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Abstract We study the rheological behavior of mixtures of

foams and pastes, which can be described as suspensions of

bubbles in yield stress fluids. Model systems are designed

by mixing monodisperse aqueous foams and concentrated

emulsions. The elastic modulus of the bubble suspensions

is found to depend on the elastic capillary number Ca
G

, de-

fined as the ratio of the paste elastic modulus to the bubble

capillary pressure. For values of Ca
G

larger than ≃ 0.5, the

dimensionless elastic modulus of the aerated material de-

creases as the bubble volume fraction φ increases, suggest-

ing that bubbles behave as soft elastic inclusions. Consis-

tently, this decrease is all the sharper as Ca
G

is high, which

accounts for the softening of the bubbles as compared to

the paste. By contrast, we find that the yield stress of most

studied materials is not modified by the presence of bub-

bles. This suggests that their plastic behavior is governed

by the plastic capillary number Caτy , defined as the ratio

of the paste yield stress to the bubble capillary pressure.

At low Caτy values, bubbles behave as nondeformable in-

clusions, and we predict that the suspension dimensionless

yield stress should remain close to unity, in agreement with

our data up to Caτy = 0.2. When preparing systems with a

larger target value of Caτy , we observe bubble breakup dur-

ing mixing, which means that they have been deformed by

shear. It then seems that a critical value Caτy ≃ 0.2 is never

exceeded in the final material. These observations might im-

ply that, in bubble suspensions prepared by mixing a foam

and a paste, the suspension yield stress is always close to that

of the paste surrounding the bubbles. Finally, at the highest

φ investigated, the yield stress is shown to increase abruptly

with φ : this is interpreted as a ‘foamy yield stress fluid’

regime, which takes place when the paste mesoscopic con-
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stitutive elements (here, the oil droplets) are strongly con-

fined in the films between the bubbles.
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1 Introduction

Many dense suspensions involved in industrial processes (con-

crete casting, drilling muds, foodstuff transport...) and nat-

ural phenomena (debris-flows, lava flows...) are yield stress

fluids (Coussot 2005). These are usually very polydisperse

systems in which yield stress arises from the colloidal forces

between the smallest particles (Mewis and Wagner 2012),

and is increased by the presence of rigid noncolloidal parti-

cles (Mahaut et al. 2008a; Chateau et al. 2008).

In addition, these materials often contain air bubbles.

This is the case, e.g., of crystal bearing magmas (Griffiths

2000; Gonnermann and Manga 2007), or of aerated food

emulsions (van Aken 2001). In industry, gas is typically in-

jected into materials to improve their performance or to make

them lighter. The fact that the latter materials exhibit a yield

stress is essential to prevent bubbles from rising (Dubash

and Frigaard 2004, 2007; Sikorski et al. 2009). Besides sta-

bility issue, it is particularly important to understand the me-

chanical behavior of these aerated materials. In many pro-

cesses, gas incorporation is obtained by mixing a foam with

a paste. This is the case, e.g., in plasterboard production,

in which a foamed plaster slurry is prepared by mixing an

aqueous foam with a gypsum plaster slurry, in foam con-

crete production by pre-foaming methods, where aqueous

foam is mixed with a base mix (Ramamurthy et al. 2009),

or in food processing when mixing beaten egg whites and

a batter to make aerated food products. It is thus crucial to

understand the impact of mixing a foam with a paste, and

more generally of adding bubbles to a yield stress fluid.
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Even the simpler case of bubbles in viscous fluids has

been the subject of only a few experimental studies (Rust

and Manga 2002a,b; Llewelin et al. 2002). It has been shown

that the viscosity of suspensions of bubbles in a Newtonian

fluid depends on the applied shear stress τ , and is charac-

terized by two different viscosity plateaus at low and high

values of τ (Rust and Manga 2002a). At low applied stress,

the viscosity of the suspension is an increasing function of

the bubble volume fraction φ ; at high values of τ , it de-

creases with φ . This phenomenon is attributed to interfa-

cial phenomena and to the ability of the bubbles to resist

shear-induced deformation (Rust and Manga 2002b). At low

applied stress, bubbles are not deformed; they behave like

rigid spherical particles with a slip boundary condition, thus

explaining the viscosity increase with φ . Above a critical

stress, surface tension is no longer sufficient to maintain the

bubbles in a spherical shape; the bubbles are deformed by

shear, which leads to a decrease of the viscosity with φ .

This transition from nondeformable to deformable bubbles

has indeed been shown to be driven by a capillary number,

which compares the shear stress and the interfacial stress

(Rust and Manga 2002a). More details are given in Sec. 2.2.

Most studies of bubbles in yield stress fluids have fo-

cused on the stability of these systems against coarsening

and buoyancy, both in specialized fields (Dutta et al. 2004a,b;

Ley et al. 2009) and fundamental studies (Koczo et al. 1992;

Turner et al. 1999; Dubash and Frigaard 2004, 2007; Siko-

rski et al. 2009; Goyon et al. 2010; Salonen et al. 2012).

To our knowledge, the impact of bubbles on the rheolog-

ical properties of such systems has been studied only for

specific materials, but has not been the subject of funda-

mental studies. Struble and Jiang (2004) have studied the

effect of air entrainment on cement pastes and concrete rhe-

ology. In these materials, an air-entraining agent (a surfac-

tant) is put in the paste; this stabilizes the bubbles that are

produced by agitating the paste. Rheological measurements

show an increase of the material yield stress with the air

bubble fraction, whereas its plastic viscosity decreases; this

is a priori surprising because, according to the results of

Rust and Manga (2002a), the first observation would imply

that bubbles are not deformed by shear whereas the second

would imply that they are deformed. It is worth noting that

the bubbles obtained with air-entraining agents are likely to

be very polydisperse. This size dispersity is not controlled,

which poses at least two problems: (i) scale separation be-

tween the bubbles and the cement particles is not ensured,

which may not allow the performance of classical microme-

chanical analyses by considering the interstitial paste as a

continuous medium, and (ii) in some conditions, the largest

bubbles may be deformable under shear whereas the small-

est are not, which can make the overall response rather com-

plex. Finally, it appears that the role of bubbles in the rheol-

ogy of yield stress fluids has yet to be fully understood.

The case of rigid particles in yield stress fluids has been

investigated recently in several studies (Ancey and Jorrot

2001; Geiker et al. 2002a; Mahaut et al. 2008a,b; Vu et

al. 2010). Mahaut et al. (2008a) have performed studies on

model suspensions of monodisperse particles in various yield

stress fluids (concentrated emulsions, Carbopol gels, col-

loidal gels). They have observed that their elastic modulus

G′(φ) increases with the particle volume fraction φ , and is

well fitted to a Krieger-Dougherty equation, as classically

observed for suspensions of particles in linear materials. Their

yield stress τy(φ) increases more moderately with φ . Ma-

haut et al. (2008a) have shown that the dimensionless elas-

tic modulus G′(φ)/G′(0) and the dimensionless yield stress

τy(φ)/τy(0) of these systems are related through a simple re-

lationship with no fitting parameter, as predicted by Chateau

et al. (2008), thus leading to a simple theoretical expression

for τy(φ) in agreement with experimental data (more details

are given in Sec. 2.1). It is finally sufficient to characterize

only one rheological property of these materials to predict

the value of the other ones. These results, obtained on model

systems, have been shown to be applicable to more complex

systems such as model mortars made of rigid spherical par-

ticles in cement pastes (Mahaut et al. 2008b).

A question that arises is how these results are changed

when rigid particles are replaced by gas bubbles, and what

the role of bubble deformability is on the rheological be-

havior of suspensions in yield stress fluids. In particular, by

analogy with suspensions of bubbles in Newtonian fluids,

we need to understand how the deformability of bubbles is

controlled when the material is sheared. We also question

the possible link between the linear and nonlinear properties

of these systems.

In this paper, we investigate the rheological behavior of

suspensions of bubbles in yield stress fluids. In Sec. 2, we

briefly review and discuss the theoretical behavior of sus-

pensions of rigid particles and bubbles in linear (elastic or

viscous) and nonlinear (plastic) materials. We deal in partic-

ular with the issue of bubble deformability in sheared yield

stress fluids. In Sec. 3, we present the model systems used

in this work, made by mixing a monodisperse foam and a

model yield stress fluid, namely a concentrated emulsion.

