
HAL Id: hal-00803075
https://hal.science/hal-00803075

Submitted on 9 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Single machine multiagent scheduling problems with a
global objective function

Nguyen Huynh Tuong, Ameur Soukhal, Jean-Charles Billaut

To cite this version:
Nguyen Huynh Tuong, Ameur Soukhal, Jean-Charles Billaut. Single machine multiagent schedul-
ing problems with a global objective function. Journal of Scheduling, 2012, 15 (3), pp.311 - 321.
�10.1007/s10951-011-0252-y�. �hal-00803075�

https://hal.science/hal-00803075
https://hal.archives-ouvertes.fr

J Sched

DOI 10.1007/s10951-011-0252-y

Single-machine multi-agent scheduling problems with a global

objective function

N. Huynh Tuong · A. Soukhal · J.-C. Billaut

© Springer Science+Business Media, LLC 2011

Abstract In this paper, we consider the problem of schedul-

ing independent jobs when several agents compete to per-

form their jobs on a common single processing machine.

Each agent wants to minimise its cost function, which de-

pends exclusively on its jobs and we assume that a global

cost function concerning the whole set of jobs has to be min-

imised. This cost function may correspond to the global per-

formance of the workshop or to the global objective of the

company, independent of the objectives of the agents. Clas-

sical regular objective functions are considered and both the

ε-constraint and a linear combination of criteria are used

for finding compromise solutions. This new multi-agent

scheduling problem is introduced into the literature and sim-

ple reductions with multicriteria scheduling and multi-agent

scheduling problems are established. In addition, the com-

plexity results of several problems are proposed and a dy-

namic programming algorithm is given.

Keywords Scheduling ·Multi-agent · Single machine ·

Complexity · Dynamic programming

1 Introduction

Generally in scheduling literature, the quality of a schedule

is given by a measure applied to the whole set of jobs. In-

deed, classical models consider all jobs to be equivalent and

the quality of the global schedule is given by applying the

N. Huynh Tuong · A. Soukhal · J.-C. Billaut (B)

Laboratoire d’Informatique, Université François Rabelais,

64 Avenue Jean Portalis, 37200 Tours, France

e-mail: jean-charles.billaut@univ-tours.fr

A. Soukhal

e-mail: ameur.soukhal@univ-tours.fr

same measure to all jobs without distinction. For instance,

the measure may be the maximum completion time of jobs

(the makespan), the total flow time of jobs or a measure re-

lated to the jobs’ tardiness, e.g. maximum tardiness and the

total number of tardy jobs. Introducing distinctions between

jobs is generally done by the means of weights. For instance,

the total weighted completion time, the total weighted tardi-

ness or the weighted number of tardy jobs introduce such

distinctions. However, in this case the same measure is still

applied to all the jobs to quantify the quality of a schedule.

In a real context, these models are not always reliable.

In some practical situations, it can be necessary to consider

several aspects of the schedule. For instance, the mean flow

time (which is equivalent to the total completion time) and

the respect for due dates can be of similar importance for

the decision maker. In such cases, more than one objective

functions is defined and the scheduling problem enters the

field of multicriteria scheduling (T’kindt and Billaut 2006

and Hoogeveen 2005 present a complete state-of-the-art sur-

vey).

In some cases, it may happen that the jobs are not equiv-

alent and that applying the same measure to all the jobs is

not useful. For instance, it is possible to consider a work-

shop where jobs have the following particularities: whereas

some jobs may have a soft due date with allowed tardiness

(which must be minimised); other jobs may have hard due

dates (i.e. due dates that must be respected) and still other

jobs may have no due date (e.g. production for stock). For

the first type of job, the decision maker wants to minimise

the maximum delay. For the second type of job he imposes

that there must be no delayed jobs and for the last type of

job he wants to minimise the total flow time. These jobs

are assessed according to different objectives, but these jobs

are in competition for the use of the machines. This prob-

lem is a multicriteria scheduling problem, where a new type

J Sched

of compromise has to be obtained. In the literature, these

problems are called “interfering job sets” (Balasubramanian

et al. 2009), “multi-agent scheduling” (Agnetis et al. 2000;

Cheng et al. 2006) or “scheduling with competing agents”

(Agnetis et al. 2004). In all these studies, the authors con-

sider a partition of the set of jobs in competition for the use

of resources, with each subset having its own objective func-

tion to optimise.

In this paper, we consider a different version of this prob-

lem in which the performance of the whole set of jobs

has to be minimised. Such a problem may appear in real

life situations. For instance, SKF MDGBB (Medium Deep

Groove Ball Bearings) factories are workshops composed

of parallel machines (see Pessan et al. 2008a, 2008b). The

objective is related to the minimisation of the flow time

criterion (i.e. maximising the number of items produced)

and concerns the whole set of jobs, denoted by N0. Gen-

erally, the jobs that ideally, should be produced daily ex-

ceed the production capacity. To impose the production of

the remaining jobs (say N1 ⊂ N0) during the next day,

another performance measure has to be applied, which is

the minimisation of the number of tardy jobs (or any other

due date-related measure). The measure concerning N0 is

the total completion time minimisation, but the number

of tardy jobs among N1 cannot exceed a given threshold.

This is the field of rescheduling problems (Wu et al. 1993;

Hall and Potts 2004). Another example can be found in

shampoo packing systems (Mocquillon et al. 2006). Sham-

poo is delivered daily and stored in a dedicated storage area

with a limited capacity. The problem is to find the most effi-

cient way to pack shampoo of different types into bottles. A

global objective is to maximise the production, thus reduc-

ing the setup times. At the same time, the times and quan-

tities of future deliveries are known in advance. Thus, each

type of product has to be produced daily so that its quan-

tity never exceeds its allotted storage area. This is a typical

problemwhere the global objective concerns all the products

and where the subset of products is evaluated with another

objective.

The rest of the paper is organised as follows: in Sect. 2 the

problem is defined, the notations are introduced and a state-

of-the-art survey is presented. The first simple reductions

on existing multi-agent or multicriteria scheduling problems

are also given. Section 3 deals with polynomially solvable

single-machine problems. The application of simple reduc-

tions from known NP-hard problems is detailed in Sect. 4.

Section 5 is devoted to the total completion time case and a

pseudo-polynomial time dynamic programming is also pre-

sented.

