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A CONTINUOUS DYNAMICAL

NEWTON-LIKE APPROACH TO SOLVING

MONOTONE INCLUSIONS

H. ATTOUCH∗ † B. F. SVAITER ‡ §

March 8, 2011

Abstract

We introduce non-autonomous continuous dynamical systems which are linked
to the Newton and Levenberg-Marquardt methods. They aim at solving inclu-
sions governed by maximal monotone operators in Hilbert spaces. Relying on
the Minty representation of maximal monotone operators as lipschitzian man-
ifolds, we show that these dynamics can be formulated as first-order in time
differential systems, which are relevant to the Cauchy-Lipschitz theorem. By
using Lyapunov methods, we prove that their trajectories converge weakly to
equilibria. Time discretization of these dynamics gives algorithms providing
new insight into Newton’s method for solving monotone inclusions.
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1 Introduction

Let H be a real Hilbert space and T : H ⇉ H be a maximal monotone operator.
The space H is endowed with the scalar product 〈., .〉, with ‖x‖2 = 〈x, x〉 for any
x ∈ H. Our objective is to design continuous and discrete Newton-like dynamics
attached to solving the equation

find x ∈ H such that 0 ∈ Tx. (1)
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When T is a C1 operator with derivative T
′
, the classical Newton method generates

sequences (xk)k∈N verifying

T (xk) + T
′

(xk) (xk+1 − xk) = 0. (2)

When the current iterate is far from the solution it is convenient to introduce a
step-size ∆tk, and consider

T (xk) + T
′

(xk)

(

xk+1 − xk

∆tk

)

= 0. (3)

Unless restrictive assumptions on T are made, this is not a well-posed equation.
The Levenberg-Marquardt method consists in solving the regularized problem

T (xk) +
(

λkI + T
′

(xk)
)

(

xk+1 − xk

∆tk

)

= 0, (4)

where I is the identity operator on H, and (λk)k∈N
is a sequence of positive real

numbers. When T is the gradient of a convex potential, this algorithm can be viewed
as an interpolation between Newton’s method and the gradient method (when λk is
close to zero the algorithm is close to Newton’s method, for λk large it is close to a
gradient method). This algorithm has a natural interpretation as a time discretized
version of the continuous dynamical system

λ(t)ẋ(t) + T
′

(x(t)) ẋ(t) + T (x(t)) = 0, (5)

where ẋ(t) = dx
dt (t) is the derivative at time t of the mapping t 7→ x(t) (we use the

two notations, indifferently), and t 7→ λ(t) is a positive real-valued function (we shall
make precise the assumptions on λ(.) very soon).
By using the classical derivation rule for the composition of smooth mappings
d
dtT (x(t)) = T

′
(x(t)) ẋ(t), we can rewrite (5) as follows: find (x, v) solution of

the differential-algebraic system






v(t) = T (x(t)),

λ(t)ẋ(t) + v̇(t) + v(t) = 0.
(6)

Let us now consider a general maximal monotone operator T : H ⇉ H (one may
consult Brézis [8], Zeidler [29] for a detailed presentation of the theory of maximal
monotone operators in Hilbert spaces). Let us notice that the operator T is possi-
bly multivalued, and its domain domT ⊂ H may be a proper subset of H. The
corresponding differential-algebraic inclusion system,







v(t) ∈ T (x(t)),

λ(t)ẋ(t) + v̇(t) + v(t) = 0,
(7)

involves an inclusion instead of an equality in the first equation. In order to solve
this system we are going to reformulate it with the help of the Minty representation
of maximal monotone operators, see [20]. This representation makes use of JT

µ =

2



(I + µT )−1 the resolvent of index µ > 0 of T , and of Tµ = 1
µ

(

I − JT
µ

)

the Yosida

approximation of index µ > 0 of T . For any t ∈ [0,+∞) set µ(t) = 1
λ(t) , and

introduce the new unknown function z : [0,+∞) → H which is defined by

z(t) = x(t) + µ(t)v(t). (8)

Let us rewrite (7) with the help of (x, z). One first obtains (see section 2)

x(t) = JT
µ(t)(z(t)) (9)

v(t) = Tµ(t)(z(t)). (10)

In our context, this is the Minty representation of maximal monotone operators.
This representation fits well our study. Indeed, the second equation of (7) can be
reformulated as a classical differential equation with respect to z(·) (see section 2),
which gives

x(t) = JT
µ(t)(z(t)) (11)

ż(t) + (µ(t) − µ̇(t))Tµ(t)(z(t)) = 0. (12)

As a nice feature of system ((11)-(12)), let us stress the fact that the operators
JT

µ : H → H and Tµ : H → H are Lipschitz continuous, which makes this system
relevant to the Cauchy-Lipschitz theorem.
All along the paper, we shall pay particular attention to the case λ(t) → 0 as
t → +∞ (equivalently µ(t) → +∞ as t → +∞). In that case, one may expect
obtaining rates of convergence close to Newton’s method.

The paper is organized as follows: In section 2, assuming λ(.) to be locally
absolutely continuous, for any given Cauchy data x(0) = x0, v(0) = v0 ∈ T (x0),
we prove the existence and uniqueness of a strong global solution to system (7).
In section 3, we study the asymptotic behavior of the trajectories of this system.
Assuming that λ(t) does not converge too rapidly to zero as t→ +∞ (with, roughly
speaking, as a critical size, λ(t) = e−t), we prove that, for each trajectory (x(t), v(t))
of system (7), x(t) converges weakly to a zero of T , and v(t) converges strongly to
zero. In the autonomous case λ(t) ≡ λ0, we make the link with some classical results
concerning semi-groups of contractions generated by maximal monotone operators.
In section 4, we specialize our study to the subdifferential case T = ∂f , with f
convex lower semicontinuous, showing the optimizing properties of the trajectories.
In section 5, we examine the case λ(t) = λ0e

−t, which is the closest situation to
Newton’s dynamic allowed by our study. In section 6, we give some elementary
examples aiming at illustrating these dynamics. In section 7, we finally give an
application to numerical convex optimization.

Our approach, which can be traced back to the Levenberg-Marquardt regular-
ization procedure, seems original. In the case of convex optimization, it bears inter-
esting connections with the second-order continuous dynamic approach developed
by Alvarez, Attouch, Bolte, and Redont in [3], see also [4], [6] (Newton’s dynamic is
regularized by adding an inertial term, and a viscous damping term, which provides
a second-order dissipative dynamical system with Hessian-driven damping.) An-
other interesting regularization method (based on the regularization of the objective
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function) has been developed by Alvarez and Pérez in [2]. Among the rich literature
concerning Newton’s method and its links with continuous dynamical systems and
optimization, let us also mention Chen, Nashed and Qi [12], and Ramm [24].

As a rather striking feature of our approach, we can develop a Newton-like
method in a fairly general nonsmooth multivalued setting, namely for solving in-
clusions governed by maximal monotone operators in Hilbert spaces. This offers
interesting perspectives concerning applications ranging from optimal control to
variational inequalities and PDE’s.

2 Existence and uniqueness of global solutions

We consider the Cauchy problem for the differential inclusion system

v(t) ∈ T (x(t)), (13)

λ(t)ẋ(t) + v̇(t) + v(t) = 0, (14)

x(0) = x0, v(0) = v0 ∈ T (x0). (15)

First, we are going to define a notion of strong solution to the above system. Then we
shall reformulate this system with the help of the Minty representation of maximal
monotone operators. Finally, we shall prove the existence and uniqueness of a strong
solution to system ((13)-(14)-(15)) by applying the Cauchy-Lipschitz theorem to this
equivalent formulation.

2.1 Definition of strong solutions

Let us first recall some notions concerning vector-valued functions of a real variable
(see Appendix of [8]).

Definition 2.1. Given b ∈ R
+, a function f : [0, b] → H is said to be absolutely

continuous if one the following equivalent properties holds :
i) there exists an integrable function g : [0, b] → H such that

f(t) = f(0) +
∫ t
0 g(s)ds for all t ∈ [0, b] ;

ii) f is continuous and its distributional derivative belongs to the Lebesgue space
L1([0, b] ;H).

iii) for every ǫ > 0, there exists some η > 0 such that for any finite family of
intervals Ik = (ak, bk)

Ik ∩ Ij = ∅ for i 6= j and
∑

|bk − ak| ≤ η =⇒
∑

‖f(bk) − f(ak)‖ ≤ ǫ.