The experimental results are presented in Secs. 4 and 5. We

first study the change in the elastic properties of the yield

stress fluid in its solid regime as the foam fraction added to

the material (and thus bubble volume fraction) is progres-

sively increased (Sec. 4). We then study the evolution of the

plastic properties (Sec. 5). The study of viscoplastic proper-

ties is reserved for future work.
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2 Theory

In the following, we consider monodisperse1 spherical in-

clusions of diameter d dispersed in materials at a volume

fraction φ . When they are dispersed in a linear material,

namely a Hookean material of elastic shear modulus G′(0)

or a Newtonian material of viscosity η(0), the property of

interest is the dimensionless linear response of the material

g(φ) (i.e., the dimensionless elastic modulus G′(φ)/G′(0)
or the dimensionless viscosity η(φ)/η(0)). When they are

dispersed in a plastic material of yield stress τy(0), this be-

comes the value of the dimensionless yield stress τy(φ)/τy(0).

In this section, we first review the case of suspensions

of solid rigid inclusions (particles), which has already been

thoroughly investigated in the literature, and provides a solid

framework to better understand the behavior of deformable

inclusions. We then discuss the possible behavior of suspen-

sions of gas inclusions (bubbles), which is not yet well un-

derstood.

2.1 Suspensions of rigid particles

We first focus on suspensions of rigid particles. Particles are

considered as perfectly rigid, and a no-slip boundary condi-

tion is assumed at the interface between the particles and the

suspending material.

Linear response

In the dilute limit (φ << 1), it is shown that (Larson 1999)

g(φ) = 1+ 2.5φ (1)

Many theoretical expressions exist for values of φ beyond

the dilute limit (Stickel and Powell 2005). For isotropic sus-

pensions, it is shown that g(φ) should be higher than the

Hashin-Shtrikman bound (Hashin and Shtrikman 1963) for

any value of φ :

g(φ)≥
1+ 3

2 φ

1−φ
(2)

Experimentally, the linear behavior of suspensions is usu-

ally found to be consistent with the Krieger-Dougherty phe-

nomenological equation (Stickel and Powell 2005)

g(φ) =
1

(1−φ/φdiv)2.5φdiv
(3)

which complies with Eq. 1 in the dilute limit. A value of

φdiv = 0.57 was found experimentally for isotropic suspen-

sions (Mahaut et al. 2008a), and φdiv = 0.605 for anisotropic

suspensions (structured by a flow) (Ovarlez et al. 2006).

1 Some aspects of the linear and nonlinear behavior of polydisperse

suspensions are discussed in (Vu et al. 2010).

Nonlinear response

Chateau et al. (2008) have developed a simple microme-

chanical approach to predict the nonlinear behavior of sus-

pensions in yield stress fluids. The starting point is that, if

the particles do not store any elastic energy (rigid limit), the

local strain in the interstitial material γlocal(φ) when a given

strain Γmacro is applied to the suspension can be estimated at

first approximation as

γlocal(φ) = Γmacro

√

g(φ)/(1−φ) (4)

This information on the local strain can be used to predict

the value of the dimensionless yield stress of the suspension,

which finally implies that it is related to its dimensionless

elastic modulus through a simple relationship with no fitting

parameter (Chateau et al. 2008):

τy(φ)/τy(0) =
√

(1−φ)g(φ) (5)

In the dilute limit, the dimensionless yield stress is thus ob-

tained by combining Eqs. 1 and 5:

τy(φ)/τy(0) = 1+
3

4
φ (6)

Combining Eqs. 3 and 5 finally yields a simple phenomeno-

logical law

τy(φ)/τy(0) =
√

(1−φ)(1−φ/φdiv)−2.5φdiv (7)

which is in good agreement with the observations of Mahaut

et al. (2008a) for φ ≤ 50%, thus validating Eqs. 4 and 5.

Similarly, when the interstitial yield stress fluid behaves

as a Herschel-Bulkley material τ = τy +η
HB

γ̇n, it is shown

that a simple relationship exists between the dimensionless

yield stress and the dimensionless consistency η
HB
(φ)/η

HB
(0)

(Chateau et al. 2008).

2.2 Suspensions of bubbles

Linear response

For suspensions of bubbles in linear materials, two limiting

cases are well known: that of nondeformable bubbles (with

infinite surface tension to bubble diameter ratio), and that

of fully deformable bubbles (with no surface tension). In all

cases, a slip boundary condition is assumed at the interface

between the bubbles and the interstitial material.

For nondeformable bubbles, the linear response in the

dilute limit is (Larson 1999)

g(φ) = 1+φ (8)

The difference with rigid particles (Eq. 1) comes from the

slip boundary condition at the bubble interface. For fully de-

formable bubbles, in the dilute limit, g(φ) is

g(φ) = 1−
5

3
φ (9)
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Little is known about the behavior at higher φ . Theoretical

bounds nevertheless exist. For isotropic suspensions of fully

deformable bubbles, g(φ) should be lower than the Mori-

Tanaka bound (Dormieux et al. 2006) at any φ

g(φ)<
1−φ

1+ 2
3
φ

(10)

Overall, g(φ) is expected to increase with φ for nondeformable

bubbles and to decrease with φ for fully deformable bubbles,

consistent with the observations of Rust and Manga (2002a).

Between these two limiting cases, the deformability of bub-

bles should depend on the resistance offered by the bubbles

to shear-induced deformation, due to the air/fluid surface

tension σt . The relevant dimensionless number involved in

the bubble deformability should then be a capillary number

Ca, constructed by comparing the characteristic stress 4σt/d

due to surface tension to a characteristic applied shear stress.

For bubbles suspended in a Newtonian fluid of viscosity

η
0

sheared at a shear rate γ̇ , the only characteristic shear

stress is η
0
γ̇ . It has indeed been shown (Rust and Manga

2002a) that

Caη =
η

0
γ̇

2σt/d
(11)

drives the transition between nondeformable bubbles (vis-

cosity increasing with φ ) and deformable bubbles (viscosity

decreasing with φ ). This transition occurs at Caη ≈ 1.

To our knowledge, no rigorously derived theoretical ex-

pression valid for all values of Caη exists in the literature.

The full time-dependent tensorial behavior of suspensions

of viscous drops has been calculated by Frankel and Acrivos

(1970) in the dilute limit, in the framework of a first-order

perturbation analysis: drops are assumed to be only slightly

deformable. In the case of suspensions of bubbles, this the-

ory applies only at low Caη and is written as a first-order

expansion in Caη . For steady-state flows in simple shear,

the dimensionless viscosity reduces to Eq. 8: it does not de-

pend on Caη at order 1; in addition, normal stress differ-

ences proportional to Caη are predicted: we will not discuss

this aspect in this paper. Several works (Rust and Manga

2002a; Llewelin et al. 2002; Pal 2004) have proposed phe-

nomenological equations intended to be valid at any values

of Caη and φ . Their starting point is Frankel and Acrivos

(1970) equation, with the additional strong assumption that

this equation can be used at any value of Caη . Some of these

expressions have been shown to fit reasonably well experi-

mental data; in Sec. 4.3, we will use the best fitting function

to experimental data proposed by Rust and Manga (2002a)

and Pal (2004) for comparison with our data.

The case of bubbles with surface tension in elastic ma-

terials has not been studied to our knowledge. Two capillary

numbers can a priori be built to describe the behavior of

such materials, one based on the elastic modulus of the ma-

terial G′(0):

Ca
G
=

G′(0)

2σt/d
(12)

and one based on the applied stress τ = G′(0)Γ (where Γ is

the applied strain) during an elastic modulus measurement:

Caτ =
G′(0)Γ

2σt/d
(13)

For the materials we study (Sec. 3.1): 2σt/d ranges between

25 and 1000 Pa, G′ is typically of order 100 to 1000 Pa, and

the applied stress during an elastic modulus measurement is

typically of order 1 Pa or less. The two capillary numbers

defined above would thus lead to descriptions of very differ-

ent behaviors. On the one hand, Caτ is of order 0.01 for all

studied systems, which would imply that bubbles should be-

have as nondeformable objects; on the other hand, Ca
G

is of

order unity, which would imply that a transition between the

behavior of a suspension of nondeformable bubbles and that

of a suspension of deformable bubbles should be observed.