2 Preliminaries

2.1 Problem definition and notations

A set N0 of n independent jobs has to be scheduled on a

single machine. We assume that all the jobs are available at

time 0, that preemption is not allowed, and that the process-

ing times are deterministic and integers. In this paper, pj

denotes the processing time of job j and dj denotes its due

date, where 1 ≤ j ≤ n; the single machine is always avail-

able and it can process only one job at a time.

Nk denotes the kth subset of jobs of N0. We assume that
⋃K

k=1 Nk = N0 and that
⋂K

k=1 Nk = ∅, with K being the

number of subsets. We denote by nk the number of jobs in

Nk , for 1≤ k ≤ K .

We denote the completion time of job j by Cj .
∑

(wj)Cj

is the total (weighted) completion time. Additionally, Cmax
denotes the maximum completion time (makespan) and

Lmax denotes the maximum lateness, which is defined by

Lmax =max1≤j≤n(Cj −dj). We denote the total (weighted)

tardiness by
∑

(wj)Tj , where Tj =max(0,Cj − dj). In ad-

dition, Uj is equal to 1 if job j is tardy, and Uj is equal

to 0 otherwise.
∑

(wj)Uj denotes the (weighted) number of

tardy jobs.

f k(Nk) is the objective function associated with agent k

(1 ≤ k ≤ K), i.e. to the subset of jobs Nk and this function

is simply denoted f k when there is no ambiguity. f 0(N0)

is the objective function associated with the whole set of

jobs. The problem is to find the completion times of the jobs

that minimise the functions f k , ∀k ∈ {0,1, . . . ,K}. Notice

that in the case of only one agent, the problem already has

two objective functions. According to the three-field nota-

tion proposed by Graham et al. (1979) and extended to mul-

ticriteria scheduling problems in T’kindt and Billaut (2006),

we consider the following functions:

• ε(f 0/f 1, f 2, . . . , f K) in the case of K agents. This de-

notes the ε-constraint approach, i.e. the minimisation of

f 0, subject to f 1 ≤ ε1, f
2 ≤ ε2, . . . , f

K ≤ εK .

• Fℓ(f
0, f 1, f 2, . . . , f K) in the case ofK agents. This for-

mulation indicates a linear combination of criteria, i.e.

Fℓ(f
0, f 1, f 2, . . . , f K) =

∑K
k=0 λkf

k .

2.2 Related literature

The literature contains some results on multi-agent schedul-

ing, but there are very few results when a global objective

function is also considered.

Agnetis et al. (2004) consider the single machine, flow

shop and open shop problems with two subsets of jobs N1

and N2. They consider the minimisation of an objective

function for one subset of jobs subject to a bound for the

other subset of jobs. In addition, they give some complexity

J Sched

results and dynamic programming algorithms for the single-

machine problem. The single-machine problem is also con-

sidered in Baker and Smith (2003). These authors con-

sider several regular objective functions (Cmax,
∑

wjCj ,

Lmax) and they propose an algorithm for the minimisation

of a linear combination of the objective functions. Com-

plexity results are given and some polynomially solvable

cases are identified. Furthermore, Yuan et al. (2005) pro-

pose some complementary results for these problems. Fig-

ure 1 summarises the results presented in Baker and Smith

(2003) and Yuan et al. (2005). Cheng et al. (2006) consider

a single-machine problem with K disjoint subsets of jobs

N1, . . . , NK (
⋃K

i=1 Ni = N0). Each job is associated with

a deadline, and each subset is measured by the total num-

ber of tardy jobs. The authors prove that the decision prob-

lem denoted by 1|
∑

wjU
1
j ≤ ε1, . . . ,

∑

wjU
K
j ≤ εK |− is

strongly NP-hard. When the number of agents is fixed, they

show that the problem can be solved in pseudo-polynomial

time and they give a fully polynomial time approximation

scheme. Additionally, if the weights are equal to 1, the prob-

lem can be solved in polynomial time. Cheng et al. (2008)

consider the single-machine multi-agent scheduling prob-

lem with K objective functions of min-max type. The au-

thors prove that the feasibility problem can be solved in

polynomial time, even if jobs are subject to precedence con-

straints. Furthermore, the authors show that the problems

1||
∑K

k=1(L
k
max), 1||

∑K
k=1(T

k
max) and 1||

∑K
k=1(

∑

wjC
k
j)

are NP-hard and some polynomially solvable cases are iden-

tified by them. Agnetis et al. (2007) consider single-machine

two-agent scheduling problems (reported in Fig. 1). Two ap-

proaches are considered: (1) the “decision problem”, which

is to find a solution such that all the criteria are bounded

and (2) the “Pareto-optimisation problem”, where the aim is

to find the set of all non-dominated solutions (denoted by

“#” in Fig. 1). Some results are also given for some single-

machine multi-agent scheduling problems.

2.3 Some simple reductions

If the decision problem P reduces to decision problem P ′,

we use the notation P ∝ P ′. We also use the following no-

tations: Γ max = {Cmax,Lmax}, Γ
Σ = {

∑

Cj ,
∑

Tj ,
∑

Uj },

Γ Σw = {
∑

wjCj ,
∑

wjTj ,
∑

wjUj } and Γ = Γ max ∪

Γ Σ ∪ Γ Σw . We focus on the objective functions, and f

stands for the problem α|β|f .

Proposition 1 The following reductions hold, ∀f 0,

f 1 ∈ Γ :

1.1 f 0 ∝ Fℓ(f
0, f 1) and f 1(N0) ∝ Fℓ(f

0, f 1(N1))

1.2 f 0 ∝ ε(f 0/f 1)

1.3 f 1(N0) ∝ ε(f 0/f 1(N1))

Proof 1.1 Take the linear combination where the coefficient

associated with f 1 is equal to zero; take the linear combi-

nation where the coefficient associated with f 0 is equal to

zero.

1.2 Take a large value for ε1 associated to f 1.

1.3 Finding a solution which satisfies f 1(N1) ≤ ε is

equivalent to the decision version of problem α|β|f 1(N0)

with subset N1. ¤

Proposition 2 The following reductions from bicriteria

scheduling hold, ∀f 0, f 1 ∈ Γ :

2.1 Fℓ(f
0, f 1(N0)) ∝ Fℓ(f

0, f 1(N1))

2.2 ε(f 0/f 1(N0)) ∝ ε(f 0/f 1(N1))

Proof Take N1 = N0 and the problems are the same. ¤

The consequence is that if a bicriteria scheduling problem

is NP-hard, then the corresponding problem with one agent

and a global objective function is NP-hard.