Moreover, an absolutely continuous function is almost everywhere differentiable, its
derivative almost everywhere coincide with its distributional derivative, and one can
recover the function from its derivative f ′ = g by integration formula i). Note that
the crucial property which makes the theory of absolutely continuous functions, as
described above, work with vector-valued functions, is the fact that the image space
H is reflexive, which is the case here (H is a Hilbert space).
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Definition 2.2. We say that a pair (x(·), v(·)) is a strong global solution of ((13)-
(14)-(15)) if the following properties i), ii), iii) and iv) are satisfied:

i) x(·), v(·) : [0,+∞) → H are continuous, (16)

and absolutely continuous on each bounded interval [0, b], 0 < b < +∞; (17)

ii) v(t) ∈ T (x(t)) for all t ∈ [0,+∞); (18)

iii) λ(t)ẋ(t) + v̇(t) + v(t) = 0 for almost all t ∈ [0,+∞); (19)

iv) x(0) = x0, v(0) = v0. (20)

This last condition makes sense because of the continuity property of x(.) and v(.).
Let us now make our standing assumption on function λ(·):

λ : [0,+∞) → (0,+∞) is continuous, (21)

and absolutely continuous on each interval [0, b], 0 < b < +∞. (22)

Hence λ̇(t) exists for almost every t > 0, and λ̇(·) is Lebesgue integrable on each
bounded interval [0, b]. We stress the fact that we assume λ(t) > 0, for any t ≥ 0.
By continuity of λ(·), this implies that, for any b > 0, there exists some positive
finite lower and upper bounds for λ(·) on [0, b], i.e., for any t ∈ [0, b]

0 < λb,min ≤ λ(t) ≤ λb,max < +∞. (23)

This fact will be of importance for proving existence of strong solutions.

2.2 Equivalent formulation involving a classical differential equa-

tion

In order to solve system ((13)-(14)-(15)) we use Minty’s device. Let us rewrite
the maximal monotone inclusion (13) by using the following equivalences: for any
t ∈ [0,+∞)

v(t) ∈ T (x(t)) ⇔ (24)

x(t) +
1

λ(t)
v(t) ∈ x(t) +

1

λ(t)
T (x(t)) ⇔ (25)

x(t) =

(

I +
1

λ(t)
T

)−1(

x(t) +
1

λ(t)
v(t)

)

. (26)

Set µ(t) = 1
λ(t) . Let us introduce the new unknown function z : [0,+∞) → H which

is defined for any t ∈ [0,+∞) by

z(t) = x(t) +
1

λ(t)
v(t) = x(t) + µ(t)v(t) (27)

and rewrite system ((13)-(14)-(15)) with the help of (x, z). From (26) and (27)

x(t) = (I + µ(t)T )−1(z(t))

v(t) =
1

µ(t)

(

z(t) − (I + µ(t)T )−1(z(t))
)

.
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Equivalently,

x(t) = JT
µ(t)(z(t)) (28)

v(t) = Tµ(t)(z(t)), (29)

where JT
µ = (I + µT )−1 and Tµ = 1

µ

(

I − JT
µ

)

are respectively the resolvent and the
Yosida approximation of index µ > 0 of T . Indeed, this is Minty’s representation of
maximal monotone operators, see [20]. In a finite dimensional setting, this technique
has been developed by Rockafellar in [26]: he shows that a maximal monotone
operator can be represented as a lipschitzian manifold, which allows him to define
second-order derivatives of convex lower semicontinuous functions.
Let us show how (14) can be reformulated as a classical differential equation with
respect to z(·). First, let us rewrite (14) as

ẋ(t) + µ(t)v̇(t) + µ(t)v(t) = 0. (30)

Differentiating (27) and using (30 ) we obtain

ż(t) = ẋ(t) + µ(t)v̇(t) + µ̇(t)v(t) (31)

= −µ(t)v(t) + µ̇(t)v(t). (32)

From (29) and (32) we deduce that

ż(t) + (µ(t) − µ̇(t))Tµ(t)(z(t)) = 0. (33)

Finally, the equivalent (x, z) system can be written as

x(t) = JT
µ(t)(z(t)) (34)

ż(t) + (µ(t) − µ̇(t))Tµ(t)(z(t)) = 0. (35)

As a nice feature of system ((34)-(35)), let us stress the fact that the operators
JT

µ : H → H and Tµ : H → H are everywhere defined and Lipschitz continuous,
which makes this system relevant to the Cauchy-Lipschitz theorem.

2.3 Global existence and uniqueness results

System ((34)-(35)) involves time-dependent operators JT
µ(t) and Tµ(t). In order to

establish existence results for the corresponding evolution equations, let us study
the regularity properties of the mappings µ 7→ JT

µ x and µ 7→ Tµx.

Proposition 2.3. For any λ > 0, µ > 0 and any x ∈ H, the following properties
hold:

i) JT
λ x = JT

µ

(µ

λ
x+

(

1 −
µ

λ

)

JT
λ x
)

; (36)

ii) ‖JT
λ x− JT

µ x‖ ≤ |λ− µ| ‖Tλx‖. (37)

As a consequence, for any x ∈ H and any 0 < δ < Λ < +∞, the function µ 7→ JT
µ x

is Lipschitz continuous on [δ,Λ]. More precisely, for any λ, µ belonging to [δ,Λ]

‖JT
λ x− JT

µ x‖ ≤ |λ− µ| ‖Tδx‖. (38)
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Proof. i) Equality (36) is known as the resolvent equation. It is a classical result,
see for example [8].

ii) For any λ > 0, µ > 0 and any x ∈ H, by using successively the resolvent
equation and the contraction property of the resolvents, we have

‖JT
λ x− JT

µ x‖ = ‖JT
µ

(µ

λ
x+

(

1 −
µ

λ

)

JT
λ x
)

− JT
µ x‖

≤ ‖
(

1 −
µ

λ

)

(

x− JT
λ x
)

‖

≤ |λ− µ| ‖Tλx‖.

Using that λ 7→ ‖Tλx‖ is decreasing, see ([8], Proposition 2.6), we obtain (38).

Theorem 2.4. Let λ : [0,+∞) → (0,+∞) be a continuous function which is ab-
solutely continuous on each bounded interval [0, b] , b > 0. Set µ(t) = 1

λ(t) . Let

(x0, v0) ∈ H ×H be such that v0 ∈ T (x0). Then the following properties hold:

1. there exists a unique strong global solution (x(·), v(·)) : [0,+∞) → H ×H of
the Cauchy problem ((13)-(14)-(15));

2. the solution pair (x(·), v(·)) of ((13)-(14)-(15)) can be represented as: for any
t ∈ [0,+∞),

x(t) = JT
µ(t)(z(t)) (39)

v(t) = Tµ(t)(z(t)), (40)

where z(.) : [0,+∞) → H is the unique strong solution of the Cauchy problem

ż(t) + (µ(t) − µ̇(t))Tµ(t)(z(t)) = 0, (41)

z(0) = x0 + µ(0)v0. (42)

Proof. 1) Let us first prove existence and uniqueness of a strong global solution of the

Cauchy problem ((41)-(42)). By the definition of µ(t) = 1
λ(t) , we have µ̇(t) = − λ̇(t)

λ2(t)
.

