N Huynh

A Soukhal
email: ameur.soukhal@univ-tours.fr

J.-C Billaut

Single-machine multi-agent scheduling problems with a global objective function

Keywords: Scheduling, Multi-agent, Single machine, Complexity, Dynamic programming

In this paper, we consider the problem of scheduling independent jobs when several agents compete to perform their jobs on a common single processing machine. Each agent wants to minimise its cost function, which depends exclusively on its jobs and we assume that a global cost function concerning the whole set of jobs has to be minimised. This cost function may correspond to the global performance of the workshop or to the global objective of the company, independent of the objectives of the agents. Classical regular objective functions are considered and both the ε-constraint and a linear combination of criteria are used for finding compromise solutions. This new multi-agent scheduling problem is introduced into the literature and simple reductions with multicriteria scheduling and multi-agent scheduling problems are established. In addition, the complexity results of several problems are proposed and a dynamic programming algorithm is given.

Introduction

Generally in scheduling literature, the quality of a schedule is given by a measure applied to the whole set of jobs. Indeed, classical models consider all jobs to be equivalent and the quality of the global schedule is given by applying the same measure to all jobs without distinction. For instance, the measure may be the maximum completion time of jobs (the makespan), the total flow time of jobs or a measure related to the jobs' tardiness, e.g. maximum tardiness and the total number of tardy jobs. Introducing distinctions between jobs is generally done by the means of weights. For instance, the total weighted completion time, the total weighted tardiness or the weighted number of tardy jobs introduce such distinctions. However, in this case the same measure is still applied to all the jobs to quantify the quality of a schedule.

In a real context, these models are not always reliable. In some practical situations, it can be necessary to consider several aspects of the schedule. For instance, the mean flow time (which is equivalent to the total completion time) and the respect for due dates can be of similar importance for the decision maker. In such cases, more than one objective functions is defined and the scheduling problem enters the field of multicriteria scheduling (T'kindt [START_REF] Billaut | Multicriteria scheduling: theory, models and algorithms[END_REF] and Hoogeveen 2005 present a complete state-of-the-art survey).

In some cases, it may happen that the jobs are not equivalent and that applying the same measure to all the jobs is not useful. For instance, it is possible to consider a workshop where jobs have the following particularities: whereas some jobs may have a soft due date with allowed tardiness (which must be minimised); other jobs may have hard due dates (i.e. due dates that must be respected) and still other jobs may have no due date (e.g. production for stock). For the first type of job, the decision maker wants to minimise the maximum delay. For the second type of job he imposes that there must be no delayed jobs and for the last type of job he wants to minimise the total flow time. These jobs are assessed according to different objectives, but these jobs are in competition for the use of the machines. This problem is a multicriteria scheduling problem, where a new type of compromise has to be obtained. In the literature, these problems are called "interfering job sets" [START_REF] Balasubramanian | Scheduling interfering job sets on parallel machines[END_REF], "multi-agent scheduling" [START_REF] Agnetis | Nondominated schedules for a job-shop with two competing users[END_REF][START_REF] Cheng | Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs[END_REF] or "scheduling with competing agents" [START_REF] Agnetis | Scheduling problems with two competing agents[END_REF]. In all these studies, the authors consider a partition of the set of jobs in competition for the use of resources, with each subset having its own objective function to optimise.

In this paper, we consider a different version of this problem in which the performance of the whole set of jobs has to be minimised. Such a problem may appear in real life situations. For instance, SKF MDGBB (Medium Deep Groove Ball Bearings) factories are workshops composed of parallel machines (see Pessan et al. 2008a[START_REF] Pessan | Genetic branch-andbound or exact genetic algorithm[END_REF]. The objective is related to the minimisation of the flow time criterion (i.e. maximising the number of items produced) and concerns the whole set of jobs, denoted by N 0 . Generally, the jobs that ideally, should be produced daily exceed the production capacity. To impose the production of the remaining jobs (say N 1 ⊂ N 0) during the next day, another performance measure has to be applied, which is the minimisation of the number of tardy jobs (or any other due date-related measure). The measure concerning N 0 is the total completion time minimisation, but the number of tardy jobs among N 1 cannot exceed a given threshold. This is the field of rescheduling problems [START_REF] Wu | One-machine rescheduling heuristics with efficiency and stability as criteria[END_REF][START_REF] Hall | Rescheduling for new orders[END_REF]. Another example can be found in shampoo packing systems [START_REF] Mocquillon | Solution of a multicriteria shampoo production problem[END_REF]. Shampoo is delivered daily and stored in a dedicated storage area with a limited capacity. The problem is to find the most efficient way to pack shampoo of different types into bottles. A global objective is to maximise the production, thus reducing the setup times. At the same time, the times and quantities of future deliveries are known in advance. Thus, each type of product has to be produced daily so that its quantity never exceeds its allotted storage area. This is a typical problem where the global objective concerns all the products and where the subset of products is evaluated with another objective.

The rest of the paper is organised as follows: in Sect. 2 the problem is defined, the notations are introduced and a stateof-the-art survey is presented. The first simple reductions on existing multi-agent or multicriteria scheduling problems are also given. Section 3 deals with polynomially solvable single-machine problems. The application of simple reductions from known NP-hard problems is detailed in Sect. 4. Section 5 is devoted to the total completion time case and a pseudo-polynomial time dynamic programming is also presented.