Proposition 3 The following reductions from multi-agent

scheduling hold:

3.1 Fℓ(f
1, f 2(N2)) ∝ Fℓ(f

1, f 2(N0)), ∀f 1 ∈ Γ , ∀f 2 ∈

Γ Σw ∪ {Lmax,
∑

Uj }

3.2 ε(f 2(N2)/f
1) ∝ ε(f 2(N0)/f

1), ∀f 1 ∈ Γ , ∀f 2 ∈

Γ Σw ∪ {Lmax,
∑

Uj }

Proof If f 2 ∈ Γ Σw , one can build an instance to problem

α|β|Fℓ(f
1(N1), f

2(N0)) with wj = 0 for the jobs that are

not in N1. Because f 2 ∈ Γ Σw , f 2(N0) = f 2(N2). The

proof holds for the ε-constraint approach.

If f2 ∈ {Lmax,
∑

Uj ,
∑

wjUj }, one can build an in-

stance to problem α|β|Fℓ(f
1(N1), f

2(N0)) with dj = HV

for each job j /∈ N1 (HV being an high value). Because

f 2 ∈ {Lmax,
∑

Uj ,
∑

wjUj }, the problems are the same.

The same reasoning can be applied to the ε-constraint ap-

proach. ¤

Proposition 4 The following reductions from multi-agent

with a global objective function hold:

4.1 Fℓ(f
1(N1), f

0) ∝ Fℓ(f
1(N0), f

0), ∀f 1 ∈ Γ Σw ∪

{Lmax,
∑

Uj }, ∀f 0 ∈ Γ .

4.2 ε(f 0/f 1(N1)) ∝ ε(f 0/f 1(N0)), ∀f 1 ∈ Γ Σw ∪ {Lmax,
∑

Uj }, ∀f 0 ∈ Γ .

Proof See the proof for Proposition 3.1. ¤

These simple reductions are shown in Figs. 2 and 3.

Tables 1 and 2 summarise the complexity results that

are established in the rest of this paper for single-machine

problems (‘H’ indicates an NP-hard problem, ‘P’ indicates

a polynomial problem and ‘o’ indicates an open problem).

J Sched

Fig. 1 Some complexity results

on multi-agent scheduling

problems

Problem Complexity Reference

1||Fl

(

Cmax(N1),Cmax(N2)
)

Polynomial Baker and Smith (2003)

1||Fl

(

Lmax(N1),Lmax(N2)
)

Polynomial Baker and Smith (2003), Yuan et al. (2005)

1||Fl

(
∑

wj Cj (N1),
∑

wj Cj (N2)
)

Polynomial Baker and Smith (2003)

1||Fl

(

Cmax(N1),Lmax(N2)
)

Polynomial Baker and Smith (2003)

1||Fl

(

Cmax(N1),
∑

wj Cj (N2)
)

Polynomial Baker and Smith (2003)

1||Fl

(
∑

Cj (N1),Lmax(N2)
)

Polynomial Yuan et al. (2005)

1||Fl

(
∑

wj Cj (N1),Lmax(N2)
)

Strongly NP-hard Baker and Smith (2003)

1||Fl

(

Cmax(N1),Lmax(N2),
∑

wj Cj (N3)
)

Strongly NP-hard Baker and Smith (2003)

1||
∑

k

(

Lmax(Nk)
)

Ordinary NP-Hard Cheng et al. (2008)

1||
∑

k

(

Tmax(Nk)
)

Ordinary NP-Hard Cheng et al. (2008)

1||
∑

k

(

maxwj Cj (Nk)
)

Strongly NP-Hard Cheng et al. (2008)

1||ε
(

fmax(N1)/fmax(N2)
)

Polynomial Agnetis et al. (2004)

1||ε
(
∑

wj Cj (N1)/Cmax(N2)
)

Ordinary NP-Hard Agnetis et al. (2004)

1||ε
(
∑

wj Cj (N1)/Lmax(N2)
)

Strongly NP-Hard Ng et al. (2006)

1||ε
(
∑

wj Cj (N1)/
∑

Uj (N2)
)

Strongly NP-Hard Ng et al. (2006)

1||ε
(
∑

Cj (N1)/fmax(N2)
)

Polynomial Agnetis et al. (2004)

1||ε
(
∑

Uj (N1)/fmax(N2)
)

Polynomial Agnetis et al. (2004)

1||ε
(
∑

Uj (N1)/
∑

Uj (N2)
)

Polynomial Agnetis et al. (2004)

1||ε
(
∑

Cj (N1)/
∑

Uj (N2)
)

Open*

1||ε
(
∑

wj Cj (N1)/
∑

Uj (N2)
)

Ordinary NP-Hard Agnetis et al. (2004)

1||ε
(
∑

Cj (N1)/
∑

Cj (N2)
)

Ordinary NP-Hard Agnetis et al. (2004)

1||#
(

fmax(N1), fmax(N2)
)

Polynomial Agnetis et al. (2007)

1||#
(
∑

wj Cj (N1), fmax(N2)
)

Exponential Agnetis et al. (2007)

1||#
(
∑

Cj (N1), fmax(N2)
)

Polynomial Agnetis et al. (2007)

1||#
(
∑

Uj (N1), fmax(N2)
)

Polynomial Agnetis et al. (2007)

1||#
(
∑

Uj (N1),
∑

Uj (N2)
)

Polynomial Agnetis et al. (2007)

1||#
(
∑

Cj (N1),
∑

Uj (N2)
)

Polynomial Agnetis et al. (2007)

1||#
(
∑

wj Cj (N 1),
∑

Uj (N2)
)

Polynomial Agnetis et al. (2007)

1||#
(
∑

Cj (N1),
∑

Cj (N2)
)

Exponential Agnetis et al. (2007)

– with fmax a regular function of type maxj (fj (Cj))

– with g a non-regular function

(*) The problem is NP-Hard under high multiplicity encoding (Ng et al. 2006)

Fig. 2 Simple reductions

between objective functions

from single objective and

bicriteria scheduling

Fig. 3 Simple reductions

between objective functions

from multi-agent scheduling

3 Polynomially solvable problems

In this section, we present some polynomially solvable

problems. Note that because the makespan is a constant,

single-machine problems involving C0max as a global objec-

tive function are single objective problems. Thus, problems

of type 1||Fℓ(f
1,C0max), 1||ε(f

1/C0max) and 1||ε(C
0
max/f

1)

have the same complexity as problems 1||f 1(N0), ∀f 1 ∈ Γ .