Thus, (41) can be written as

ż(t) +

(

1 +
λ̇(t)

λ(t)

)

1

λ(t)
T 1

λ(t)
(z(t)) = 0, (43)

which is equivalent to
ż(t) = F (t, z(t)) (44)

with

F (t, z) = θ(t)G(t, z), (45)

θ(t) = −

(

1 +
λ̇(t)

λ(t)

)

, (46)

G(t, z) =
1

λ(t)
T 1

λ(t)
(z). (47)
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In order to apply the Cauchy-Lipschitz theorem to (44), let us first examine the
Lipschitz continuity properties of F .

a) For any t ≥ 0, G(t, .) : H → H is a contraction, i.e., for any zi ∈ H, i = 1, 2

‖G(t, z2) −G(t, z1)‖ ≤ ‖z2 − z1‖, (48)

and, as a consequence,

‖F (t, z2) − F (t, z1)‖ ≤ |θ(t)|‖z2 − z1‖. (49)

By the definition of θ(·)

|θ(t)| ≤ 1 + |
λ̇(t)

λ(t)
|. (50)

Since λ̇(·) is locally integrable and λ(·) is bounded away from zero on any bounded
interval, (50) shows that

θ(·) ∈ L1([0, b]) for any 0 < b < +∞. (51)

b) Let us show that

∀z ∈ H, ∀b > 0, F (., z) ∈ L1([0, b]). (52)

By (23), for any t ∈ [0, b], we have 0 < λb,min ≤ λ(t) ≤ λb,max < +∞. Returning to
the definition (45) of F , we deduce that

‖F (t, z)‖ ≤

(

1 +
|λ̇(t)|

λb,min

)

1

λb,min
‖T 1

λb,max

z‖. (53)

Using again the the local integrability of λ̇(·) we obtain (52).
From properties (49), (51), and (52), we deduce the existence and uniqueness

of a strong global solution of differential equation (44), with given Cauchy data.
To that end, we use the version of the Cauchy-Lipschitz theorem relying on the
integrability of t 7→ F (t, x), and involving absolutely continuous trajectories, see for
example ([17], Proposition 6.2.1.), ([28], Theorem 54).

2) Let us now return to the initial problem. Given z(.) : [0,+∞) → H which is
the unique strong solution of Cauchy problem ((41)-(42)), let us define x(.), v(.) :
[0,+∞) → H by

x(t) = JT
µ(t)(z(t)), v(t) = Tµ(t)(z(t)). (54)

a) Let us show that x(·), v(·) are absolutely continuous on each bounded interval,
and satisfy system ((13)-(14)-(15)). Let us give arbitrary z1 ∈ H, z2 ∈ H and
µ1 > 0, µ2 > 0. Combining Proposition 2.3 and the contraction property of the
resolvents, we obtain

‖JT
µ2

(z2) − JT
µ1

(z1)‖ ≤ ‖JT
µ2

(z2) − JT
µ2

(z1)‖ + ‖JT
µ2

(z1) − JT
µ1

(z1)‖ (55)

≤ ‖z2 − z1‖ + |µ2 − µ1| ‖Tµ1z1‖. (56)
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Assuming that s, t ∈ [0, b], by taking z1 = z(s), z2 = z(t) and µ1 = µ(s), µ2 = µ(t)
in (56), and with the same notations as before (for any t ∈ [0, b], 0 < λb,min ≤ λ(t) ≤
λb,max < +∞), setting more briefly Λ = λb,max, we obtain

‖JT
µ(t)(z(t)) − JT

µ(s)(z(s))‖ ≤ ‖z(t) − z(s)‖ + |µ(t) − µ(s)| ‖Tµ(t)z(t)‖ (57)

≤ ‖z(t) − z(s)‖ + |µ(t) − µ(s)| ‖T 1
Λ
(z(t)‖. (58)

Noticing that ‖T 1
Λ
(z(t)‖ ≤ ‖T 1

Λ
(0)‖+Λ‖z(t)‖ remains bounded on [0, b], and owing to

the absolute continuity property of z(.) and µ(.), we deduce that x(t) = JT
µ(t)(z(t))

is absolutely continuous on [0, b] for any b > 0. The same property holds true
for v(t) = Tµ(t)(z(t)) = λ(t) (z(t) − x(t)), because λ(.) is absolutely continuous on
[0, b] for any b > 0, and the product of two absolutely continuous functions is
still absolutely continuous (see [9], Corollaire VIII.9). Indeed this last property is a
straight consequence of Definition (2.1; iii) of absolute continuity.
Moreover, for any t ∈ [0,+∞)

v(t) ∈ T (x(t)), z(t) = x(t) + µ(t) v(t).

Differentiation of the above equation shows that for almost every t > 0

ẋ(t) + µ(t)v̇(t) + µ̇(t)v(t) = ż(t).

On the other hand, owing to v(t) = Tµ(t)(z(t)), (41) can be equivalently written as

ż(t) + (µ(t) − µ̇(t)) v(t) = 0.

Combining the two above equations we obtain

ẋ(t) + µ(t)v̇(t) + µ(t)v(t) = 0.

As µ(t) = λ(t)−1, we conclude that (x(·), v(·)) is a solution of system ((13)-(14)-
(15)).
Regarding the initial condition, let us observe that

z(0) = x0 + µ(0)v0, (59)

= x(0) + µ(0)v(0), (60)

with v0 ∈ T (x0) and v(0) ∈ T (x(0)). Hence

x(0) = x0 = (I + µ(0)T )−1(x0 + µ(0)v0).

Returning to (59), after simplification, we obtain v(0) = v0.

b) Let us now prove uniqueness. Suppose that

(x(·), v(·)) : [0,+∞) → H ×H

is a solution pair of ((13)-(14)-(15)). Defining µ(t) = λ(t)−1 and

z(t) = x(t) + µ(t)v(t) (61)
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we conclude that z(.) is absolutely continuous (we use again that the product of two
absolutely continuous functions is still absolutely continuous), z0 = x0 + µv0, and
for any t ∈ [0,+∞),

x(t) = (I + µ(t)T )−1(z(t)), v(t) = Tµ(t)(z(t)). (62)

Differentiating (61) almost everywhere (the usual derivation rule for the product of
two functions holds true), and using (14), we conclude that for almost all t ∈ [0,+∞)

ż(t) = ẋ(t) + µ(t)v̇(t) + µ̇(t)v(t)

= −µ(t) (v̇(t) + v(t)) + µ(t)v̇(t) + µ̇(t)v(t)

= (−µ(t) + µ̇(t)) v(t).

Since v(t) = Tµ(t)(z(t)), we finally obtain

ż(t) + (µ(t) − µ̇(t))Tµ(t)(z(t)) = 0.

Moreover
z0 = x0 + µv0.

Arguing as before, by the Cauchy-Lipschitz theorem, z(.) is uniquely determined and
locally absolutely continuous. Thus, by (62), x(.) and v(.) are uniquely determined.

Remark 2.5. Assuming that λ(.) is Lipschitz continuous on bounded sets, one can
easily derive from equation (53) that z(.) is also Lipschitz continuous on bounded
sets, and by (57) the same holds true for x(.) and v(.).

3 Asymptotic analysis and convergence properties

In this section, we study the asymptotic behavior, as t → +∞, of the trajectories
of Newton-like differential inclusion system ((13)-(14)). Let us recall our standing
assumption, namely λ : [0,+∞) → (0,+∞) is continuous, and absolutely continuous
on each bounded interval. By Theorem 2.4, for any given Cauchy data v0 ∈ T (x0),
this property guarantees the existence and uniqueness of a strong global solution (see
Definition 2.2) of system ((13)-(14)-(15)). From now on in this section, (x(·), v(·)) :
[0,+∞) → H ×H is the strong global solution of ((13)-(14)-(15)).

3.1 Properties of trajectories

Let us establish some properties of the (x(·), v(·)) trajectory which will be useful
for the study of its asymptotic behavior.

Proposition 3.1. For almost all t ∈ [0,+∞), the following properties hold:

〈ẋ(t), v̇(t)〉 ≥ 0; (63)

〈ẋ(t), v(t)〉 = −
[

λ(t)‖ẋ(t)‖2 + 〈ẋ(t), v̇(t)〉
]

≤ −λ(t)‖ẋ(t)‖2 ≤ 0; (64)

〈v(t), v̇(t)〉 = −
[

‖v̇(t)‖2 + λ(t)〈ẋ(t), v̇(t)〉
]

≤ −‖v̇(t)‖2 ≤ 0; (65)

λ(t)2‖ẋ(t)‖2 + ‖v̇(t)‖2 ≤ ‖v(t)‖2. (66)

10



Proof. For almost all t ∈ [0,+∞), ẋ(t) and v̇(t) are well defined, thus

〈ẋ(t), v̇(t)〉 = lim
h→0

1

h2
〈x(t+ h) − x(t), v(t+ h) − v(t)〉.