In our experiments, by characterizing the elastic moduli of

suspensions of various compositions, we thus expect to be

able to identify the relevant capillary number.

Nonlinear response

Not much is known about the plastic behavior of suspen-

sions of bubbles in plastic materials. For nondeformable and

fully deformable bubbles, no elasticity is stored in the inter-

faces. Eqs. 4 and 5 are thus expected to remain valid. Com-

bining Eq. 5 with Eqs. 8 and 9, it is thus predicted that, in the

dilute limit, the dimensionless yield stress of suspensions of

nondeformable bubbles should be

τy(φ)/τy(0) = 1 (14)

whereas the dimensionless yield stress of suspensions of

fully deformable bubbles should be

τy(φ)/τy(0) = 1−
4

3
φ (15)

At this stage, as elasticity is stored in the interfaces for in-

termediate cases, we cannot tell anything about the value

of the dimensionless yield stress and about its possible link

with g(φ) between these two limiting cases. In the case of

plastic flows, the characteristic stress is the interstitial mate-

rial yield stress τy and the capillary number that should drive

the transition from nondeformable to deformable bubbles is

expected to be

Caτy =
τy

2σt/d
(16)
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3 Materials and methods

3.1 Materials

Principle

Model suspensions of bubbles in a yield stress fluid are pre-

pared by mixing a monodisperse foam and a concentrated

emulsion. The emulsion is made of oil droplets dispersed at

a high volume fraction (typically 82%) in an aqueous sur-

factant solution; this is a simple yield stress fluid (Mason

et al. 1996; Ovarlez et al. 2008). The foam is a dispersion

of monodisperse bubbles at a high volume fraction (typi-

cally 90%) in an aqueous surfactant solution of the same

composition as that in the concentrated emulsion. The sim-

ilarity of the continuous phases of both systems ensures (i)

that the two materials are easily mixed together, and (ii) that

after mixing, the bubbles are surrounded by a known yield

stress fluid. This interstitial fluid is a concentrated emulsion

of droplet volume fraction slightly lower than that of the ini-

tial emulsion, which has been diluted by the aqueous solu-

tion brought in by the foam. All systems are such that (i)

the droplet volume fraction is high enough in the final inter-

stitial emulsion so that it has a yield stress, and that (ii) the

bubble diameter is much larger than the droplet diameter to

ensure that the emulsion is ‘seen’ as a continuous material

(a yield stress fluid) by the bubbles.

Emulsion preparation

Batches of 2 l of oil-in-water emulsion are prepared by dis-

persing dodecane (Acros Organics) at 82% or 85% volume

fraction in a surfactant solution (see below) with a Silverson

L4RT mixer. The rotation speed is kept at 1000 rpm during

the addition of dodecane. It is then increased to 6000 rpm

during ≈ 30 min until a homogeneous emulsion is formed.

The average droplet diameter in the final emulsion is 4.2µm;

the polydispersity (computed as in (Mabille et al. 2000)) is

of order 20%. The viscosity of dodecane is ηo = 1.3 mPa.s

at 25 ˚C.

Foam

Monodisperse foams are produced by either blowing air through

a porous glass frit or through a needle into a glass syringe

filled with a surfactant solution. The needle tip was cut and

crushed: depending on the way the tip was crushed, a dif-

ferent bubble size was obtained for each needle; in the case

of the porous frits, different bubble sizes were obtained de-

pending on the pore size. In both cases, the air was blown

at a flow rate of the order of a few ml/min (depending on

the bubble size), and was saturated with perfluorohexane

vapor (C6F14, Sigma-Aldrich), which strongly reduces the

bubble coarsening rate (Gandolfo and Rosano 1997). We

make monodisperse foams of bubble diameter varying be-

tween 110 µm and 3 mm (with a size dispersity of order

3%), which is much larger than the emulsion droplet diam-

eter. The size of the bubbles was checked by squeezing out

a small quantity of the foam into a petri dish filled with sur-

factant solution and examining them under an upright mi-

croscope. Slightly polydisperse foams of 100±30µm bub-

ble diameter were also produced by blowing air through a

porous medium made of a glass bead assembly: this setup

allows us to produce a large volume of foam made of small

bubbles in a reasonable time, that is, before coarsening oc-

curs.

Surfactant solutions

The surfactant solutions used in these studies are made of

sodium dodecyl sulfate surfactant (SDS, Sigma-Aldrich) dis-

persed in deionized water at a 28 g/l concentration in the

emulsions, and 5 g/l in the foams. The air/surfactant so-

lution surface tension σt was measured with the pendant

drop method; its value is 0.036±0.001 N.m−1. The surfac-

tant concentration has been chosen to be high enough to

saturate the oil droplet and bubble interfaces. Note that the

critical micelle concentration (CMC) of the SDS solution is

2.3 g/l.

Complementary experiments have been performed with

two other surfactant solutions (both in the emulsion and the

foam) in order to study the role of surface mobility (Denkov

et al. 2009): TetradecylTrimethylAmmonium Bromide (TTAB)

and a TTAB solution with dodecanol. Those systems exhib-

ited the same behavior as those prepared with SDS; in this

paper, we thus present only the results obtained in systems

prepared with the SDS surfactant.

Preparation of suspensions of bubbles

Two kinds of studies are performed. First, we investigate the

evolution of the rheological behavior of a yield stress fluid

when foam is added to the material (this matches what may

happen in an industrial process). In a first series of experi-

ments, samples are thus prepared by mixing a foam and an

emulsion in various mass ratios (Fig. 1a). In this case, as

the foam fraction is progressively increased, two changes

occur in the final material: (i) the bubble volume fraction

increases, and (ii) the droplet volume fraction in the inter-

stitial emulsion decreases (due to the additional surfactant

solution brought in by the foam). To understand the impact

of adding bubbles to a yield stress fluid, the properties of

the bubble suspension have to be compared to that of the

yield stress fluid surrounding the bubbles. For each sample,

we thus also prepare a pure emulsion sample by adding to

the initial emulsion a mass of surfactant solution equal to the

mass of the foam added to make the suspension sample. This
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Fig. 1 Sketch of the material preparation in the two series of experi-

ments.

allows us to characterize the interstitial emulsion for each

prepared suspension. In this series of experiments, the elas-

tic modulus of the initial emulsion (before mixing with the

foam) is G′ = 625 Pa and its yield stress is τy = 35Pa. The

bubble volume fraction φ is varied between 0% and 90%.

In a second series of experiments, we focus on the role

of bubbles by studying the impact of increasing the bubble

volume fraction in an interstitial yield stress fluid of constant

properties (Fig. 1b). To this end, materials are prepared by

adding various mixes of foam (mass m f ) and surfactant so-

lution (mass ms) to the emulsion (mass me). The ratio
m f +ms

me

is kept constant, which ensures that the final droplet volume

fraction in the emulsion surrounding the bubbles is always

the same. The bubble volume fraction in the material is then

changed by varying m f /ms. All suspensions are compared

to the interstitial emulsion, which is made with the same

recipe, with m f /ms = 0. In this series of experiments, the

elastic modulus of the interstitial emulsion is G′ ≈ 280 Pa

and its yield stress is τy ≈ 9 Pa. A few experiments with

the largest bubbles are also performed with interstitial emul-

sions of yield stress equal to 19 and 72 Pa to better test the

possible deformability of bubbles under shear. The bubble

volume fraction φ is here varied between 0% and 60%.

The foam, surfactant solution, and the emulsion are mixed

together in a 9.5 cm diameter beaker using a mixer with a

6.8cm x 6.8cm, 6-hole rectangular blade. The velocity is ini-

tially at 60 rpm, and is increased to 100 rpm after ≈10s of

mixing. The mixing then continues until the mixture is ho-

mogeneous, which occurs after ≈60 s.

The volume fraction of bubbles within the emulsion is

estimated from the measurement of the density of the sus-

pension in a petri dish of known volume. The absolute un-

certainty on the material volume fraction, accounting for

both the measurement uncertainty and the possible volume

fraction spatial variations in a given sample, is 0.02. We dis-

regarded the few samples where the experimentally mea-

sured bubble fraction was greater than that expected from

the foam fraction in the mixture, to ensure that no unwanted

bubbles were added to the material.