Proposition 5 The following problems can be solved in

polynomial time:

5.1 1||Fℓ(L
0
max,C

1
max) and 1||ε(L0max/C1max)

5.2 1||Fℓ(L
0
max,L

1
max) and 1||ε(L0max/L

1
max)

Proof 5.1 Suppose that jobs are numbered in EDD order.

All the sequences EDD(N1 ∪ {n1 + 1, . . . , j})//EDD({j +

J Sched

Table 1 Complexity results in the case of a linear combination of cri-

teria. Notice that this matrix is a priori not symmetric

λ1f
1(N1) λf 0(N0)

C0max L0max
∑

C0j
∑

T 0j
∑

U0
j

∑

wjC
0
j

∑

wjT
0
j

∑

wjU
0
j

C1max P P P H o P H H

L1max P P P H o H H H
∑

C1j P o P H H P H H
∑

T 1j H H H H H H H H
∑

U1
j P o H H o H H H

∑

wjC
1
j P H P H H P H H

∑

wjT
1
j H H H H H H H H

∑

wjU
1
j H H H H H H H H

Table 2 Complexity results after simple reductions in the case of the

ε-constraint

f 1(N1) ≤ ε1Min f 0(N0)

C0maxL
0
max

∑

C0j
∑

T 0j
∑

U0
j

∑

wjC
0
j

∑

wjT
0
j

∑

wjU
0
j

C1max P P P H o H H H

L1max P P P H o H H H
∑

C1j P o H H H H H H
∑

T 1j H H H H H H H H
∑

U1
j P o H H o H H H

∑

wjC
1
j P H H H H H H H

∑

wjT
1
j H H H H H H H H

∑

wjU
1
j H H H H H H H H

1, j +2, . . . , n}) for all j ∈ {n1+1, n1+2, . . . , n} are tested.

The best sequence with the linear combination gives an op-

timal solution for the function Fℓ(L
0
max,C

1
max) and the best

sequence that satisfies Cmax(N1) ≤ ε gives an optimal solu-

tion for function L0max. The problem can be solved in O(n2)

time. The formal proof can be obtained by pairwise inter-

change arguments.

5.2 There exists an optimal solution such that the jobs

of N1 and the jobs of N \ N1 are sorted in EDD order.

Of course, the global sequence obtained may not follow the

EDD order.

Let us consider the problem 1||ε(L0max/L
1
max). Let edd

denote the global EDD sequence and let edd1 denote the

EDD sequence for the jobs of N1. An optimal algorithm

is given in Table 3. This algorithm ensures, firstly, that the

epsilon-constraint is verified. Then, the jobs are scheduled

according to edd order to the greatest extent possible. This

algorithm finds the optimal solution in O(n logn) time.

Now let us consider the 1||Fℓ(L
0
max,L

1
max) problem. The

polynomial time dynamic programming algorithm proposed

by Yuan et al. (2005) in the multi-agent case can be applied

to solve this problem. ¤

Notice that problems 1||Fℓ(L
0
max,

∑

C1j) and 1||ε(L0max/
∑

C1j) remain open.

Proposition 6 The following problems can be solved in

polynomial time:

6.1 1||Fℓ(
∑

C0j ,C1max) and 1||ε(
∑

C0j /C1max)

6.2 1||Fℓ(
∑

C0j ,L1max) and 1||ε(
∑

C0j /L1max)

Proof 6.1 An optimal solution always exists with the jobs in

N1 and the jobs in N \ N1 being sequenced in the shortest

processing time (SPT) order. Furthermore, for the makespan

objective, only the completion time of the last job of N1 has

to be considered. Thus, the jobs before the last job of N1

are sequenced in SPT order, whether or not they belong to

N1. Let us suppose that the jobs of N1 in SPT are num-

bered as follows: {1,2, . . . , n1}. Let us also suppose that the

jobs of N \ N1 are {n1 + 1, n1 + 2, . . . , n}. We evaluate

the sequences SPT(N1∪{n1+1, . . . , j})//SPT({j +1, j +

2, . . . , n}) for all j ∈ {n1 + 1, n1 + 2, . . . , n}, where a//b

stands for the concatenation of a and b. The best sequence

is the optimal solution of the problem. This algorithm can

be implemented in O(n logn) time.

6.2 Problem 1||ε(
∑

C0j /C1max) is polynomial.

If PN 1 =
∑

Jj ∈N1
pj < ε, there is no feasible solution.

Otherwise, an optimal solution can be obtained by the fol-

lowing two-step algorithm:

1. determine the initial solution by ordering the jobs of N

in SPT order

2. move the last jobs in N1 to the left in such a way that the

new solution satisfies the ε-constraint.

The complexity is bounded by O(n logn).

6.2 Problem 1||Fℓ(
∑

C0j ,L1max) has the same complex-

ity as problem 1||Fℓ(L
0
max,

∑

C0j), which is solvable in

O(n2) (see Hoogeveen 1992 and Proposition 4). Problem

1||ε(
∑

C0j /L1max) is equivalent to the 1|d̃j |
∑

Cj problem,

which can be solved in polynomial time (Hoogeveen and

Van de Velde 1995). ¤

Proposition 7 The following problems can be solved in

polynomial time:

7.1 1||Fℓ(
∑

wjC
0
j ,

∑

w′
jC

1
j)

7.2 1||Fℓ(
∑

wjC
0
j ,C1max)

Proof 7.1 We set w′′
j = λ0 × wj + λ1 × w′

j and solve prob-

lem 1||
∑

w′′
j C0j (see Baker and Smith 2003). We deduce

that problems 1||Fℓ(
∑

wjC
0
j ,

∑

C1j) and 1||Fℓ(
∑

C0j ,
∑

wjC
1
j) are also polynomially solvable.

7.2 Suppose that the jobs of N1 are numbered accord-

ing to the weighted shortest processing time (WSPT) or-

der. Apply the algorithm for 7.1 with w′
j = 0, ∀j 6= n1 and

w′
n1

= 1. ¤

J Sched

Table 3 Algorithm for problem 1||ε(L 0
max/L

1
max)

For i = 1 to n1 do

d̃i = di + ε

Endfor

Schedule the jobs of N1 in edd1 order as late as possible and so that the deadline is respected.

t = 0

For i = 1 to n1 do

Consider Si = {j ∈ N \ N1, dj ≤ di}, in edd order

Schedule jobs in Si from date t with preemption if necessary (without changing the start time of the jobs of N1)

If there is an idle time before job i. Then

Shift job i to the left.

t = Ci

Else

t = completion time of the last job of Si

Endif

Endfor

For all the preempted jobs do

In order to obtain a non-preemptive solution, shift the parts of the job to the right so that its completion time is not changed

and the jobs of N1 complete earlier.