By (13), we have v(t) ∈ T (x(t)). Since T : H ⇉ H is monotone

〈x(t+ h) − x(t), v(t+ h) − v(t)〉 ≥ 0.

Dividing by h2 and passing to the limit preserves the inequality, which yields (63).
Let us now use (14)

λ(t)ẋ(t) + v̇(t) + v(t) = 0.

Equations (64), (65) follow by taking the inner product of both sides of (14) by ẋ(t)
and v̇(t) respectively, using the positivity of λ(t), and (63). In order to obtain the
last inequality, let us rewrite (14) as λ(t)ẋ(t) + v̇(t) = −v(t). By taking the square
norm of theses two quantities, using (63), and the positivity of λ(t), we obtain (66).

The following results are direct consequences of Proposition 3.1.

Corollary 3.2. The following properties hold:

1. t 7→ ‖v(t)‖ is a decreasing function from [0,+∞) into [0,+∞);

2. t 7→ v(t) is Lipschitz continuous on [0,+∞) with constant ‖v0‖;

3. for any 0 < b < +∞, t 7→ x(t) is Lipschitz continuous on [0, b], with constant

‖v0‖

inft∈[0,b] λ(t)
.

Moreover, if λ(.) is bounded away from 0, then t 7→ x(t) is Lipschitz continuous on
[0,+∞).

Proof. By (65), for almost all t ∈ [0,+∞),

d

dt

1

2
‖v(t)‖2 = 〈v̇(t), v(t)〉 ≤ −‖v̇(t)‖2 ≤ 0.

Therefore, t 7→ ‖v(t)‖ is a decreasing function, which proves item 1. Item 2 is a
straight consequence of inequality (66) which, combined with the decreasing property
of t 7→ ‖v(t)‖, yields

‖v̇(t)‖ ≤ ‖v0‖. (67)

As a straight consequence of inequality (66) we also obtain

λ(t)2‖ẋ(t)‖2 ≤ ‖v(t)‖2,

which, combined with the decreasing property of t 7→ ‖v(t)‖, yields item 3.

Let us make more precise the decreasing properties of ‖v(·)‖.

11



Corollary 3.3. The following properties hold:

1. for almost all t ∈ [0,+∞)

−‖v(t)‖2 ≤
1

2

d

dt

(

‖v(t)‖2
)

≤ −‖v̇(t)‖2;

2. e−t‖v0‖ ≤ ‖v(t)‖ ≤ ‖v0‖ for any t ∈ [0,+∞);

3. ‖v̇(·)‖ ∈ L2([0,+∞)).

Proof. To prove the first inequality of item 1, use (14) to obtain

d

dt

1

2
‖v(t)‖2 = 〈v̇(t), v(t)〉 = −〈λ(t)ẋ(t) + v(t), v(t)〉.

Then combine this inequality with (64) of Proposition 3.1 to obtain

d

dt

1

2
‖v(t)‖2 ≥ −‖v(t)‖2.

The second inequality of item 1 follows directly from (65) of Proposition 3.1.
Items 2 and 3 follow from item 1 by integration arguments. Just notice that, by
integration of the differential inequality d

dt(φ) + 2φ ≥ 0 with φ(t) = ‖v(t)‖2, we
obtain φ(t) ≥ e−2tφ(0), and hence e−t‖v0‖ ≤ ‖v(t)‖.

Note that item 2 of Corollary 3.3 shows that, if v0 6= 0, then in “finite time” we
do not have v(t) = 0. The best we can hope is that ‖v(t)‖ decreases like e−t.

3.2 Convergence properties

In this section, as a standing assumption, we assume that the set of equilibria is non
empty: T−1(0) 6= ∅. For studying the convergence properties of the trajectories of
system ((13)-(14)), we make use of the following Lyapunov functions. Suppose that

x̂ ∈ T−1(0) 6= ∅, (68)

and define for any t ≥ 0

g(t) :=
1

2
‖x(t) − x̂+

1

λ(t)
v(t)‖2; (69)

h(t) :=
1

2
‖λ(t)(x(t) − x̂) + v(t)‖2; (70)

u(t) =
1

2
‖x(t) − x̂‖2 +

1

λ(t)
〈x(t) − x̂, v(t)〉. (71)

Lemma 3.4. If λ(·) is non-increasing, then limt→+∞ v(t) = 0. Moreover t 7→ ‖v(t)‖
is a decreasing function, and v(·) ∈ L2([0,+∞);H).

12



Proof. Differentiating h(·), and using (14) we obtain, for almost all t ∈ [0,+∞),

d

dt
h(t) =〈λ(t)(x(t) − x̂) + v(t), λ(t)ẋ(t) + v̇(t)〉

+ λ̇(t)〈λ(t)(x(t) − x̂) + v(t), x(t) − x̂〉

= − 〈λ(t)(x(t) − x̂) + v(t), v(t)〉 + λ̇(t)[λ(t)‖x(t) − x̂‖2 + 〈v(t), x(t) − x̂〉].

By monotonicity of T , and 0 ∈ T (x̂), v(t) ∈ T (x(t)), we have

〈x(t) − x̂, v(t)〉 ≥ 0. (72)

Using inequality (72) and the decreasing property of λ(·), we deduce that, for almost
all t ∈ [0,+∞),

d

dt
h(t) + ‖v(t)‖2 ≤ 0.

By integration with respect to t of the above inequality, and using that h(t) is
non-negative, we deduce that ‖v(·)‖2 ∈ L1([0,+∞)). Combining this property with
the fact that t 7→ ‖v(t)‖ is a decreasing function (Corollary 3.2), we conclude that
limt→+∞ v(t) = 0.

Lemma 3.5. Suppose that, for almost all t ∈ [0,+∞)

λ(t) + λ̇(t) ≥ 0.

Then, x(·) is a bounded trajectory.

Proof. Differentiating u(·) and using (14) we obtain

d

dt
u(t) = 〈x(t) − x̂, ẋ(t)〉 +

1

λ(t)
〈x(t) − x̂, v̇(t)〉

+
1

λ(t)
〈ẋ(t), v(t)〉 −

λ̇(t)

λ(t)2
〈x(t) − x̂, v(t)〉

=
1

λ(t)
〈x(t) − x̂, λ(t)ẋ(t) + v̇(t)〉 +

1

λ(t)
〈ẋ(t), v(t)〉 −

λ̇(t)

λ(t)2
〈x(t) − x̂, v(t)〉

= −
1

λ(t)2

(

λ(t) + λ̇(t)
)

〈x(t) − x̂, v(t)〉 +
1

λ(t)
〈ẋ(t), v(t)〉.

Using the assumption λ(t) + λ̇(t) ≥ 0, together with inequalities (64) and (72), we
deduce that, for almost all t ∈ [0,+∞), d

dtu(t) ≤ 0. Therefore, u(·) is decreasing,
which yields, for all t ≥ 0

1

2
‖x(t) − x̂‖2 ≤ u(t) ≤ u(0).

As a consequence, ‖x(·)‖ remains bounded, with an upper bound which can be easily
expressed in terms of ‖v0‖ and ‖x0 − x̂‖.
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Corollary 3.6. Suppose that, for almost all t > 0

0 ≥ λ̇(t) ≥ −λ(t).

Then, v(t) → 0 as t→ +∞, x(·) is bounded, and every sequential weak cluster point
of x(·), as t→ +∞, is a zero of T .

Proof. By Lemma 3.4, v(t) → 0 as t → +∞, and, by Lemma 3.5, x(·) is bounded.
On the other hand, by (13), for all t ≥ 0, v(t) ∈ T (x(t)). From the sequential
closedness property of the graph of T in (w − H) × H, see [8] Proposition 2.5,
we infer that whenever, tk → +∞ and x(tk) converges weakly to some x∞, then
0 ∈ T (x∞).

To prove the weak convergence of x(.) we need additional assumptions. Note
that the assumption of Lemma 3.5 can be equivalently written as

λ̇(t)

λ(t)
≥ −1.

Theorem 3.7. Suppose that λ(·) is bounded from above on [0,+∞), and

lim inf
t→+∞

λ̇(t)

λ(t)
> −1. (73)

Then v(t) → 0, and x(t) converges weakly to a zero of T , as t goes to +∞.