All systems are designed to be stable at rest: their yield

number Y =
τy

∆ρgd
complies with the stability criterion of a

single bubble embedded in a yield-stress fluid (Dubash and

Frigaard 2007), which should ensure that elastic forces ex-

erted by the yield stress fluid at rest are able to counterbal-

ance the net gravity force.

We checked on several prepared suspensions that (i) this

procedure leads to a homogeneous material, by measuring

the density of several samples extracted from different heights

in a given material, and that (ii) the bubble size in the sus-

pension is equal to that in the initial foam, i.e., there is nei-

ther shear-induced coalescence nor breakup during mixing,

except in the cases discussed at the end of Sec. 5, and no

significant bubble coarsening occurs at the time scale of the

experiments.

3.2 Rheometry

Rheometric experiments are performed within a vane-in-cup

geometry (dimensions for bubbles of diameter d ≤ 320 µm:

inner radius Ri = 12.5 mm, outer cylinder radius Re = 18 mm,

height H = 46 mm; dimensions for d = 800 µm to d =

3 mm: Ri = 22.5 mm, Re = 45 mm, H = 46 mm) on a

commercial rheometer (Bohlin C-VOR 200) that imposes

either the torque or the rotational velocity (with a torque

feedback). In order to avoid wall slip (Coussot 2005), we

use a six-blade vane as an inner tool, and we glue sandpa-

per on the outer cylinder wall. Working within these wide-

gap geometries allows for study of samples with large bub-

bles and ensures that, for all the materials studied, there are

enough bubbles in the gap to consider that we are measur-

ing the properties of a continuous medium (the suspension).

In such a geometry, the shear stress distribution in the gap

is heterogeneous. Therefore, one has to choose a definition

of the shear stress τ that is measured in a given rheological

experiment. Here, we want to perform both elastic modu-

lus and yield stress measurements. Whatever the measure-
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ment method we choose, yield first occurs where the stress

is maximal i.e. along the inner virtual cylinder delimited by

the blades2. As a consequence, the contribution to the torque

T of the sheared material at yield is: τy ∗2πHR2
i ; as the ma-

terial is also sheared at the bottom of the vane, another con-

tribution to the torque is given by τy ∗ 2πR3
i /3 (Dzuy and

Boger 1983). We thus define the shear stress measurement

as τ(Ri) =
T

2πHR2
i (1+Ri/3H)

, so that the yield stress τy is cor-

rectly measured; this is validated by comparison with mea-

surements performed in a cone-and-plate geometry. To en-

sure correct elastic modulus measurement, as the strain field

does not have azimuthal symmetry in the elastic regime, we

calibrate the conversion factor between the rotation angle Θ

and the strain γ to ensure that the same elastic modulus is

measured in a cone-and-plate geometry and in the vane-in-

cup geometry; due to the linearity of the behavior, this cal-

ibration made in a particular linear elastic material remains

valid for any linear elastic material.

3.3 Procedure, elastic modulus and yield stress

measurements

Before designing the experimental procedure, we need to

define precisely the state of the materials we want study.

Two points are important: (i) measurements should be per-

formed on a homogeneous suspension, and (ii) the microstruc-

ture of the suspensions should be controlled. These points

impose severe restrictions on the preparation and the yield

stress measurement procedure, as measurements involving

an significant flow of suspensions (a large strain) pose sev-

eral problems.

First, flow causes particle migration (Leighton and Acrivos

1987; Phillips et al. 1992; Ovarlez et al. 2006) towards the

low shear zones (the outer cylinder in coaxial cylinder ge-

ometries) i.e. creation of a heterogeneous structure; in ad-

dition, with a vane tool, particle depletion is induced near

the vane blades (Ovarlez et al. 2011) leading to the equiva-

lent of a slip layer. The same might happen with bubbles. In

density-mismatched suspensions, even those stable at rest,

another source of heterogeneity is gravity (Ovarlez et al.

2010, 2012): bubbles tend to rise when the material is sheared,

and rise faster and faster as the shear rate is increased (Goyon

et al. 2010). To circumvent these problems, we have decided

(i) to avoid any preshear of the material, and (ii) to measure

the static yield stress; any other yield stress measurement

method based on a shear flow such as shear rate (Geiker et

al. 2002b) or shear stress ramps (Uhlherr et al. 2005) and

creep tests (Coussot et al. 2006) may lead to heterogeneities.

2 Note that although flow does not generally have an azimuthal sym-

metry in a vane-in-cup geometry (Baravian et al. 2002; Ovarlez et

al. 2011), azimuthal symmetry seems to be recovered when the shear

stress is close to the yield stress (Keentok et al. 1985; Ovarlez et al.

2011))

We have also decided to postpone the study of viscous dis-

sipation in these materials, which would require special care

and may require the use of MRI methods to measure local

volume fractions (Goyon et al. 2010). Therefore, we here

focus on the impact of bubbles on the elastic modulus and

the static yield stress of yield stress fluids.

Another problem is that an anisotropic microstructure

(distribution of neighbors) is created when suspensions of

particles flow (Gadala-Maria and Acrivos 1980; Parsi and

Gadala-Maria 1987); in addition, with deformable bubbles,

bubble orientation is expected to depend on shear history

(Rust and Manga 2002b). Suspensions of isotropic and anisotropic

microstructure have very different rheological properties (Blanc

et al. 2011); one thus has to be careful about shear history

when characterizing a suspension, to ensure that the same

structure is always dealt with. Here we choose to character-

ize the material as prepared, which we expect to be roughly

isotropic given the complexity of the mixing flow. This point

is also in favor of the use of a vane-in-cup geometry to study

the materials: the use of a vane allows the study of the prop-

erties of the prepared material with minimal disturbance of

the material structure during the insertion of the tool (Dzuy

and Boger 1983).

Finally, following Mahaut et al. (2008a), the procedure is

the following:

– a suspension is prepared as detailed is Sec. 3.1, and poured

into the cup of the vane-and-cup geometry. The vane tool

is then slowly inserted into the material.

– the elastic modulus G’ is determined through oscillatory

shear experiments. As we work with a controlled stress

rheometer, a shear stress is imposed rather than a shear

strain, in order to get accurately small deformations. The

oscillatory stress is imposed during 1 min at a 2 Hz fre-

quency. Its amplitude τ
0

depends on the sample and is

chosen so as to ensure that the strain induced on the

tested material is lower than 10−3 and that all materi-

als are tested in their linear regime. The independence

of the results on the choice of τ
0

was checked on some

materials. We checked the independence of the results on

the frequency in the 0.1-10 Hz range: although the elas-

tic modulus G′(0) of the emulsion depends on the fre-

quency, the dimensionless modulus G′(φ)/G′(0) does

not significantly depend on it; the impact of bubbles is

thus properly accounted for. A more detailed study of a

possible frequency dependence (which can be expected

due to the presence of interfaces) is postponed to another

study.

– afterwards, we perform our yield stress measurement with

the vane method (Nguyen and Boger 1985; Liddell and

Boger 1996): a small rotational velocity, corresponding

to a 0.01 s−1macroscopic shear rate, is imposed on the

vane tool during 120 s. We checked that the same effect

of the bubbles on the yield stress is observed whatever
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Fig. 2 (a) Elastic modulus G’ vs. time after loading when an oscilla-

tory shear stress of amplitude τ
0
= 0.35 Pa is applied at a frequency of

2 Hz to a pure emulsion (crosses), a suspension of bubbles in the emul-

sion (filled squares), and in the interstitial emulsion of the suspension

(diluted emulsion, empty squares). The bubble volume fraction in the

suspension is 43%, the bubble size is 320 µm. (b) Shear stress vs. shear

strain when slowly shearing the same materials from rest at 10−2s−1.

the low velocity that is chosen to drive the vane tool.

We also checked that the elasticity measurement is non-

perturbative: the same yield stress is measured if a zero

stress is imposed instead of oscillations before the yield

stress measurement

– finally, as the yield stress measurement may induce mi-

gration, bubble rising and microstructure anisotropy, any

new measurement requires new sample preparation.