Endfor

4 Application of simple reductions from known

NP-hard problems

Proposition 8 The following problems are NP-hard:

8.1 1||Fℓ(f
0, f 1) and 1||ε(f 0/f 1), ∀f 0 ∈ {

∑

Tj ,
∑

wjTj ,
∑

wjUj }, ∀f 1 ∈ Γ

8.2 1||Fℓ(f
0, f 1) and 1||ε(f 0/f 1), ∀f 0 ∈ Γ , ∀f 1 ∈

{
∑

Tj ,
∑

wjTj ,
∑

wjUj }

8.3 1||Fℓ(L
0
max,

∑

wjC
1
j) and 1||Fℓ(

∑

wjC
0
j ,L1max)

8.4 1||Fℓ(
∑

C0j ,
∑

U1
j) and 1||ε(

∑

C0j /
∑

U1
j)

8.5 1||Fℓ(
∑

U0
j ,

∑

C1j) and 1||ε(
∑

U0
j /

∑

C1j)

8.6 1||Fℓ(
∑

U0
j ,

∑

wjC
1
j) and 1||ε(

∑

U0
j /

∑

wjC
1
j)

Proof 8.1 Deduced from prop. 1.1 and 1.2.

8.2 Deduced from prop. 1.1 and 1.3.

8.3 This item is true, because 1||Fℓ(L
0
max,

∑

wjC
0
j) has

been proved to be NP-hard in Hoogeveen (1992) (see Propo-

sition 2.1).

8.4 Problem 1||Lex(
∑

U0
j ,

∑

C0j) is proved to be NP-

hard in Huo et al. (2007) (with Lex being the lexicographic

minimisation, i.e., Min
∑

C0j is subject to
∑

U0
j being

optimal). With an appropriate choice of weights, we can

show that 1||Lex(
∑

U0
j ,

∑

C0j) ∝ 1||Fℓ(
∑

U0
j ,

∑

C0j).

As a consequence, this last problem is NP-hard. Thus,

1||Fℓ(
∑

C0j ,
∑

U1
j) is also NP-hard (see Proposition 2.1).

We deduce that problem 1||Fℓ(
∑

wjC
0
j ,

∑

U1
j) is also NP-

hard. The second property is true because 1||ε(
∑

C0j /
∑

U0
j)

has been proved NP-hard in Nelson et al. (1986) (see Propo-

sition 2.1).

8.5 For 1||Fℓ(
∑

U0
j ,

∑

C1j), see the proof 8.4.

8.6 This is an immediate reduction from 8.5. ¤

Proposition 9 The following problems are NP-hard:

9.1 1||ε(L0max/
∑

wjC
1
j)

9.2 1||ε(
∑

wjC
0
j /C1max) and 1||ε(

∑

wjC
0
j /L1max)

9.3 1||ε(
∑

wjC
0
j /

∑

U1
j)

Proof 9.1 The decision version of this problem is to find a

sequence so that
∑

wjC
1
j ≤ ε1 and L0max ≤ ε0. The proposi-

tion comes because problem 1||ε(
∑

wjC
1
j /L2max) is proved

NP-hard in Agnetis et al. (2004) (see Proposition 3.2).

9.2 This proposition has the same proof as 9.1.

9.3 The proof of this proposition has the same reasoning

as the proof for 9.1 because problem 1||ε(
∑

wjC
1
j /

∑

U2
j)

is proved to be NP-hard in Agnetis et al. (2004). ¤

5 The case of total completion time criteria

First we prove the NP-hardness of the 1||ε(
∑

C0j /
∑

C1j)

problem in the case of one agent. Then, we provide a

pseudo-polynomial time dynamic programming algorithm

for problem 1||ε(
∑

C0j /
∑

C1j).

5.1 Establishing the complexity

In this section, we consider the epsilon-constraint problem

for which the two objective functions are the total comple-

J Sched

Fig. 4 Initial sequence with 10

jobs

tion time, denoted by 1||ε(
∑

C0j /
∑

C1j). No simple reduc-

tion can be used for deriving a complexity result. We show

that the problem is NP-hard.

Proposition 10 There is always an optimal solution that re-

spects the following properties:

10.1 there is no idle time.

10.2 jobs in N1 follow the SPT order (Shortest Processing

Time first).

10.3 jobs in (N \ N1) follow the SPT order.

10.4 if pi ≤ pj , then i must be scheduled before j , ∀(i, j) ∈

N1 × (N \ N1).

Proof The first point is true because we consider regular cri-

teria. The two next points are true because an interchange of

jobs that do not follow the SPT order cannot decrease the

solution’s quality. The last point is true because otherwise,

the permutation of i and j improves both
∑

C0j and
∑

C1j .

Note that point 4 is not true if (i, j) ∈ (N \ N1) × N1. ¤

Proposition 11 Problem 1||ε(
∑

C0j /
∑

C1j) is NP-hard.

Proof We define the problem PWDE (PARTITION with

distinct elements) below. Note that this problem has been

proved NP-hard in Huynh Tuong et al. (2009):

PWDE:

Data: Finite set B of t integer elements

a1, a2, . . . , at with distinct sizes

(ai 6= aj , ∀i, j),
∑t

i=1 ai = 2C.

Question: Is there a subset B1 of in-

dices such that
∑

i∈B1
ai =

∑

i∈{1,2,...,t}\B1
ai = C?

We denote by 1mCC the decision version of problem

1||ε(
∑

C0j /
∑

C1j). This problem is defined by

1mCC:

Data: A set N0 of n jobs, a subset N1 ⊂

N0, processing times pj for each

job j , 1≤ j ≤ n, two integer values

Y0 and Y1

Question: Is there a one-machine schedule

σ for N0 so that
∑

C0j ≤ Y0 and
∑

C1j ≤ Y1?

We must prove that PWDE ∝ 1mCC.

We consider an arbitrary instance of PWDE and we as-

sume without loss of generality that a1 < · · · < at . We know

that min1≤i≤t−1
ai+1

ai
> 1. It is always possible to find α

and K such that 1 < α < min1≤i≤t−1
ai+1

ai
and αK ∈ N (if

aℓ+1

aℓ
= min1≤i≤t−1

ai+1

ai
, take, for instance, α =

aℓ+1

aℓ+1
and

K = aℓ + 1 if aℓ+1 6= aℓ + 1 or take α =
10×aℓ+1

10×aℓ+1
and

K = 10× aℓ + 1 otherwise).

