, as is usual in
standard cases.
Accuracy of the perturbation solution, when compared with exact numerical results, was found to be excellent in some
cases, and less good in others. In these circumstances, however, the qualitative aspects were correctly captured. Major
differences occurred for fractional power expansions, where it is well known that the degeneracy of the individual point
would call for higher-order perturbation expansions.
Although the method was proved here to work for a two-d.o.f. system, it is believed that it could be extended to larger-
5.

dimensional systems and applied for stability study in other nonlinear physical systems containing parameters.

ese results were obtained for the undamped system, while it is well-known that the presence of damping might change

the
 picture of instability. However, the introduction of damping will make the analysis much more complicated, so that it
is a matter for future study.
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