Fig. 2 shows raw elastic and yield stress measurements

performed in a pure emulsion, in a suspension of 320 µm

bubbles (made by adding foam to this last emulsion) and in

its corresponding interstitial emulsion (made by adding only

surfactant solution to the emulsion). G′ remains constant in

time, consistent with the nonthixotropic character of emul-

sions. This indicates that the only impact of adding surfac-

tant solution and bubbles to the emulsion is a change in the

G′ value: no new significant mechanism of aging has arisen.

The elastic modulus G′ of the material is thus unambigu-

ously defined from this experiment; we study its dependence

on the material composition in Sec. 4.

On the stress vs. strain plot during the yield stress mea-

surement (Fig. 2b), there is first a linear increase of stress

with strain: this corresponds to the elastic deformation of the

material. There is then a well-defined plateau, corresponding

to the plastic flow at low shear rate (we checked that viscous

effects are here negligible), as usually observed in simple

yield stress fluids. This plateau defines unambiguously the

yield stress τy of the materials; its dependence on the mate-

rial composition is studied in Sec. 5.

As observed in Fig.2, the uncertainty on the measure-

ment of the elastic modulus and of the yield stress of a given

sample is very low (less than 1%). The uncertainty on the

suspension mechanical properties mostly comes from the

reproducibility of the whole sample preparation procedure

(and most probably from the dilution of the interstitial emul-

sion). Since the liquid fraction in the aqueous foam is not

controlled, our procedure does not allow us to obtain several

samples at the same exact bubble volume fraction. We are

thus not able to evaluate rigorously this uncertainty. Nev-

ertheless, from several couples of data obtained in materials

prepared at approximately the same volume fraction, we can

evaluate the uncertainty on the suspension elastic modulus

and yield stress to be of order 5%.

4 Elastic modulus

4.1 Mixtures of foam and emulsion

In this section, we first study the cases where suspensions

of increasing bubble volume fraction are obtained by adding

foam to a given emulsion in increasing foam to emulsion

mass ratios. We recall that each suspension is compared to

the emulsion surrounding the bubbles, made by adding only

surfactant solution to the initial emulsion (see Sec. 3.1, Fig. 1).

In Fig. 3a we plot the values of the elastic modulus G′

measured in suspensions of 320 µm bubbles and in their cor-

responding interstitial emulsion, as a function of the bubble

volume fraction φ in the suspension. As expected from the

dilution of the material by the surfactant solution, the more

foam we incorporate (i.e., as φ increases), the lower the

elastic modulus of the interstitial fluid gets. In concentrated

emulsions, G′ is actually known to be a monotonic increas-

ing function of the droplet volume fraction above the jam-

ming packing fraction φm (Mason et al. 1995) and to tend

to zero at φm. The inset of Fig. 3a shows the elastic modu-

lus of the interstitial emulsion replotted as a function of the

droplet volume fraction φd in the emulsion (higher quanti-

ties of foam added to the system, and thus higher bubble

volume fraction φ in the suspension, corresponds to lower

values of φd); the observed behavior is consistent with the

law proposed by Mason et al. (1995).

The elastic moduli of the bubble suspensions are all sig-

nificantly lower than those of the interstitial emulsions. This

means that the impact of adding foam is twofold: (i) there is

a decrease of the elastic modulus of the interstitial fluid due

to its dilution, and (ii) there is an additional decrease of the
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Fig. 3 (a) Elastic modulus vs. bubble volume fraction for the suspensions of bubbles in the emulsion (filled squares), and for the emulsions

surrounding the bubbles in the suspensions (diluted emulsions, empty squares). (b) Dimensionless elastic modulus g(φ ) vs. bubble volume fraction

φ . The bubble size is 320 µm. It is recalled that an increasing φ corresponds to an increasing quantity of foam added to the emulsion, and to a

lower droplet volume fraction in the interstitial emulsion. Inset: elastic modulus G′
i of the interstitial emulsion vs. oil droplet volume fraction φd in

the emulsion. The line is a fit to the φd(φd −φm) scaling proposed by Mason et al. (1995) with φm = 65%.
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Fig. 4 Dimensionless elastic modulus g(φ ) vs. bubble volume fraction

φ , for suspensions of bubble diameter d = 320µm (squares), 260µm

(empty circles), 230µm (up triangles), 210µm (empty down triangles),

and 110µm (diamonds). The dotted line is a g(φ ) = 1−0.75∗φ equa-

tion. The full lines correspond to, from bottom to top: the theoretical

value of g(φ ) for suspensions of fully deformable bubbles in the dilute

limit (Eq. 9), the theoretical upper bound for isotropic suspensions of

fully deformable bubbles (Eq. 10), and the theoretical value of g(φ ) for

suspensions of nondeformable bubbles in the dilute limit (Eq. 8).

modulus of the suspension due to the addition of bubbles. To

quantify the decrease due solely to the presence of bubbles,

we plot the dimensionless elastic modulus g(φ) = G′(φ)/G′
i

vs. bubble volume fraction φ in Fig. 3b; here, G′
i is the elastic

modulus of the interstitial emulsion corresponding to each

suspension, i.e., accounting for dilution effects. In this sys-

tem (suspension of 320 µm bubbles), g(φ) is found to de-

crease regularly (basically linearly) when φ increases. E.g.,

for 75% of bubbles, G′ is decreased by a factor 2 due to the

presence of bubbles.

In Fig. 4, we now plot all the dimensionless moduli g(φ)

determined in the suspensions of bubbles of diameter d vary-

ing between 110 and 320 µm. Two behaviors are observed.

(i) For a volume fraction φ lower than a critical value φc(d)

that depends on d, g(φ) decreases with increasing φ , and, at

first glance, all the data seem to collapse onto a roughly lin-

ear curve. (ii) Above φc(d), g(φ) is found to increase with

φ , and the way it increases depends strongly on d. At the

highest volume fraction reached in all systems, the elastic

modulus of the bubble suspension is up to 35% higher than

that of the interstitial emulsion.

4.2 Role of bubble deformability

Let us now try to understand this behavior. As explained in

Sec 2, a decrease of the elastic modulus when the bubble

volume fraction is increased is the signature of bubble de-

formability under shear. The fact that G′ changes from de-

creasing to increasing with φ around a critical value φc(d)

would then mean that bubbles are changed from deformable

to nondeformable when the bubble volume fraction is in-

creased. This is a priori surprising as the ability of the bub-

bles to be deformed under shear should not depend on φ

(as long as the material is not in a ‘foam’ regime). How-

ever, it should be recalled that, with the procedure used here

to prepare the material, increasing values of φ imply de-

creasing values of the interstitial material elastic modulus

G′
i (Fig. 3a). This suggests that the transition is driven by

the elastic capillary number Ca
G
=G′

i/(2σt/d), which com-

pares the material and bubble stiffnesses (Sec. 2.2).

To go one step further, we thus plot the Ca
G

values vs.

the bubble volume fraction φ for all the studied systems

(Fig. 5); it is assumed here that the surface tension σt be-

tween the gas bubbles and the emulsion takes the value of

the air/surfactant solution surface tension. At low φ , we ob-

serve that Ca
G

is of order of a few units, consistent with

the decrease of G′(φ) with φ : the bubbles behave as soft

inclusions (they are deformable). Below a critical value of
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Fig. 5 Elastic capillary number Ca

G
vs. bubble volume fraction φ , for

suspensions of bubble diameter d = 320µm (squares), 260µm (empty

circles), 230µm (up triangles), 210µm (empty down triangles), and

110µm (diamonds), in the experiments of Fig. 4. The empty stars are

Ca
G
(φ ) values corresponding to g(φ ) = 1 (interpolated from Fig. 4),

i.e., to the transition from soft to stiff bubbles. The crosses are Ca
G
(φ )

values below which g(φ ) data do not collapse anymore onto a single

curve in Fig. 4.