Proof. Differentiating g and using (14) we have, for almost all t > 0,

d

dt
g(t) =

〈

ẋ(t) +
1

λ(t)
v̇(t), x(t) − x̂+

1

λ(t)
v(t)

〉

(74)

−
λ̇(t)

λ(t)2

〈

v(t), x(t) − x̂+
1

λ(t)
v(t)

〉

(75)

= −

(

1

λ(t)
+

λ̇(t)

λ(t)2

)

〈v(t), x(t) − x̂+
1

λ(t)
v(t)〉 (76)

= −
1

λ(t)

(

1 +
λ̇(t)

λ(t)

)

〈v(t), x(t) − x̂+
1

λ(t)
v(t)〉. (77)

Let us examine this last term. By (72), 〈v(t), x(t) − x̂〉 ≥ 0 which clearly implies

〈v(t), x(t) − x̂+
1

λ(t)
v(t)〉 ≥

1

λ(t)
‖v(t)‖2 ≥ 0.

On the other hand, assumption (73) on λ(·) yields the existence of some ǫ > 0 such
that for t large enough

1 +
λ̇(t)

λ(t)
≥ ǫ.

Combining the last two inequalities with (77), we deduce that, for t large enough

d

dt
g(t) + ǫ

∥

∥

∥

∥

1

λ(t)
v(t)

∥

∥

∥

∥

2

≤ 0. (78)
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Since λ(·) is upper-bounded, we obtain ‖v(·)‖2 ∈ L1([0,+∞)). Since t 7→ ‖v(t)‖ is
decreasing, we conclude that

v(t) → 0 as t→ +∞. (79)

Define for t ∈ [0,+∞)

ψ(t) :=

∥

∥

∥

∥

1

λ(t)
v(t)

∥

∥

∥

∥

2

. (80)

Since g ≥ 0, from (78) we obtain

ψ(·) ∈ L1([0,+∞)). (81)

Direct calculation yields

d

dt
ψ(t) = −2

λ̇(t)

λ(t)3
‖v(t)‖2 + 2

1

λ(t)2
〈v(t), v̇(t)〉.

Since 〈v(t), v̇(t)〉 ≤ 0, we have

d

dt
ψ(t) ≤ −2

λ̇(t)

λ(t)
ψ(t).

Using the assumption λ̇(t)/λ(t) ≥ −1 + ǫ ≥ −1, it follows that, for t large enough,

d

dt
ψ(t) ≤ 2ψ(t).

Equivalently
d

dt

{

ψ(t) − 2

∫ t

0
ψ(s)ds

}

≤ 0,

which means that the function t 7→ Ψ(t) := ψ(t) − 2
∫ t
0 ψ(s)ds is decreasing. Since

ψ(·) is nonnegative and ψ(·) ∈ L1([0,+∞)) (by (81)), it follows that Ψ(·) is bounded
from below. Thus limt→+∞ Ψ(t) exists. From ψ(·) ∈ L1([0,+∞)) and the definition
of Ψ we deduce that limt→+∞ ψ(t) exists. Using again ψ(·) ∈ L1([0,+∞)), we finally
obtain

ψ(t) → 0 as t→ +∞. (82)

Let us now return to g. By (78), t 7→ g(t) is decreasing. Since g is nonnegative,
there exists limt→+∞ g(t). By (82), ‖v(t)‖/λ(t) → 0 as t→ +∞. Since

∣

∣

∣

√

2g(t) − ‖x(t) − x̂‖
∣

∣

∣
≤

1

λ(t)
‖v(t)‖ → 0

we conclude that, for any x̂ ∈ T−1(0), there exists limt→+∞ ‖x(t)− x̂‖. On the other
hand, from v(t) ∈ T (x(t)), v(t) → 0 as t→ +∞ (79), and the sequential closedness
property of the graph of T in (w −H) ×H, we have that if x(tn) ⇀ x̄ weakly in H
for some tn → +∞, then x̄ is a zero of T . We can now use Opial’s Lemma [22],
that we recall below. Taking S = T−1(0) in Opial’s Lemma, we conclude that x(t)
converges weakly to a zero of T , as t→ +∞.
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Lemma 3.8. Let H be a Hilbert space and x : [0,+∞) → H a function such that
there exists a nonempty set S ⊂ H verifying:

(i) for every x̂ ∈ S, lim
t→+∞

‖ x(t) − x̂ ‖ exists;

(ii) if, for some tn → +∞, x(tn) ⇀ x̄ weakly in H, then x̄ ∈ S.

Then
w − lim

t→+∞
x(t) = x∞ exists for some element x∞ ∈ S.

3.3 The case λ constant

In this section, λ > 0 is assumed to be a positive constant. In this particular
situation, we can revisit the results of the preceding section with the help of the
theory of semi-groups of contractions. Given T : H ⇉ H a maximal monotone
operator, we consider the Cauchy problem for the differential inclusion system

v(t) ∈ T (x(t)), (83)

λẋ(t) + v̇(t) + v = 0, (84)

x(0) = x0, v(0) = v0 ∈ T (x0). (85)

Relying on the results of Section 3.2, Lemma 3.4 and Theorem 3.7, let us summarize
the asymptotic properties as t→ +∞ of the trajectories of system ((83)-(84)).

Theorem 3.9. Let us assume that T−1(0) is non-empty. Then, for any trajectory
(x(·), v(·)) of system ((83)-(84)) the following properties hold:
i) v(t) → 0 strongly in H as t → +∞. Moreover v ∈ L2([0,+∞);H) and ‖v(t)‖ is
a decreasing function of t.
ii) x(t) ⇀ x̄ weakly in H as t→ +∞, with x̄ ∈ T−1(0).

Let us show an other approach to the asymptotic analysis of system ((83)-(84))
which is based on the equivalent formulation

ż(t) + µTµ(z(t)) = 0, (86)

with formulae expressing x(t) and v(t) in terms of z(t)

x(t) = JT
µ (z(t)), (87)

v(t) = Tµ(z(t)). (88)

As a key ingredient in the asymptotic analysis of (86) we will use that the operator
Tµ is µ-cocoercive. An operator A : H → H is said to be θ-cocoercive for some
positive constant θ if for all x, y belonging to H

〈Ay −Ax, y − x〉 ≥ θ‖Ay −Ax‖2. (89)

When θ can be taken equal to one, the operator is said to be firmly nonexpansive.
Note that A θ-cocoercive implies that A is 1

θ -Lipschitz continuous, the converse
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statement (and hence equivalence) being true when A is the gradient of a convex
differentiable function (Baillon-Haddad’s theorem). In our context, this notion plays
an important role because of the following property (see [8], Proposition 2.6, and
[30] with further examples of cocoercive mappings):

Proposition 3.10. Let T : H ⇉ H be a maximal monotone operator. Then, for
any positive constant µ, the Yosida approximation Tµ of index µ of T is µ-cocoercive
and µTµ is firmly nonexpansive.

A classical result from Baillon and Brezis [7] states that a general maximal
monotone operator generates trajectories which converge weakly in the ergodic sense.
Indeed, Bruck [11] proved that weak convergence holds when T is maximal monotone
and demipositive. This last property is satisfied by two important classes of maximal
monotone operators, namely the subdifferentials of closed convex functions, and the
cocoercive operators. One can consult [23] for a recent account on this subject. Let
us state the convergence result in the cocoercive case.

Proposition 3.11. Let T : H → H be a maximal monotone operator which is
cocoercive. Let us assume that T−1(0) is non-empty. Then, for any trajectory z(·)
of the classical differential equation

ż(t) + T (z(t)) = 0

the following properties hold: as t→ +∞
i) z(t) converges weakly in H to some element z̄ ∈ T−1(0);
ii) ż(t) converges strongly in H to zero.

We can now give a proof of theorem 3.9 which is based on the cocoercive property:
By Proposition 3.11, using (86), and the cocoercive property of µTµ, we deduce that
z(t) converges weakly to some element z̄ ∈ T−1

µ (0) = T−1(0) and ż(t) converges

strongly to zero, as t → +∞. From v(t) = Tµ(z(t)) = − 1
µ ż(t), we deduce that

v(t) converges strongly to zero, and from −ż(t) = µTµ(z(t)) = z(t) − JT
µ (z(t)) and

x(t) = JT
µ (z(t)), we finally obtain that x(t) converges weakly in H (with the same

limit z̄ as z(.)).

