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Introduction 

Aggressive device-scaling and low-power operation trends 
have improved the silicon economy, but at the cost of 
intrinsic variability. Thus, future computing systems have to 
be designed to be immune to, or even exploit, the technology 
variability and intrinsic stochasticity. Although neuromorphic 
hardware is ascribed to be tolerant to stochasticity, it has 
rarely been shown how.  

Abstract 

In this work, we demonstrate an original methodology to use 
Conductive-Bridge RAM (CBRAM) devices as binary 
synapses in low-power stochastic neuromorphic systems. A 
new circuit architecture, programming strategy and 
probabilistic STDP learning rule are proposed. We show, for 
the first time, how the intrinsic CBRAM device switching 
probability at ultra-low power can be exploited to implement 
probabilistic learning rule. Two complex applications are 
demonstrated: real-time auditory (from 64-channel human 
cochlea) and visual (from mammalian visual cortex) pattern 
extraction. A high accuracy (audio pattern sensitivity >2, 
video detection rate >95%) and ultra-low synaptic-power 
dissipation (audio 0.55µW, video 74.2µW) are obtained.  

CBRAM technology 

1T-1R CBRAM devices (both isolated and in 8x8 matrix), 

integrated in standard CMOS platform [1], were tested 

(Fig.1). CBRAM operating relies on an electrochemically 

active electrode metal (Ag), drift of highly mobile Ag
+
 

cations in the conducting layer (30nm-thick GeS2), and their 

discharge at the (inert) counter electrode (W), leading to the 

growth of Ag dendrites (i.e. a  highly conductive filament) in 

the ON (set) state. Upon reversal of voltage polarity, an 

electrochemical dissolution of the conductive bridge happens, 

resetting the system to the OFF (reset) state (Fig. 2). Ease of 

fabrication, CMOS compatibility, scalability and low 

operating-voltages make CBRAM an ideal choice for the 

design of low-power bio-inspired systems. 

Limitations of Multi-level CBRAM Synapses 

In literature [2], CBRAM multi-level programming was 
proposed to emulate biological synaptic-plasticity (Long 
Term Potentiation-LTP and Long Term Depression-LTD). 
LTP behavior (i.e. ON-state resistance decrease) is 
demonstrated in our samples by applying a positive bias at 
the anode and gradually increasing the select transistor gate 
voltage (Vg) (Fig.3a). This phenomenon can be explained 
with our physical model [3] assuming a gradual increase in 

the radius of the conductive filament formed during the set-
process. Nevertheless, this approach implies that each neuron 
must generate pulses with increasing amplitude while 
keeping a history of the previous state of the synaptic device, 
thus leading to additional overhead in the neuron circuitry. 
Moreover, we found it very difficult to emulate a gradual 
LTD-like effect using CBRAM. Fig.3b shows the abrupt 
nature of the set-to-reset transition in CBRAM devices, due 
to the difficulty in dissolving the conductive filament in a 
controlled way. To overcome these issues, we propose 
hereafter a new methodology based on binary CBRAM 
synapses with a probabilistic STDP (spike-time-dependent-
plasticity) learning rule. 

Experiments and Probabilistic Switching 

Fig.4 shows the On/Off resistance distributions of an isolated 
1T-1R CBRAM (during repeated cycles with strong set/reset 
conditions). The OFF state presents a larger dispersion. This 
can be interpreted in terms of stochastic breaking of the 
filament during the reset process, due to the unavoidable 
defects [4-6] close to the filament which act as preferential 
sites for dissolution. By fitting this data with our physical-
model [3], the distribution of the left-over filament-height 
was computed (Fig.5a). Note that this also implies a spread 
on the voltage (VSET) and time (TSET) needed for the 
consecutive set operations (Figs.5b,c). In other words, when 
weak SET programming conditions are used immediately 
after a RESET, a probabilistic switching of the device 
appears (Fig.6). To take into account the device-to-device 
variability, we performed similar analysis on the matrix 
devices. Fig.7 shows the ‘On/Off’ resistance distributions for 
all devices cycled 20 times with strong conditions. In Fig.8, 
we note that switching probability (criterion for successful 
switch: Roff/Ron>10) increases for stronger programming 
conditions. We thus argue that CBRAM device switching 
probability can be tuned by using the right combination of 
programming conditions. 