Ca
G

that is expected to be of order unity, bubbles should

progressively behave as rigid inclusions; from Fig. 5, this

should happen above a volume fraction φ ′
c(d) that depends

on d, which may explain a the d-dependent rise of G′(φ) at

high φ . To show that this mechanism may account for our

results, we plot in Fig. 5 the Ca
G
(φ) values corresponding

to g(φ) = 1, i.e., to the transition from soft to stiff bubbles;

these values are interpolated from Fig. 4. A constant criti-

cal capillary number ≃ 0.5 seems to characterize this tran-

sition; we will come back onto this point below. In Fig. 5,

we also plot the Ca
G
(φ) values below which g(φ) data do

not collapse anymore onto a single curve in Fig. 4. Again,

a roughly constant capillary number seems to characterize

a change in the elastic behavior; here, it likely marks the

transition to a regime where the behavior strongly depends

on Ca
G

. Note that this approach seems to work at bubble

volume fraction φ as high as 80%, although the elastic cap-

illary number is not expected to play exactly the same role

in the ‘foam’ regime, for φ higher than ≃ 64%, as in the

‘suspension’ regime. Things can indeed be more complex in

a ‘foamy yield stress fluid’, as bubbles have to be deformed

for purely geometrical reasons.

In the regime where bubble deformability is likely to

be important, the dimensionless elastic modulus g(φ) does

not follow the theoretical law for suspensions of fully de-

formable bubbles in the dilute limit (Eq. 9): a −5/3 slope is

indeed expected at low φ whereas a slope of order of −3/4

is observed (Fig. 4). Moreover the data fall above the theo-

retical upper bound of Mori-Tanaka (Eq. 10), expected to be

valid for bubbles with no surface tension. This indicates that

we are not in the limit where bubbles are fully deformable

and that elasticity must be stored in the interfaces due to sur-

face tension. This naturally leads to an increased rigidity of

the system as compared to the case with no surface tension;

a theoretical upper bound for this case still has to be com-

puted. This observation is consistent with the fact that the

elastic capillary number Ca
G

is only of the order of a few

units in all the studied systems (Fig. 5a).

At the lowest Ca
G

values, although the bubbles are ex-

pected to start behaving as stiff inclusions, the dimension-

less elastic modulus g(φ) is well below the theoretical law

for suspensions of nondeformable bubbles in the dilute limit

(Eq. 8). This would mean that the bubbles are far from their

nondeformability limit, consistent with the fact that Ca
G

is

only slightly less than unity in these cases.

4.3 Suspensions of bubbles at fixed capillary number

To better show that the elastic behavior is controlled by Ca
G

and to quantify the impact of a change in Ca
G

on the value

of g(φ), we now study suspensions of bubbles prepared with

the same interstitial emulsion (of elastic modulus G′

0
=285 Pa)

between the bubbles at any d and φ (see Sec. 3, Fig. 1b). For

a given bubble size, the g(φ) curve is then characteristic of a

given value of Ca
G

. We study suspensions made of bubbles

of three different diameters: 100µm, 300µm, and 1.6 mm;

they are characterized by capillary numbers Ca
G

equals re-

spectively to 0.4, 1.2, and 6.3. Only data for φ < 60% are

shown: we do not study foams.

In Fig. 6a, we observe that the behavior depends signifi-

cantly on Ca
G

. In the three studied systems, g(φ) decreases

with φ , and decreases more and more with φ as Ca
G

is in-

creased3. A linear fit to the data (with g(0)= 1) yields slopes

equal to -0.17, -0.72, and -1.1 for increasing values of Ca
G

;

we recall that, for fully deformable bubbles, the slope is ex-

pected to be equal to -1.66 in the dilute limit.

The behavior at the lowest value of Ca
G

investigated

here (0.4) is close to a g(φ)≃ 1 curve. This confirms the ob-

servations on Fig.4, where g(φ)≃ 1 was obtained for Ca
G
≃

0.5 at different bubble diameters (see Fig. 5). In this case, the

bubbles then seem to behave as equivalent elastic spheres of

elastic modulus equal to that of the interstitial material; this

may mean that in general bubbles behave as equivalent elas-

tic particles of modulus G′
eq equal to the capillary pressure

4σt/d. At the highest value of Ca
G

investigated, the g(φ)

curve falls slightly above the theoretical upper bound for

bubbles with no surface tension (Eq. 10). This suggests that

the bubbles do not behave yet as fully deformable bubbles,

but they may be close to this asymptotic limit.

3 Since the elastic moduli of the three systems are measured in the

linear regime where their behavior does not depend on the strain am-

plitude, we also note that different g(φ ) values can be obtained for a

same value of Caτ (see Eq. 13); this shows that Caτ is not a relevant

parameter in this regime.
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Fig. 6 (a) Dimensionless elastic modulus g(φ ) =G′(φ )/G′(0) vs. bub-

ble volume fraction φ , for suspensions of bubble diameter d = 100µm

(squares), 300µm (empty circles), and 1.6 mm (triangles), in an emul-

sion of elastic modulus G′(0) = 285 Pa. The full lines correspond to,

from bottom to top: the theoretical value of g(φ ) for suspensions of

fully deformable bubbles in the dilute limit (Eq. 9) and the theoreti-

cal upper bound for isotropic suspensions of fully deformable bubbles

(Eq. 10); the dotted lines are linear fits to the data (their slopes are,

from top to bottom: -0.17, -0.72, -1.1). (b) Dimensionless elastic mod-

ulus g(φ ) vs. elastic capillary number Ca
G

at different volume frac-

tion (diamonds): φ ≃ 11 − 12% (black), φ ≃ 23− 26% (dark grey),

φ ≃ 32 − 34% (medium grey), φ ≃ 45 − 49% (light grey); crosses

are dimensionless viscosities measured in suspensions of bubbles in a

Newtonian fluid vs. viscous capillary number Caη at φ = 11.5% (data

replotted from Rust and Manga (2002a)); the dashed lines are the phe-

nomenological expression proposed by Rust and Manga (2002a) (Eq. 9

of their paper) for φ = 11.5% and φ = 47.5%; the dotted line is the phe-

nomenological expression proposed by Pal (2004) (Eqs. 12 and 35-38

of the paper) for φ = 47.5%.

In Fig. 6b, we now plot the dimensionless elastic modu-

lus g(φ) as a function of the capillary number Ca
G

for dif-

ferent constant bubble volume fractions φ . Given the limited

amount of data, and the difficulty to target the exact same

value of φ in different systems, this plot is rather qualitative;

data are indeed plotted for φ values in four different inter-

vals: between 11 and 12%, between 23 and 26%, between 32

and 34%, and between 45 and 49%. It is observed that g(φ)

varies smoothly with Ca
G

. This evolution can be compared

to that observed by Rust and Manga (2002a) for suspensions

of bubbles in Newtonian fluids: the dimensionless viscosi-

ties they have measured at φ = 11.5% are plotted vs Caη in

Fig. 6b, together with the empirical function they have pro-

posed to account for their data and for other data of the lit-

erature; the equation proposed by Pal (2004) is also shown.

The Rust and Manga (2002a) data decrease more rapidly

with Caη than ours do with Ca
G

for the same value of φ , and

the g(φ) evolution predicted by both the Rust and Manga

(2002a) and the Pal (2004) empirical equations at high φ is

much more abrupt than that we observe. Note however that

several issues prevent from an in-depth comparison. (i) Rust

and Manga (2002a) data were obtained on polydisperse sys-

tems, and only up to φ = 16%. (ii) We are not aware of other

data obtained at intermediate Ca
G

values in the literature; at

high φ , the Rust and Manga (2002a) and Pal (2004) equa-

tions have been fitted only to the asymptotic viscosities cor-

responding to nondeformable and fully deformable bubbles.

It thus seems that the behavior of concentrated suspensions

of bubbles in a Newtonian fluid at capillary number of or-

der unity is not yet known. (iii) The two studied problems

are not exactly the same: in steady-state flows, bubbles are

deformed by shear and reach a steady shape. Here, the bub-

bles are only slightly deformed by the low amplitude oscilla-

tory measurement: although they behave as soft deformable

particles, they remain basically spherical. Further theoretical

work is needed to better understand this difference.

The smooth variation of the dimensionless modulus with

Ca
G

observed in Fig. 6b explains the apparent data collapse

in the first series of experiments (Fig. 4): although data cor-

responded to different capillary numbers (Fig. 5), those were

ranging only between 1 and 2.5; consistently, the -0.75 slope

observed for the line onto which data collapse in Fig. 6b is

close to the slope here observed for a constant Ca
G

=1.2.