Strong convergence of the trajectories requires further information about T . Re-
garding this last property, demiregularity of operator T plays a key role (see [29],
Definition 27.1):

Definition 3.12. An operator T : H ⇉ H is demiregular if, for every sequence
(xn, zn)n∈N with zn ∈ Txn, the following property holds:

{

xn ⇀ x weakly

zn → z strongly
⇒ xn → x strongly . (90)

The wealth and applicability of this notion is illustrated through the following
examples (one can consult [5] for further examples):

Proposition 3.13. Let T : H ⇉ H be a maximal monotone operator. Suppose that
one of the following holds.
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1. T is strongly monotone, i.e., there exists some α > 0 such that T − αI is
monotone.

2. T = ∂f , where f : H → R ∪ {+∞} is a convex, lower semicontinuous, proper
function whose lower level sets are boundedly compact.

3. There exists some µ > 0 such that JT
µ is compact, i.e., for every bounded set

C ⊂ H, the closure of JT
µ (C) is compact.

4. T : H → H is single-valued with a single-valued continuous inverse.

Then T is demiregular.

We can now state a strong convergence result for trajectories of system ((83)-
(84)).

Theorem 3.14. Let us assume that T : H ⇉ H is a maximal monotone operator
with T−1(0) non-empty, and that one of the following properties is satisfied.
a) T is demiregular; or
b) T−1(0) has a non empty interior.
Then, for any trajectory (x(·), v(·)) of system ((83)-(84)) the following properties
hold:
i) x(t) → x̄ strongly in H as t→ +∞, with x̄ ∈ T−1(0);
ii) v(t) → 0 strongly in H as t→ +∞.

Proof. By theorem 3.9, we already know that x(t) ⇀ x̄ weakly in H as t → +∞,
with x̄ ∈ T−1(0), and that v(t) → 0 strongly in H as t → +∞. Hence we just need
to prove that strong convergence of x(t) holds.
a) Let us assume that T is demiregular. We have v(t) ∈ T (x(t)) and v(t) =
Tµ(z(t)) = − 1

µ ż(t). By theorem 3.9, we have v(t) → 0 strongly in H, and x(t) ⇀ x̄
weakly in H. Demiregularity of T implies that x(t) → x̄ strongly in H as t→ +∞.
b) Let us now suppose that T−1(0) has a non empty interior. The following equiv-
alences hold

Tz ∋ 0 ⇔ z + µTz ∋ z ⇔ JT
µ (z) = z ⇔ µTµ(z) = 0. (91)

Hence (µTµ)−1(0) = T−1(0), and (µTµ)−1(0) has a non empty interior. Theorem
3.13 of Brézis [8] tells us that each trajectory of the equation ż(t) + µTµ(z(t)) = 0
converges strongly in H as t → +∞. From x(t) = JT

µ (z(t)), and by continuity of

JT
µ , we deduce that x(t) → x̄ strongly in H as t→ +∞.

Remark 3.15. In the subdifferential case, an alternative proof of theorem 4.1 in
the case λ constant, would consist in relying on the equivalent formulation of the
dynamic

ż(t) + µ∇fµ(z(t)) = 0

where (∂f)µ = ∇fµ, and fµ is the Moreau-Yosida approximation of index µ of f .
Applying classical convergence results valid for general gradient systems, see Bruck
[11], Güler [16], one can infer that fµ(z(t)) → infHfµ = infHf . From

infHf ≤ f(JT
µ (z(t)) ≤ fµ(z(t))

and x(t) = JT
µ (z(t) we obtain that f(x(t)) tends to infHf as t→ +∞.
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4 T subdifferential. Links with convex optimization

Let us now suppose that T = ∂f is the subdifferential of a convex lower semicon-
tinuous proper function f : H → R ∪ {+∞}. By a classical result, T is a maximal
monotone operator. The system ((13)-(14))-(15)) reads as follows

v(t) ∈ ∂f(x(t)), (92)

λ(t)ẋ(t) + v̇(t) + v(t) = 0, (93)

x(0) = x0, v(0) = v0. (94)

We assume that standing assumptions (21)-(22) are satisfied by λ(·). Let us establish
some optimizing properties of the trajectories generated by this dynamical system,
and show that it is a descent method. We set S = (∂f)−1(0) = argminHf which,
unless specified, may be possibly empty.

Theorem 4.1. Suppose that T = ∂f , where f : H → R ∪ {+∞} is a convex lower
semicontinuous proper function. Let t ∈ [0,+∞) 7→ (x(t), v(t)) ∈ H × H be the
strong global solution of system ((92)-(93)-(94)). Then, the following hold:
i) for any 0 < b < +∞, the real-valued function t 7→ f(x(t)) is Lipschitz continuous
on [0, b]. Hence f(x(·)) is almost everywhere differentiable on [0,+∞), and for
almost all t ∈ [0,+∞)

d

dt
f(x(t)) = 〈ẋ(t), v(t)〉 = −λ(t)‖ẋ(t)‖2 − 〈ẋ(t), v̇(t)〉 ≤ −λ(t)‖ẋ(t)‖2;

ii) t 7→ f(x(t)) is a non increasing function;
Assuming moreover that t 7→ λ(t) is non increasing, then

iii) f(x(t)) decreases to infH f as t ↑ +∞;
iv) if f is bounded from below, then ‖v(·)‖ ∈ L2([0,+∞)) and v(t) → 0 as t→ +∞.

Proof. i) Suppose that 0 ≤ t1 < t2 < +∞, and let

vi = v(ti), xi = x(ti), i = 1, 2.

Since vi ∈ ∂f(xi), i = 1, 2 we have

f(x1) + 〈x2 − x1, v1〉 ≤ f(x2)

f(x2) + 〈x1 − x2, v2〉 ≤ f(x1).

Therefore
〈x2 − x1, v1〉 ≤ f(x2) − f(x1) ≤ 〈x2 − x1, v2〉. (95)

By Corollary 3.2 (1.), t 7→ ‖v(t)‖ is a decreasing function. From (95) we deduce that

|f(x2) − f(x1)| ≤ ‖x2 − x1‖ ‖v0‖. (96)

By Corollary 3.2 (3.), for any 0 < b < +∞, t 7→ x(t) is Lipschitz continuous on
[0, b]. Combining this property with (96), we conclude that, for any 0 < b < +∞,
t 7→ f(x(t)) is Lipschitz continuous on [0, b].
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Suppose now that x(·) is differentiable at t1. Let us divide (95) by t2 − t1 > 0 and
take the limit t2 → t+1 . Since v(·) is continuous, see Corollary 3.2 (2.), it follows
that

d

dt
f(x(t1)) = 〈ẋ(t1), v1〉,

that is, for almost all t ∈ [0,+∞)

d

dt
f(x(t)) = 〈ẋ(t), v(t)〉.