Stochastic STDP and Programming Methodology 

At the system level, a functional equivalence [14] exists 

between multi-level deterministic synapses and binary 

probabilistic synapses (Fig.9). Note also that in real 

biological systems synaptic transmission is probabilistic [15]. 

Based on these assumptions, we performed system level 

simulations with our “Xnet” tool [7, 8]. The synapses were 

defined by fitting data of Fig.7 with a lognormal distribution 

(Fig.10). An original stochastic and simplified STDP learning 

rule, inspired from biological one [9] and optimized by 

genetic-evolution algorithms [8], was adopted (Fig.11). 

Fig.12 shows the core circuit of our architecture with 

CBRAM synapses connected to Leaky-Integrate and Fire 

(LIF) input- and output- neurons. When an output neuron is 
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active (i.e. fires), if the input neuron was active recently (in 

the “TLTP” time window) the CBRAM has a given probability 

to switch into the ON state (probabilistic LTP), if not, the 

CBRAM has a given probability to switch OFF (probabilistic 

LTD). In a real circuit, the switching probability of CBRAM 

synapses can be implemented in two ways (Fig.14): (i) 

Externally, by multiplying the LTP/LTD signal of the input 

spiking neuron with pseudo-random number generator 

(PRGN) output (Figs.12, 13), whose signal probability can be 

tuned by customizing the shift registers cascade sequence 

[10]; (ii) Internally, by utilizing the intrinsic CBRAM 

switching probability with weak programming conditions 

(Fig.6,8). Note that exploiting the intrinsic CBRAM switching 

probability avoids the presence of PRGN circuits, thus saving 

silicon footprint, and reduces the programming power. Fig.15 

describes our generic neuromorphic processing core. 

Auditory and Visual Processing 

(Cochlea and Retina Application) 

Fig.16b shows the network designed to learn, extract, and 

recognize hidden patterns in auditory data. Temporally 

encoded auditory data are filtered and processed using a 64-

channel silicon cochlea emulator [11] (implemented in 

‘Xnet’). The processed data are then presented to a single 

layer feed forward spiking neural network (SNN) with 192-

CBRAM synapses. Initially (0s-400s), pure noise is used as 

input to the system, and the firing pattern of the output 

neuron is completely random (Fig.18a). Then (400s-600s), an 

arbitrarily created pattern is embedded in the input noise data 

and repeated at random intervals. In this period, the output 

neuron starts to spike predominantly when the pattern occurs; 

then, the system becomes entirely selective to it. At the end of 

the test case (600s-800s), pure noise is represented to the 

system. As expected, the output neuron doesn’t activate at all 

(Figs.18b, 19). The system attained sensitivity higher (>2) 

than the human ear (Fig.19a) [12], with a very low false-

spike rate (Fig.19b) and extremely low synaptic power 

consumption of 0.55µW (Table 1). This example acts as a 

prototype for applications such as speech recognition and 

sound-source localization. Fig.17b shows the network 

simulated to process temporally encoded video data, recorded 

directly from an artificial silicon retina [13]. Video of cars 

passing on a freeway recorded in AER format is presented to 

a 2-layered SNN consisting about 2-million CBRAM 

synapses. We implemented a similar network in [7] exploiting 

multi-level Phase-Change Memory synapses. The CBRAM-

based system learns to recognize the driving lanes, extract 

car-shapes (Fig.20), with more than 95% average detection-

rate and a total synaptic-power dissipation of just 74.2µW 

(lower than [7]) (Table 1). Applications such as image 

classification and target tracking can be realized with the 

same network. 