Because of the definitions of α and K we have Kai <

αKai < Kai+1 < αKai+1.

Let β = α − 1, β > 0 and X = K
∑t

i=1(2(t − i + 1) +

(2t − 2i + 1)α) × ai .

We define an instance of problem 1mCC as follows: n =

2t and

• p(2i−1) = Kai , ∀i = 1,2, . . . , t ; p(2i) = αKai , ∀i =

1,2, . . . , t ;

• Y1 = K(1+ α)(
∑t

i=1(t − i + 1) × ai) − KC; Y0 = X +

βKC;

• N1 = {2,4,6, . . . ,2t}.

We define an initial solution S0 = {1,2,3, . . . ,2t −

1,2t}, i.e. the sequence where the jobs are sorted accord-

ing to the SPT rule (see Fig. 4).

We have

n
∑

j=1

Cj (S
0) = Ka1 + (Ka1 + αKa1) + (Ka1 + αKa1

+ Ka2) + (Ka1 + αKa1 + Ka2 + αKa2) + · · ·

⇒

n
∑

j=1

Cj (S
0) = 2tKa1 + (2t − 1)αKa1 + (2t − 2)Ka2

+ (2t − 3)αKa2 + · · ·

⇒

n
∑

j=1

Cj (S
0) = Ka1

(

2t + (2t − 1)α
)

+ Ka2
(

(2t − 2) + (2t − 3)α
)

+ · · ·

⇒

n
∑

j=1

Cj (S
0) = K

t
∑

i=1

(

2(t − i + 1)

+ (2t − 2i + 1)α
)

× ai = X.

In the same way, we obtain

∑

j∈N1

Cj (S
0) = (Ka1 + αKa1) + (Ka1 + αKa1

J Sched

+ Ka2 + αKa2) + · · ·

⇒
∑

j∈N1

Cj (S
0) = t (Ka1 + αKa1) + (t − 1)(Ka2

+ αKa2) + · · ·

⇒
∑

j∈N1

Cj (S
0) = t

(

(1+ α)Ka1
)

+ (t − 1)

×
(

(1+ α)Ka2
)

+ · · ·

⇒
∑

j∈N1

Cj (S
0) = K(1+ α)

(

ta1 + (t − 1)a2 + · · ·
)

⇒
∑

j∈N1

Cj (S
0) = K(1+ α)

t
∑

i=1

(t − i + 1)ai = Y1 + KC.

Thus, this solution is not a feasible solution for problem

1mCC:
∑

j∈N Cj (S
0) ≤ Y but

∑

j∈N1
Cj (S

0) > Y1.

• Let us suppose that the answer to PWDE is ‘yes’. We

are going to propose a method for permuting consecutive

jobs for decreasing
∑

C1j (this method will increase
∑

C0j
at the same time). We consider the set of jobs G = {j ∈ N0 |

j = 2i with i ∈ B1}. Note that G ⊆ N1. We define the se-

quence S1 by the permutation in S0 of each job of G with its

predecessor: S1[j] = S0[j −1], S1[j −1] = S0[j] for j ∈ G

and S1[j] = S0[j] for the other jobs.

We have to compute
∑

j∈N0
Cj (S

1) and
∑

j∈N1
Cj (S

1).

We first compute these values after the permutation of only

two jobs (sequence S′).

∑

j∈N0

Cj (S
′) =

∑

j∈N0

Cj

(

S0
)

+ (pj − pj−1).

Thus,
∑

j∈N0

Cj

(

S1
)

=
∑

j∈N0

Cj

(

S0
)

+
∑

j∈G

(pj − pj−1)

=
∑

j∈N0

Cj

(

S0
)

+
∑

j∈G

(αKaj/2 − Kaj/2).

⇒
∑

j∈N0

Cj

(

S1
)

=
∑

j∈N0

Cj

(

S0
)

+
∑

j∈G

(βKaj/2)

=
∑

j∈N0

Cj

(

S0
)

+ βK
∑

j∈G

aj/2

⇒
∑

j∈N0

Cj

(

S1
)

=
∑

j∈N0

Cj

(

S0
)

+ βK × C = X + βKC = Y.

Similarly,

∑

j∈N1

Cj (S
′) =

∑

j∈N1

Cj

(

S0
)

− pj−1

Fig. 5 Sequences S0 and σ ′ and position of job 2i

Thus,

∑

j∈N1

Cj

(

S1
)

=
∑

j∈N1

Cj

(

S0
)

−
∑

j∈G

pj−1.

⇒
∑

j∈N1

Cj

(

S1
)

=
∑

j∈N1

Cj

(

S0
)

−
∑

j∈G

Kaj/2

⇒
∑

j∈N1

Cj

(

S1
)

=
∑

j∈N1

Cj

(

S0
)

− KC = Y1

+ KC − KC = Y1.

Thus, S1 is the sequence for which the answer to 1mCC is

‘yes’.

• Now suppose that the answer to 1mCC is ‘yes’ for se-

quence σ . If σ does not respect the conditions of Proposi-

tion 10, then all the jobs are shifted to the left, the SPT rule

is applied to the jobs of N1, and with respect to the jobs of

N0 \ N1 and each time condition 10.4 occurs, jobs i and j

are switched. A new sequence σ ′ is obtained, so that:

•
∑

j∈N0

Cj (σ
′) ≤

∑

j∈N0

Cj (σ) ≤ Y (1)

•
∑

j∈N1

Cj (σ
′) ≤

∑

j∈N1

Cj (σ) ≤ Y1 (2)

• and σ ′ satisfies the conditions of Proposition 10.

We now compare σ ′ and S0.

Let us consider the job number 2i. This job is in position

2i in S0 and it is in position k in σ ′. Let us suppose that

k > 2i. In this case, there is at least one job before 2i in

σ ′ with a bigger processing time. This job cannot belong to

N1, because the jobs of N1 in σ ′ are sorted according to

SPT. Thus this job belongs to N \ N1. However, this case

is not possible because of condition 10.4. Therefore, k ≤ 2i.

Similarly, we can show that job 2i − 1 is in position 2i − 1

in S0 and that it is in position l in σ ′ with l ≥ 2i − 1. This

case is illustrated in Fig. 5.