Note that it was not possible to study systems of lower

Ca
G

value. Lower values of the bubble size would indeed

pose finite size effects problems as scale separation between

bubbles/droplets would not be ensured anymore. Emulsions

of lower elastic modulus should have a higher droplet size,

which poses again finite size effect problems, or a lower

droplet volume fraction, which poses the problem of repro-

ducibility of the systems preparation (the emulsion elastic

modulus is highly sensitive to a change of the droplet vol-

ume fraction at the approach of its jamming packing frac-

tion). In future works, a possible way to prepare materials

at lower Ca
G

may be to use surfactants that would lower

the oil/water interfacial tension significantly more than the

air/water surface tension. It was also not possible to study

systems of higher Ca
G

value because bubbles tends to be

broken by the mixing process in such systems (see next sec-

tion). In the future, it will be necessary to use a new prepara-

tion method to disperse homogeneously bubbles in an emul-

sion without mixing.
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Fig. 7 (a) Yield stress vs. bubble volume fraction for the suspensions of bubbles in the emulsion (filled squares), and for the emulsions surrounding

the bubbles in the suspensions (diluted emulsions, empty squares). (b) Dimensionless yield stress τy(φ )/τy,i vs. bubble volume fraction φ . The

bubble size is 320 µm. It is recalled that increasing φ corresponds to an increasing quantity of foam added to the emulsion, and to a lower droplet

volume fraction in the interstitial emulsion. Inset: yield stress τy,i of the interstitial emulsion vs. oil droplet volume fraction φd in the emulsion.

The line is a fit to the (φd −φm)
2 scaling proposed by Mason et al. (1996) with φm = 65%.

5 Yield stress

5.1 Mixtures of foam and emulsion

As in Sec. 4, we first study the cases in which suspensions

of increasing bubble volume fraction are obtained by adding

foam to a given emulsion in increasing foam to emulsion

mass ratios.

Fig. 7a shows the yield stress values τy measured in sus-

pensions of 320 µm bubbles and in their corresponding in-

terstitial emulsion, as a function of the bubble volume frac-

tion φ in the suspension. Because of its dilution by the sur-

factant solution brought in by the foam, as already observed

for the elastic modulus, the yield stress of the interstitial

fluid decreases when the quantity of foam incorporated in

the emulsion is increased (i.e., when φ increases). The inset

of Fig. 7a shows the yield stress of the interstitial emulsion

replotted as a function of the droplet volume fraction in the

emulsion; our data are consistent with the observations of

Mason et al. (1996) and with the empirical law they propose

to model the yield stress of concentrated emulsions.

The yield stress of the bubble suspensions is found to

decrease with φ similarly to that of the interstitial emulsion.

This would mean that, as regards its plastic properties, the

main impact of adding a foam to the material is to dilute

the interstitial fluid. The impact of the presence of bubbles

can be more precisely evaluated by plotting the suspension

dimensionless yield stress τy(φ)/τy,i vs. bubble volume frac-

tion φ (Fig. 7b); here, τy,i is the yield stress of the interstitial

emulsion corresponding to each suspension, i.e., accounting

for dilution effects. In this system (suspension of 320 µm

bubbles), up to φ = 80%, τy(φ)/τy,i is found to remain ba-

sically constant and equal to 1. A significant increase of

τy(φ)/τy,i is observed only at the highest volume fraction

(85%).
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Fig. 8 Dimensionless yield stress τy(φ )/τy,i vs. bubble volume frac-

tion φ , for suspensions of bubble diameter d = 320µm (squares),

260µm (empty circles), 230µm (up triangles), 210µm (empty down

triangles), and 110µm (diamonds). The full lines correspond to, from

bottom to top: the theoretical value of τy(φ )/τy,i for suspensions of

fully deformable bubbles in the dilute limit (Eq. 15), and the theoret-

ical value of τy(φ )/τy,i for suspensions of nondeformable bubbles in

the dilute limit (Eq. 14).

In Fig. 8, we plot the dimensionless yield stresses deter-

mined for all our suspensions, of bubble diameter d varying

between 110 and 320 µm. Two behaviors are observed. (i)

For volume fractions φ lower than a critical value φ ′
c(d) that

depends on d, all the data seem to collapse onto a single line:

τy(φ)/τy,i is basically constant and equal to 1, i.e., the yield

stress of the suspensions is equal to that of their interstitial

emulsion. (ii) Above φ ′
c(d), τy(φ)/τy,i is found to increase

with φ , in a way that depends on d. In this last regime, the

yield stress of the suspension can be up to 3.7 times higher

than that of the interstitial emulsion. In the following, we

first focus on the first regime.
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Fig. 9 Dimensionless yield stress τy(φ )/τy(0) vs. bubble volume frac-

tion φ , for suspensions of bubble diameter d = 100µm (squares),

300µm (empty circles), and 1.6 mm (triangles), in an emulsion of yield

stress τy(0) = 9 Pa. The dashed lines correspond to, from bottom to

top: the theoretical value of τy(φ )/τy(0) for suspensions of fully de-

formable bubbles in the dilute limit (Eq. 15), and the theoretical value

of τy(φ )/τy(0) for suspensions of nondeformable bubbles in the dilute

limit (Eq. 14).

5.2 Role of deformability

As shown in Sec 2, a value of τy(φ)/τy(0) ≈ 1 is expected

for nondeformable bubbles in a yield stress fluid (Eq. 14),

whereas a strong decrease (with a slope -4/3) should be ob-

served for deformable bubbles4 (Eq. 15). Although the elas-

tic modulus of these suspensions decreases with φ , this anal-

ysis suggests that, for φ < φ ′
c(d), bubbles are not deformed

at yield. This is fully consistent with the values of the yield

capillary number Caτy = τy/(2σt/d) of the studied materi-

als, which are all small – of order 0.01 to 0.1. It thus seems

that the elastic and plastic behaviors of the bubble suspen-

sions are governed by two independent capillary numbers.

To confirm that the behavior is controlled by Caτy , we

now study suspensions of bubbles prepared with a same in-

terstitial emulsion surrounding the bubbles at any φ (see

Sec. 3). In Fig. 9, we first present the dimensionless yield

stresses measured in suspensions of 100µm, 300µm and

1.6 mm bubbles in a 9 Pa yield stress emulsion; the corre-

sponding plastic capillary numbers are 0.01, 0.04, and 0.2.

We observe that all data are consistent with τy(φ)/τy(0) = 1,

meaning that up to Caτy ≃ 0.2, bubbles are not deformed by

shear.

To go one step further and to investigate the possibility

of a regime where bubbles are deformed by shear, we need

to increase the value of Caτy as much as possible, which can

be obtained by increasing the material yield stress and the

bubble diameter. We have prepared materials with the goal

of studying suspensions of 3 mm bubbles in emulsions of

9, 19, and 72 Pa yield stress (corresponding to target plas-

4 We remind that this should be strictly true in the dilute limit only:

we do not yet have a prediction for all values of φ .

tic capillary numbers of order 0.4, 0.8, and 3). In this end,

foams of 3 mm bubbles were mixed with emulsions of ini-

tial yield stress (before mixing) equal to 19 and 87 Pa (cor-

responding to initial capillary numbers of order 0.8 and 3.6).

Photographs of the aqueous foam and of the prepared bubble

suspensions are shown in Fig. 10; photograph of a suspen-

sion of 1.6 mm bubbles is also presented for comparison.