Conclusions 

We proposed for the very first time a bio-inspired system 

with binary CBRAM synapses and stochastic STDP learning 

rule able to process asynchronous analog data streams for 

recognition and extraction of repetitive patterns in a fully 

unsupervised way. The demonstrated applications exhibit 

very high performance (auditory pattern sensitivity >2, video 

detection rate >95%) and ultra-low synaptic power 

dissipation (audio 0.55µW, video 74.2µW) in the learning 

mode. Such systems are extremely promising in two possible 

fields of application: low-power neuromorphic computing 

tasks or bio-medical devices in future neural-processing 

prosthetics. 
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Fig.1 (Left) TEM of the CBRAM resistor element. 

(Right) Circuit schematic of the 8 X 8 1T-1R CBRAM 

matrix.   

Fig.2 Quasi-static IV curve for the CBRAM device 

showing the bipolar operation. Model [3] is also shown. 
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Fig.5 Computed distributions (generated using Roff data from Fig.4 and model [3]) of: (a) left over filament-height after RESET; needed (b) Tset 

and (c)Vset, values for consecutive successful SET operation (mean value µ and sigma σ are indicated). .

Physical Modeling

(b) (c)(a)

Fig.11 Probabilistic STDP learning rule (used 

for audio application). X-axis shows the time 

difference of post-and pre-neuron spike.   

Fig.10  Binary synapses simulated in XNET 

by fitting Fig.7 data using a log-normal 

distribution (Statistics are indicated).  

Fig.9 Schematic illustrating (a) multi-level 

deterministic- and (b) binary probabilistic-synapses 

connected to a LIF neuron (W: weight, p: probability).

Probabilistic Neural Learning

LTP

LTDLTD

Fig.7 On/Off resistance distributions of 

the 64 devices of the 8x8 matrix cycled 

20 times.

Fig.8 Switching probability for the 64 devices of the matrix 

(switching being considered successful if Roff/Ron>10) using 

(a) weak-reset conditions and (b) weak-set conditions. 

Fig.6 Stochastic switching of 1T-1R 

device during 1000 cycles using ‘weak’-

conditions (switch-probability=0.49).

Stochastic Switching

Fig.3a On-state resistance modulation using current 

compliance. Simulations using model [3] are also 

shown (extracted filament radius are indicated).

Fig.3b  Resistance dependence on gate voltage 

during the SET-to-RESET transition.  

Fig.4 On/Off resistance distribution of an 

isolated 1T-1R device during 400 cycles 

when strong programming is used.

Experiments
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Fig.15  Concept and data flow of 

the proposed simulated spiking-

neuromorphic processing core. 

Fig.16 (a) Picture of the uncoiled human cochlea. 

(b) Our single layer spiking neural network 

simulated for auditory processing.  

Fig.17 (a)  Picture of the human (left) and artificial 

silicon retina [13] (right). (b) Our 2-layer spiking 

neural network simulated for processing video data. 

Neuromorphic Processing and Models of Human Cochlea and Retina

Fig.20  Final sensitivity map of  9 output neurons from the 1
st

 layer of the neural

network shown in Fig.17b.  Average detection rate for 5 lanes was 95%.

Fig.19 (a)  Pattern Sensitivity index (d’) for the test case shown in Fig.18a. 

The system reaches a very high sensitivity (d’>2). (b) Number of false 

detections by the output neuron during the learning case of Fig.18. 

Fig.18 (a) Full auditory-data test case with noise and embedded repeated 

patterns. (b) Auditory input data and (c) spiking activity for selected time 

intervals of the full test case of the output neuron (shown in Fig.16b).

Learning Results

Table 1   Network statistics and power dissipation for the two applications.

Fig.14 Schematic for the two different 

approaches possible for using CBRAM 

device as stochastic binary synapse.

Fig.13  Tunable Pseudo-random-number 

generator (PRGN) circuit [10], the output 

being tuned according to STDP in Fig.11. 

Fig.12 Circuit schematic with CBRAM synapses, LIF 

neurons, and program pulses (conductance G↑ indicates 

Switch-On, G→: No-Switch and G↓: Switch-Off).

Programming Methodology
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