We define the set of jobs H2i = {j/(j ≻σ ′ 2i) ∧ (pj <

p2i) ∧ (j ∈ N0 \ N1)}. For instance, job 2i − 1 belongs to

H2i . These jobs are the jobs of N0 \ N1 that precede job 2i

in S0.

J Sched

We have C2i(S
0) = C2i(σ

′) +
∑

k∈H2i
pk according to

the definition of H2i .

⇒ C2i(σ
′) = C2i

(

S0
)

−
∑

k∈H2i

pk

⇒
∑

j∈N1

Cj (σ
′) =

∑

j∈N1

Cj

(

S0
)

−
∑

j∈N1

∑

k∈Hj

pk

⇒
∑

j∈N1

Cj (σ
′) = Y1 + KC −

∑

j∈N1

∑

k∈Hj

pk. (3)

Because (2) that
∑

j∈N1
Cj (σ

′) ≤ Y1, we have

Y1 + KC −
∑

j∈N1

∑

k∈Hj

pk ≤ Y1

⇒ KC ≤
∑

j∈N1

∑

k∈Hj

pk

⇒ KC ≤
∑

j∈N1

∑

k∈Hj

Ka(k+1)/2

⇒ C ≤
∑

j∈N1

∑

k∈Hj

a(k+1)/2. (4)

Due to condition 10.4, from the initial solution S0, the

position of jobs j ∈ N1 in σ ′ would be unchanged or moved

to the left. Similarly, the position of jobs j ∈ N0 \ N1 in σ ′

would be unchanged or moved to the right. The deviation

of the completion time of a job j ∈ N0 \ N1 between two

sequences σ ′ and S0 is determined by the total processing

times of the jobs of N1 which are scheduled after j in S0,

and they are also scheduled before j in σ ′. For instance, in

Fig. 5, the deviation of the completion time of job 2i − 1

between two sequences σ ′ and S0 is at least equal to p2i .

More generally, we have

C2i−1(σ
′) = C2i−1

(

S0
)

+
∑

k∈N1|2i−1∈Hk

pk

⇒
∑

j∈N \N1

Cj (σ
′) −

∑

j∈N \N1

Cj

(

S0
)

=
∑

j∈N \N1

∑

k∈N1|j∈Hk

pk

⇒
∑

j∈N0\N1

Cj (σ
′) −

∑

j∈N0\N1

Cj

(

S0
)

=
∑

k∈N1|j∈Hk

∑

j∈N0\N1

pk =
∑

k∈N1

∑

j∈Hk

pk.

Thus, the deviation of the total completion times between

two sequences σ ′ and S0 is defined as follows:

∑

j∈N0

Cj (σ
′) −

∑

j∈N0

Cj

(

S0
)

=

(

∑

j∈N1

Cj (σ
′) −

∑

j∈N1

Cj

(

S0
)

)

+

(

∑

j∈N0\N1

Cj (σ
′) −

∑

j∈N0\N1

Cj

(

S0
)

)

.

Due to (3), we have

∑

j∈N1

Cj (σ
′) −

∑

j∈N1

Cj

(

S0
)

=
∑

j∈N1

∑

k∈Hj

pk

⇒
∑

j∈N0

Cj (σ
′) −

∑

j∈N0

Cj

(

S0
)

=
∑

k∈N1

∑

j∈Hk

pk

−
∑

j∈N1

∑

k∈Hj

pk

⇒
∑

j∈N0

Cj (σ
′) −

∑

j∈N0

Cj

(

S0
)

=
∑

j∈N1

∑

k∈Hj

(pj − pk).

Because pj > pk where j ∈ N1, k ∈ Hj , we have pj ≥

pk+1 with j, k + 1 ∈ N1 and k ∈ Hj

⇒
∑

j∈N0

Cj (σ
′) −

∑

j∈N0

Cj

(

S0
)

≥
∑

j∈N1

∑

k∈Hj

(pk+1 − pk)

=
∑

j∈N1

∑

k∈Hj

(αKa(k+1)/2 − Ka(k+1)/2)

⇒
∑

j∈N0

Cj (σ
′) −

∑

j∈N0

Cj

(

S0
)

≥ βK
∑

j∈N1

∑

k∈Hj

a(k+1)/2

⇒
∑

j∈N0

Cj (σ
′) ≥

∑

j∈N

Cj

(

S0
)

+ βK
∑

j∈N1

∑

k∈Hj

a(k+1)/2.

(5)

According to (2) and because
∑

j∈N1

∑

k∈Hj
a(k+1)/2 ≥ C,

we have the following:

∑

j∈N0

Cj (σ
′) ≥

∑

j∈N

Cj

(

S0
)

+ βKC = Y. (6)

Consequently, thanks to (1) and (6), we deduce that
∑

j∈N0
Cj (σ

′) = Y .

In other words, all inequalities (4), (5) should become

equalities:

{
∑

j∈N1

∑

k∈Hj
a(k+1)/2 = C,

pj = pk+1 where j ∈ N1, k ∈ Hj .

Let us recall that the processing times of the jobs are all

different. Hence, either pj = pk+1 (i.e. |Hj | = 1) or |Hj | =

0 where j ∈ N1, k ∈ Hj .

⇒ |Hj | ≤ 1, ∀j ∈ N1

J Sched

⇒ The equality
∑

j∈N1

∑

k∈Hj

a(k+1)/2 = C

defines the subset B1 of PWDE.

Consequently, the answer for the question of the PWDE

problem is ‘yes’ (i.e., jobs j with |Hj | = 1 give a subset

B1 of PWDE). ¤

We deduce that problems 1||ε(
∑

C0j /
∑

wjC
1
j),

1||ε(
∑

wjC
0
j /

∑

C1j) and 1||ε(
∑

wjC
0
j /

∑

wjC
1
j) are also

NP-hard.

5.2 A dynamic programming algorithm for the

1||ε(
∑

C0j /
∑

C1j)

We have to both minimise
∑

C0j and respect the constraint

that
∑

C1j ≤ ε1. We assume that the jobs in N1 are num-

bered from 1 to n1 = |N1| with p1 ≤ p2 ≤ · · · ≤ pn1 and

that the jobs in N \ N1 are numbered from n1 + 1 to n

with pn1+1 ≤ pn1+2 ≤ · · · ≤ pn. We introduce the follow-

ing notations: P is the sum of the processing times of all

the jobs, P(i,j) =
∑

1≤k≤i pk +
∑

n1+1≤k≤j pk . We denote

by F(i, j, q) =
∑

C0j the minimum cost that must arise

when the jobs {1,2, . . . , i} ∈ N1 and the jobs {n1 + 1, n1 +

2, . . . , j} ∈ N \ N1 are scheduled. q corresponds to
∑

C1j .