Replacing v(t) by v(t) = −(λ(t)ẋ(t) + v̇(t)), as given by (93), in the above formula,
we obtain

d

dt
f(x(t)) = 〈ẋ(t), v(t)〉

= −〈ẋ(t), λ(t)ẋ(t) + v̇(t)〉

= −λ(t)‖ẋ(t)‖2 − 〈ẋ(t), v̇(t)〉

≤ −λ(t)‖ẋ(t)‖2,

the last inequality being a consequence of 〈ẋ(t), v̇(t)〉 ≥ 0, see (63).
ii) The function t 7→ f(x(t)) is Lipschitz continuous, and hence absolutely con-

tinuous, on each bounded interval [0, b], 0 < b < +∞. Moreover, its derivative
is less or equal than zero for almost all t ∈ [0,+∞). This classically implies that
f(x(·)) is non increasing.

iii) Define, for y ∈ domf

φy(t) =

[

f(y) − (f(x(t)) + 〈y − x(t), v(t)〉)

]

+
λ(t)

2
‖y − x(t)‖2. (97)

Note that, since f(·) is convex and v(t) ∈ ∂f(x(t)), we have φy(t) ≥ 0 for all t ≥ 0.
Moreover, since t 7→ f(x(t)), t 7→ x(t), t 7→ v(t) are locally Lipschitz continuous (by
item i) and Corollary 3.2), the function φy(·) is also locally Lispchitz continuous
and, in particular, absolutely continuous on compact sets.
Using item i) and (93) we deduce that, for almost all t ∈ [0,+∞),

dφy

dt
(t) = − 〈y − x(t), v̇(t)〉 + λ(t)〈x(t) − y, ẋ(t)〉 +

λ̇(t)

2
‖y − x(t)‖2

= 〈x(t) − y, λ(t)ẋ(t) + v̇(t)〉 +
λ̇(t)

2
‖y − x(t)‖2

= 〈y − x(t), v(t)〉 +
λ̇(t)

2
‖y − x(t)‖2,

which combined with the convexity of f(·), and the assumption on λ(·) being non
increasing, yields (for almost all t ∈ [0,+∞))

dφy

dt
(t) ≤ f(y) − f(x(t)).
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Let us integrate this inequality with respect to t. Using that t 7→ f(x(t)) is a non
increasing function (see item ii)), and that φy is non-negative, we deduce that, for
any t ≥ 0

−φy(0) ≤φy(t) − φy(0)

≤

∫ t

0
f(y) − f(x(s)) ds ≤ t[f(y) − f(x(t))]. (98)

Hence, for any t > 0

f(x(t)) ≤ f(y) +
φy(0)

t
.

Passing to the limit as t→ +∞ in the above inequality yields

lim
t→+∞

f(x(t)) ≤ f(y).

This being true for any y ∈ domf , we finally obtain item iii)

lim
t→+∞

f(x(t)) = inf
H
f.

iv) By item i),
d

dt
f(x(t)) ≤ −λ(t)‖ẋ(t)‖2 ≤ 0.

Since f(·) has been supposed to be bounded from below, after integration we obtain

∫ +∞

0
λ(t)‖ẋ(t)‖2 dt < +∞. (99)

Since λ(·) is assumed to be non increasing, we have, for any t ≥ 0,

λ(t)2‖ẋ(t)‖2 ≤ λ(0)
(

λ(t)‖ẋ(t)‖2
)

,

which, combined with (99), yields λ(·)‖ẋ(·)‖ ∈ L2([0,+∞)). Then, use item 3)
of Corollary 3.3, (93), and the triangle inequality, to obtain ‖v(·)‖ ∈ L2([0,+∞)).
Since t 7→ ‖v(t)‖ is a decreasing function, we conclude that v(t) → 0 as t→ +∞.

Remark 4.2. Let us now assume that S = (∂f)−1(0) 6= ∅. By taking y equal to
the projection of x0 onto S in (97), and using (98), we obtain

∫ +∞

0
(f(x(s)) − inf

H
f)ds ≤ C, (100)

and

f(x(t)) − inf
H
f ≤

C

t
, (101)

where

C = φy(0) ≤
λ(0)

2
‖y − x0‖

2 − 〈y − x0, v0〉 (102)

≤
λ(0)

2
dist(x0, S)2 + ‖v0‖dist(x0, S). (103)
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Remark 4.3. By theorem 4.1 item iv) we have v(t) → 0 as t → +∞. Moreover,
for any t ≥ 0, v(t) ∈ ∂f(x(t). From the sequential closedness property of ∂f in
(w−H)×H, it follows that any sequential weak cluster point of the trajectory x(·)
belongs to S = (∂f)−1(0). By contraposition, we deduce that, if S is empty, then for
any trajectory of system ((92)-(93)) there is explosion, i.e., limt→+∞‖x(t)‖ = +∞.

5 The case λ(t) = λ0e
−t

In this section, we discuss the case

λ(t) = λ0e
−t, (104)

with λ0 > 0, a positive given parameter. For this choice of λ(·), for any t ≥ 0

0 > λ̇(t) = −λ(t).

By Corollary 3.6, it follows that the trajectory x(·) is bounded, v(t) converges to
0 as t → +∞, and every sequential weak cluster point of x(·) is a zero of T . It
is possible to have a closed formula for x(t), v(t) and to estimate how fast is the
convergence of v(t) to 0. As in (27), let us define z(·) by

z(t) = x(t) +
1

λ(t)
v(t) = x(t) +

et

λ0
v(t).

Setting µ(t) = 1
λ(t) = et

λ0
, we have µ̇(t) = µ(t), which, by (41), implies ż(t) = 0 for

all t ≥ 0. Hence, for all t ≥ 0,

x(t) +
et

λ0
v(t) = z(0) = x0 +

1

λ0
v0

which, in view of the inclusion v(t) ∈ T (x(t)) is equivalent to

x(t) = JT
et/λ0

(z(0)), v(t) = Tet/λ0
(z(0)). (105)

The next proposition is a direct consequence of the above equation.

Proposition 5.1. Let λ(·) be given by (104). Assume that T−1(0) is non-empty and
let x∗0 be the orthogonal projection of x0 + λ−1

0 v0 onto T−1(0). Then, the following
properties hold:
i) ∀t ≥ 0, ‖x(t) − (x0 + λ−1

0 v0)‖ ≤ ‖x∗0 − (x0 + λ−1
0 v0)‖;

ii) ∀t ≥ 0, ‖v(t)‖ ≤ λ0e
−t‖x∗0 − (x0 + λ−1

0 v0)‖;

iii) limt→+∞ x(t) = x∗0.

Proof. To simplify the proof, set z0 = x0 + λ−1
0 v0.

i) To prove the first inequality, take x∗ ∈ T−1(0). By monotonicity of T , and
z(t) = x(t) + 1

λ(t)v(t) = z0, we have

0 ≤
1

λ
〈x∗ − x(t), 0 − v(t)〉 = 〈x∗ − x(t), x(t) − z0〉.
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Thus,

‖x∗ − z0‖
2 = ‖x∗ − x(t)‖2 + 2〈x∗ − x(t), x(t) − z0〉 + ‖x(t) − z0‖

2

≥ ‖x(t) − z0‖
2.

This being true for any x∗ ∈ T−1(0), passing to the infimum with respect to x∗ ∈
T−1(0) establishes the formula.
ii) By (105) and item i)

‖v(t)‖ = ‖Tet/λ0
(z0)‖

= λ0e
−t‖x(t) − z0‖

≤ λ0e
−t‖x∗0 − (x0 + λ−1

0 v0)‖.

iii) We have x(t) = JT
et/λ0

(z0), which, equivalently, can be written as

λ0e
−t (x(t) − z0) + T (x(t)) ∋ 0.

Noticing that λ0e
−t → 0 as t → +∞, by using the classical asymptotic properties

of the Tikhonov approximation, see for example Browder [10], we obtain

lim
t→+∞

x(t) = projT−1(0)z0 = x∗0.

Note that ‖v(t)‖ ≤ c e−t, which, as an asymptotical behavior, is almost as good
as the “pure” Newton’s continuous dynamic.

6 Examples

The following elementary examples are intended to illustrate the asymptotic behav-
ior of the trajectories of our system.

6.1 Linear monotone operators

Given a, b > 0, let T = ∇f , with f : R
3 → R being defined by

f(ξ1, ξ2, ξ3) =
a

2
ξ21 +

b

2
ξ22 .

The corresponding solution of system ((13)-(14)-(15)) with λ > 0 constant, and
Cauchy data x0 = (ξ̄1, ξ̄2, ξ̄3) is given by

x(t) =

(

ξ̄1 exp

(

−
a

a+ λ
t

)

, exp

(

−
b

b+ λ
t

)

ξ̄2, ξ̄3

)

.

Consider now the same system ((13)-(14)-(15)) with λ(t) = λ0 exp(−t). The solution
is given by

x(t) =

(

λ0 + a

λ0 + a exp(t)
ξ̄1,

λ0 + b

λ0 + b exp(t)
ξ̄2, ξ̄3

)

.