In the case of the suspension prepared with an aque-

ous foam of 1.6 mm diameter bubbles, it is observed that

the bubbles in the suspension have the same size as in the

aqueous foam. By contrast, all suspensions prepared with

an aqueous foam of 3 mm diameter bubbles are polydis-

perse: small bubbles have appeared, due to shear-induced

bubble rupture during the mixing process (we checked that

the air content in the suspension matches that brought in

by the foam into the emulsion). Moreover, the bubbles are

smaller for higher values of the initial emulsion yield stress

and of the final interstitial emulsion yield stress. This is con-

sistent with a mechanism of shear-induced bubble breakup,

which is expected to depend on the ability of the bubbles to

be deformed by shear. As for bubble and droplet breakup in

Newtonian fluids (Larson 1999), we expect this property to

be governed by a capillary number, the relevant one being

here the plastic capillary number Caτy
5. Consistently, in the

experiments of Fig. 10, the initial values of the plastic capil-

lary number leading to breakup are of order 0.8 to 3.6. It is

worth noting that the final capillary numbers of the prepared

suspensions, based on the smallest bubble size observable

on the pictures, is of order 0.2 in the 3 systems. Note also,

that the final dimensionless yield stress of the first 2 systems

is of order 1 (we could not get a reliable measurement of

this property in the third system, which was inhomogeneous

after mixing). It thus appears that (i) for Caτy values of order

0.2 or less, the bubbles behave as nondeformable inclusions

under shear and that the suspension yield stress is equal to

that of the interstitial emulsion, and that (ii) for initial values

of Caτy above a critical plastic capillary number of order 0.2,

bubbles are deformed and broken in the sheared suspension.

This might imply that, in any bubble suspension prepared by

mixing a foam and a paste, the final bubble size in the sys-

tem is always such that Caτy . 0.2, and that its yield stress is

equal to that of the interstitial paste. This possible important

feature has to be studied in more detail with well-controlled

mixing procedures.

5 If mixing is rapid and if viscous effects are important, for a consti-

tutive behavior of the form τ = τy + f (γ̇), the relevant number might

rather be
τy+ f (γ̇)
2σt /d

.
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Fig. 10 Top: Pictures of an aqueous foam made of 1.6 mm diameter bubbles (left) and of a suspension of 1.6 mm bubbles made by mixing the

foam with a 19 Pa yield stress emulsion (final interstitial emulsion yield stress: 9 Pa) [same scale for both images]. Bottom: Pictures of an aqueous

foam made of 3 mm diameter bubbles (left) and of a suspension of 3 mm bubbles made by mixing the foam with (from left to right): a 19 Pa yield

stress emulsion (final interstitial emulsion yield stress: 9 Pa), a 87 Pa yield stress emulsion (final interstitial emulsion yield stress: 19 Pa), and a

87 Pa yield stress emulsion (final interstitial emulsion yield stress: 72 Pa) [same scale for the 4 images].

5.3 Behavior at high φ : ‘foam’ regime and role of finite

size effects

We finally come back onto the abrupt increase of the bub-

ble suspension yield stress observed at high volume frac-

tion (Fig. 4). An increase of τy with φ above a d-dependent

critical value φ ′
c(d) is a priori surprising as all our results

are consistent with bubbles behaving as rigid inclusions at

low and moderate φ values, the plastic capillary number be-

ing small; the decrease of Caτy with φ due to the interstitial

emulsion dilution is thus not expected to play any role here,

in contrast with what was observed with the elastic modulus.

Another mechanism should thus be proposed.

At high volume fraction, bubbles have to be deformed

for geometric reasons as in aqueous foams. This regime should

typically occur for φ > φ f with φ f ≈ 64% if films are al-

lowed to be as thin as possible. An important characteristic

of the studied system is that film thickness is here limited

by the microstructure of the emulsion: film thinning stops

when the oil droplets cannot be expelled anymore, which oc-

curs when the film thickness is of the order of a few droplet

diameters (Goyon et al. 2010). It is expected that flow of

the confined emulsion is harder to enforce than that of the

bulk material, due to its lack of disorder; this would explain

the increase in the suspension yield stress when reaching

this ‘foam’ regime. By contrast, this should not affect the

elastic properties of the material. As the minimum distance

between bubbles is fixed by the oil droplet size, the max-

imum packing fraction φ f (d) delimiting the ‘suspension’

and ‘foam’ regimes should depend on the bubble diameter d.

Noting e the minimum film thickness and dd the oil droplet

diameter, and assuming φ f ≈ 64% when d >> dd , φ f (d) can

actually be evaluated as φ f (d) = 0.64/(1+ e/d)3. Assum-

ing a minimum film thickness e ≈ 4dd (Goyon et al. 2010),

this yields φ f values ranging between 42% for the 110 µm

bubbles and 55% for the 320 µm bubbles. Note that the pro-

posed mechanism is probably not specific to suspensions of

bubbles in emulsions: the same might occur with any paste

since their microstructure is often of the order of 1 µm.

This minimum allowable film thickness has another im-

portant consequence, as pointed out by Goyon et al. (2010):

bubble suspensions cannot exist at volume fractions higher

than a d-dependent value φm(d) that is fixed by the mini-

mum film thickness e. This is the ‘dry’ limit of ‘foamy yield

stress fluids’. Assuming a structure of Kelvin cells in this

limit, Goyon et al. (2010) have evaluated φm ≈ 1− 1/(1+

0.3d/e); this would yield φm values ranging between 66%

for the 110 µm bubbles and 85% for the 320 µm bubbles.

This might explain why could not explore the same ranges

of volume fractions for different bubble sizes in our experi-

ments (see Figs. 4 and 8): we did not manage to study sus-

pensions of 110 µm bubbles at volume fractions higher than

≃ 55%, whereas suspensions of 320 µm bubbles were stud-

ied up to ≃ 85%.

6 Conclusion

We have studied the rheological behavior of mixtures of

foams and pastes. We have designed well-defined systems

by mixing monodisperse foams and monodisperse concen-

trated emulsions, characterized by large bubble to oil droplet

size ratios. These materials are model suspensions of bub-

bles in a yield stress fluid. We have shown that the elastic

and plastic behaviors of these materials are governed by two

different dimensionless numbers: the elastic capillary num-
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ber Ca
G

, which is the ratio of the paste elastic modulus to

the bubble capillary pressure, and the plastic capillary num-

ber Caτy , which is the ratio of the paste yield stress to the

bubble capillary pressure.

In our systems, Ca
G

ranges from 0.3 to 10 and the di-

mensionless elastic modulus of the material decreases with

the bubble volume fraction: bubbles behave as soft elastic

inclusions. This decrease is all the sharper as Ca
G

is high,

which accounts for the softening of the bubbles as compared

to the paste. The transition from soft to stiff bubbles seems

to occur at Ca
G
≃ 0.4. When mixing a foam and a paste, in

some conditions, two contradictory effects might thus be ob-

served as φ is increased: (i) a decrease of the elastic modulus

due to the dilution of the interstitial material by the surfac-

tant solution brought in by the foam, and (ii) an increase of

the dimensionless elastic modulus due to the consequent de-

crease of Ca
G

, if values lower than ≃ 0.4 are reached. Fur-

ther investigation is needed to cover a wider range of Ca
G

values and in particular to characterize the regime of stiff

bubbles. Theoretical developments based on micromechan-

ical approaches are in progress and should allow the mod-

elling of the elastic modulus as a function of the bubble vol-

ume fraction and of the elastic capillary number.

For Caτy values lower than≃ 0.2, the dimensionless yield

stress of the suspensions is found to be constant and equal to

1 in most cases, consistent with our predictions for the non-

linear behavior of suspensions of nondeformable bubbles.

We have tried to prepare systems with a target value of Caτy

larger than 0.2. Bubble breakup is observed during mixing

of these systems, and the final bubble size seems to be set

by the paste yield stress: it is smaller when the paste yield

stress is higher. This preliminary result is of high practical

importance: it might imply that, in any bubble suspensions

prepared by mixing a foam and a paste, the final bubble size

in the system is always such that Caτy . 0.2, and that its

yield stress is equal to that of the interstitial paste. Shear-

induced bubble breakup has to be studied in more detail as

a function of shear history, to better understand which sus-

pensions of bubbles are produced by a given mixing process.

To perform such studies, new procedures are needed to dis-

perse homogeneously unbroken bubbles of controlled size

in a given yield stress fluid at high values of the plastic cap-

illary number.

At high bubble volume fraction φ , we have observed a

regime where the yield stress increases abruptly with φ , the

transition volume fraction being lower for lower bubble to

droplet size ratio. This is understood as a ‘foamy yield stress

fluid’ regime, where the paste mesoscopic constitutive ele-

ments (here, the oil droplets) are strongly confined in the

films between the bubbles. We are currently conducting fur-

ther investigations to better characterize and understand this

regime, which is of the highest importance for practical is-

sues.
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