The general recursive relation is

F(0, n1,0) = 0,

F (i, j, q) = +∞, ∀i > n1,∀j ≤ n1,∀q,

F (i, j, q) = +∞, ∀i ≤ n1,∀j ∈ {n1, n1 + 1, . . . , n},

∀q < 0∨ q > ε1,

F (i, j, q) =min

{

F(i − 1, j, q − P(i,j)) + P(i,j),

F (i, j − 1, q) + P(i,j)

}





∀i ∈ {1, . . . , n1}

∀j ∈ {n1 + 1, . . . , n}

∀0≤ q ≤ ε1



 .

The optimal solution is given by min0≤q≤ε1 F(n1, n, q).

The execution time of this algorithm is in O(n1(n − n1)ε1).

Proposition 12 An optimal solution to the problem

1||ε(
∑

C0j /
∑

C1j) can be determined in O(n2ε1) time.

6 Conclusion

In this paper, we consider a new family of scheduling prob-

lems at the frontier of multi-agent and multicriteria schedul-

ing. Subsets of jobs are in competition with the whole set

of jobs for the use of resources and a compromise solution

has to be found. We consider the problem of scheduling in-

dependent jobs on a single machine, without additional con-

straints and the objective functions are of two types: the ε-

constraint approach and a linear combination of the criteria.

We notice that these results can be extended to the case of

goal programming and enumerative approaches.

Some simple reductions from multicriteria scheduling

problems are established, and polynomially solvable prob-

lems and NP-hard problems are identified. A pseudo-

polynomial time dynamic programming algorithm is pro-

posed for solving the case of total completion time.

This category of problems may have a lot of practical ap-

plications, and it leads to a wide area of research problems.

While some complexity results remain open, some approx-

imation schemes can be constructed for these problems as

well as exact and approximated heuristic algorithms. Con-

sidering more than one agent is also a challenging perspec-

tive, as the problems combine the aspects of multicriteria

scheduling and multi-agent scheduling problems, making

the problems more complicated to handle. Computing the

size of the Pareto set is also an interesting problem.

Acknowledgements This work has been supported by the project

ANR-08-BLAN-0331-01, funded by the “National Research Agency”

(ANR).

References

Agnetis, A., Mirchandani, P. B., Pacciarelli, D., & Pacifici, A. (2000).

Nondominated schedules for a job-shop with two competing

users. Computational and Mathematical Organization Theory, 6,

191–217.

Agnetis, A., Mirchandani, P. B., Pacciarelli, D., & Pacifici, A. (2004).

Scheduling problems with two competing agents. Operations Re-

search, 52, 229–242.

Agnetis, A., Pacciarelli, D., & Pacifici, A. (2007). Multi-agent single

machine scheduling. Annals of Operations Research, 150, 3–15.

Baker, K., & Smith, J. C. (2003). A multiple-criterion model for ma-

chine scheduling. Journal of Scheduling, 6, 7–16.

Balasubramanian, H., Fowler, J., Keha, A., & Pfund, M. (2009).

Scheduling interfering job sets on parallel machines. European

Journal of Operational Research, 199(1), 55–67.

Cheng, T. C. E., Ng, C. T., & Yuan, J. J. (2006). Multi-agent scheduling

on a single machine to minimize total weighted number of tardy

jobs. Theoretical Computer Science, 362, 273–281.

Cheng, T. C. E., Ng, C. T., & Yuan, J. J. (2008). Multi-agent scheduling

on a single machine with max-form criteria. European Journal of

Operational Research, 188, 603–609.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractabil-

ity: a guide to the theory of NP-completeness. San Francisco:

W.H. Freeman.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H.

G. (1979). Optimization and approximation in deterministic se-

quencing and scheduling: a survey. Annals of Discrete Mathemat-

ics 5, 287–326.

Hall, N. G., & Potts, C. N. (2004). Rescheduling for new orders. Op-

erations Research, 52(3), 440–453 +496.

Hoogeveen, H. (1992). Single machine bicriteria scheduling. PhD The-

sis, Amsterdam.

J Sched

Hoogeveen, H. (2005). Multicriteria scheduling. European Journal of

Operational Research, 167, 592–623.
Hoogeveen, H., & Van de Velde, S. (1995). Minimizing completion

time and maximum cost simultaneously is solvable in polynomial

time. Operations Research Letters, 17, 205–208.
Huo, Y., Leung, J. Y.-T., & Zhao, H. (2007). Complexity of two dual

criteria scheduling problems. Operations Research Letters, 35,

211–220.
Huynh Tuong, N., Soukhal, A., & Billaut, J.-C. (2009). Complexity

of partition problem with distinct elements (Research report num.

295), University of Tours, France, March.
Mocquillon, C., Lenté, C., & T’Kindt, V. (2006). Solution of a mul-

ticriteria shampoo production problem. In IEEE international

conference on service systems and service management (IEEE-

SSSM’06), Troyes (France) (pp. 907–911).
Nelson, R. T., Sarin, R. K., & Daniels, R. L. (1986). Scheduling with

multiple performance measures: the one-machine case. Manage-

ment Science, 32(4), 464–479.

Ng, C. T., Cheng, T. C. E., & Yuan, J. J. (2006). A note on the complex-

ity of the problem of two-agent scheduling on a single machine.

Journal of Combinatorial Optimization, 12, 387–394.

Pessan, C., Bouquard, J.-L., & Neron, E. (2008a). An unrelated parallel

machines model for an industrial production resetting problem.

European Journal of Industrial Engineering, 2(2), 153–171.

Pessan, C., Bouquard, J.-L., & Neron, E. (2008b). Genetic branch-and-

bound or exact genetic algorithm. In Lecture notes in computer

science (Vol. 4926, pp. 136–147). Berlin: Springer.

T’kindt, V., & Billaut, J.-C. (2006). Multicriteria scheduling: theory,

models and algorithms (2nd ed.). Berlin: Springer.

Wu, S. D., Storer, R. H., & Chang, P.-C. (1993). One-machine

rescheduling heuristics with efficiency and stability as criteria.

Computers & Operations Research, 20(1), 1–14.

Yuan, J. J., Shang, W. P., & Feng, Q. (2005). A note on the scheduling

with two families of jobs. Journal of Scheduling, 8, 537–542.