By contrast with the steepest descent continuous dynamic, note the effect of New-
ton’s direction term, which makes trajectories close to straight lines.
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6.2 Discontinuous monotone operators

a) Let f : R → R, f(x) = |x|, T = ∂f and x0 = 1. Then, the solution of system
((13)-(14)-(15)) with λ > 0 constant is given by

x(t) =

{

1 − t/λ, 0 ≤ t ≤ λ

0, λ < t
v(t) =

{

1, 0 ≤ t ≤ λ

exp(λ− t), λ < t

b) Let us now take f : R → R, f(x) = max{|x|, x2}. Then, for x ≥ 0 we have

∂f(x) =























{2x}, x > 1,

[1, 2], x = 1

{1} 0 < x < 1

[−1, 1], x = 0

and ∂f(x) = −∂f(−x) for x < 0. Define

t1 =

(

λ

2
+ 1

)

log 2, t2 =

(

λ

2
+ 2

)

log 2, t3 =

(

λ

2
+ 2

)

log 2 + λ.

The solution of system ((13)-(14)-(15)) with λ constant, T = ∂f , and x0 = 2 is given
by

x(t) =































2 exp

(

−
2

λ+ 2
t

)

, 0 ≤ t ≤ t1

1, t1 ≤ t ≤ t2

1 −
t− t2
λ

, t2 ≤ t ≤ t3

0, t3 ≤ t

v(t) =



























4 exp

(

−
2

λ+ 2
t

)

, 0 ≤ t ≤ t1

2 exp (t1 − t) , t1 ≤ t ≤ t2

1, t2 ≤ t ≤ t3

exp(t3 − t), t3 ≤ t

6.3 Antisymmetric linear operators

As a benchmark case, in which many of the nice features attached to subdifferential
of convex functions fail to be satisfied, let us consider

H = R × R, T = rot(0,
π

2
), T (x1, x2) = (−x2, x1).

Clearly, T is a maximal monotone operator with T ∗ = −T and 〈Tx, x〉 = 0 for all
x ∈ H. Take λ > 0 constant.
Setting X(t) = x1(t) + ix2(t), system ((13)-(14)-(15)) can be formulated in C as

(λ+ i)Ẋ(t) + iX(t) = 0.

Integration of this system (X0 being the Cauchy data in C corresponding to x0 ∈
R × R) yields

X(t) = X0 exp

(

−
1 + iλ

1 + λ2
t

)

,

which clearly implies x(t) → 0 as t → +∞. By contrast, trajectories generated
by T , which are solutions of ẋ(t) + T (x(t)) = 0, fail to converge to 0 (indeed they
converge to 0 in the ergodic sense).
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7 Application: A Levenberg-Marquardt algorithm for

convex minimization

In this section, H is a real Hilbert space and f : H → R is a C2 convex function
with a non-empty set of minimizers (not necessarily reduced to a single element).
The results obtained so far suggest that, when taking x0 ∈ H, λ > 0 and {tk} a
sequence of strictly positive steps, the sequence (xk) defined by the algorithm

∇f(xk) +
(

∇2f(xk) + λI
)

(

xk+1 − xk

tk

)

= 0

is convergent, if the tk’s are chosen appropriately.
One may consult [1], [13], [15], [21], [27] and references therein for an overview

on such Newton-like methods. In [23], one can find a survey on the rich connections
between continuous evolution equations generated by maximal monotone operators
and their discrete time versions. Previous global convergence analyses of Quasi-
Newton methods required boundedness of level sets and were restricted to criticality
of all cluster points of the generated sequence, which, for convex objective functions,
implies optimality of these cluster points.

To simplify the exposition, we use the following equivalent formulation:

xk+1 = xk + tksk, sk = −(∇2f(xk) + λI)−1∇f(xk). (106)

We assume that each tk is chosen following Armijo’s rule: we pick some β ∈ (0, 1/2)
and

tk = max {t ∈ {1, 1/2, 1/4 . . . } | f(xk + tsk) ≤ f(xk) + βt〈sk,∇f(xk)〉} . (107)

Our aim is to prove the following new result.

Theorem 7.1. Let us assume that ∇2f is Lipschitz continuous. Then, for any ini-
tial data x0 ∈ H, the sequence {xk} generated by algorithm ((106)-(107)) converges
weakly to a minimizer of f .

Let us denote by L > 0 the Lispchitz constant of ∇2f (with respect to the
operator norm).

Proposition 7.2. Given x ∈ H, set s = −
(

∇2f(x) + λI
)−1

∇f(x). Then, for any
t ∈ [0, 1] the following inequality holds:

f(x+ ts) ≤ f(x) +
1

2
t〈s,∇f(x)〉 +

t2‖s‖2

2

[

−λ+
tL‖s‖

3

]

.

Proof. Since ∇2f is Lipschitz continuous with constant L, we have

f(x+ ts) ≤ f(x) + t〈s,∇f(x)〉 +
t2

2

〈

∇2f(x)s, s
〉

+
Lt3

6
‖s‖3.

By the definition of s, we have
〈

∇2f(x)s, s
〉

=
〈(

∇2f(x) + λI
)

s, s
〉

− λ‖s‖2 (108)

= − 〈∇f(x), s〉 − λ‖s‖2. (109)
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Combining the above equations, we conclude that

f(x+ ts) ≤ f(x) +

(

t−
t2

2

)

〈s,∇f(x)〉 +
t2‖s‖2

2

[

−λ+
tL‖s‖

3

]

. (110)

On the other hand, by (109) and the convexity of f , we have 〈s,∇f(x)〉 ≤ 0. Since
t ∈ [0, 1], this immediately implies

(

t−
t2

2

)

〈s,∇f(x)〉 ≤
t

2
〈s,∇f(x)〉.

Combining these two last inequalities gives the desired conclusion.

Proposition 7.3. If tk < 1 then

1

2
≥ tk ≥

3λ

2L‖sk‖
, and ‖sk‖ ≥

3λ

L
.

Proof. If t ∈ [0, 1] and t ≤ 3λ
L‖sk‖

, by using Proposition 7.2 we conclude that

f(xk + tsk) ≤ f(xk) + βt〈sk,∇f(xk)〉.

Therefore, if tk < 1, we must have

1 ≥ 2tk ≥
3λ

L‖sk‖
.

End of the proof of theorem 7.1. By (106)-(107), for all k ∈ N

f(xk+1) ≤ f(xk) + βtk〈sk,∇f(xk)〉 ≤ f(xk) − βtkλ‖sk‖
2.

By summing these inequalities, and taking x∗ ∈ H such that f(x∗) = infH f , we
obtain

f(x∗) ≤ f(x0) −
+∞
∑

k=0

βtkλ‖sk‖
2. (111)

Define
I = {k ∈ N | tk < 1}.

By Proposition 7.3

f(x0) − f(x∗) ≥
∑

k∈I

βtkλ‖sk‖
2 ≥

∑

k∈I

3βλ2

2L
‖sk‖ ≥

∑

k∈I

9βλ3

2L2
.

As a consequence, I is finite. On the other hand, from (111), and tk = 1 for k /∈ I

∑

k/∈I

βλ‖sk‖
2 ≤ f(x0) − f(x∗).
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Since I is finite, this implies
∑

k ‖sk‖
2 < +∞.

We can now prove that the sequence {xk} weakly converges. Set

rk = ∇f(xk+1) + λ(xk+1 − xk).

If k /∈ I (i.e., tk = 1), by (106) and Taylor’s formula, we easily deduce that

‖rk‖ ≤
L

2
‖sk‖

2.

Therefore
∑

k ‖rk‖ < +∞, and the convergence of {xk} follows from Rockafellar’s
theorem on the proximal point method with summable error, see [25].
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[27] M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method
for systems of monotone equations, Nonsmooth, Piecewise Smooth, Semismooth
and Smoothing Methods, Edited by M. Fukushima and L. Qi, Kluwer Academic
Publishers, (1999), pp. 355-369.

[28] E. D. Sontag, Mathematical control theory, second edition, Springer-Verlag,
New-York, 1998.

[29] E. Zeidler, Nonlinear functional analysis and its applications, Part II: Monotone
operators, Springer-Verlag, New-York, 1990.

[30] D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of
iterative schemes for solving variational inequalities, J. Optim., 6 (1996), pp.
714-726.

29