Preliminaries

Problem definition and notations

A set N 0 of n independent jobs has to be scheduled on a single machine. We assume that all the jobs are available at time 0, that preemption is not allowed, and that the processing times are deterministic and integers. In this paper, p j denotes the processing time of job j and d j denotes its due date, where 1 ≤ j ≤ n; the single machine is always available and it can process only one job at a time.

N k denotes the kth subset of jobs of N 0 . We assume that K k=1 N k = N 0 and that K k=1 N k = ∅, with K being the number of subsets. We denote by n k the number of jobs in

N k , for 1 ≤ k ≤ K.
We denote the completion time of job j by C j . (w j)C j is the total (weighted) completion time. Additionally, C max denotes the maximum completion time (makespan) and L max denotes the maximum lateness, which is defined by L max = max 1≤j ≤n (C jd j). We denote the total (weighted) tardiness by (w j)T j , where T j = max(0, C jd j). In addition, U j is equal to 1 if job j is tardy, and U j is equal to 0 otherwise. (w j)U j denotes the (weighted) number of tardy jobs.

f k (N k) is the objective function associated with agent k (1 ≤ k ≤ K), i.e. to the subset of jobs N k and this function is simply denoted f k when there is no ambiguity. f 0 (N 0) is the objective function associated with the whole set of jobs. The problem is to find the completion times of the jobs that minimise the functions f k , ∀k ∈ {0, 1, . . . , K}. Notice that in the case of only one agent, the problem already has two objective functions. According to the three-field notation proposed by [START_REF] Garey | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF] and extended to multicriteria scheduling problems in T'kindt and [START_REF] Billaut | Multicriteria scheduling: theory, models and algorithms[END_REF], we consider the following functions:

• ε(f 0 /f 1 , f 2 , . . . , f K) in the case of K agents. This denotes the ε-constraint approach, i.e. the minimisation of f 0 , subject to

f 1 ≤ ε 1 , f 2 ≤ ε 2 , . . . , f K ≤ ε K . • F ℓ (f 0 , f 1 , f 2 , . . . , f K) in the case of K agents. This for- mulation indicates a linear combination of criteria, i.e. F ℓ (f 0 , f 1 , f 2 , . . . , f K) = K k=0 λ k f k .

Related literature

The literature contains some results on multi-agent scheduling, but there are very few results when a global objective function is also considered. [START_REF] Agnetis | Scheduling problems with two competing agents[END_REF] consider the single machine, flow shop and open shop problems with two subsets of jobs N 1 and N 2 . They consider the minimisation of an objective function for one subset of jobs subject to a bound for the other subset of jobs. In addition, they give some complexity results and dynamic programming algorithms for the singlemachine problem. The single-machine problem is also considered in [START_REF] Baker | A multiple-criterion model for machine scheduling[END_REF]. These authors consider several regular objective functions (C max , w j C j , L max) and they propose an algorithm for the minimisation of a linear combination of the objective functions. Complexity results are given and some polynomially solvable cases are identified. Furthermore, [START_REF] Yuan | A note on the scheduling with two families of jobs[END_REF] propose some complementary results for these problems. Figure 1 summarises the results presented in [START_REF] Baker | A multiple-criterion model for machine scheduling[END_REF] and [START_REF] Yuan | A note on the scheduling with two families of jobs[END_REF]. [START_REF] Cheng | Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs[END_REF] consider a single-machine problem with K disjoint subsets of jobs N 1 , . . . , N K (K i=1 N i = N 0). Each job is associated with a deadline, and each subset is measured by the total number of tardy jobs. The authors prove that the decision problem denoted by 1| w j U 1 j ≤ ε 1 , . . . , w j U K j ≤ ε K |is strongly NP-hard. When the number of agents is fixed, they show that the problem can be solved in pseudo-polynomial time and they give a fully polynomial time approximation scheme. Additionally, if the weights are equal to 1, the problem can be solved in polynomial time. [START_REF] Cheng | Multi-agent scheduling on a single machine with max-form criteria[END_REF] consider the single-machine multi-agent scheduling problem with K objective functions of min-max type. The authors prove that the feasibility problem can be solved in polynomial time, even if jobs are subject to precedence constraints. Furthermore, the authors show that the problems

1|| K k=1 (L k max), 1|| K k=1 (T k max) and 1|| K k=1 (w j C k j)
are NP-hard and some polynomially solvable cases are identified by them. [START_REF] Agnetis | Multi-agent single machine scheduling[END_REF] consider single-machine two-agent scheduling problems (reported in Fig. 1). Two approaches are considered: (1) the "decision problem", which is to find a solution such that all the criteria are bounded and (2) the "Pareto-optimisation problem", where the aim is to find the set of all non-dominated solutions (denoted by "#" in Fig. 1). Some results are also given for some singlemachine multi-agent scheduling problems.

Some simple reductions

If the decision problem P reduces to decision problem P ′ , we use the notation P ∝ P ′ . We also use the following notations:

Γ max = {C max , L max }, Γ Σ = { C j , T j , U j }, Γ Σw = { w j C j , w j T j , w j U j } and Γ = Γ max ∪ Γ Σ ∪ Γ Σw .
We focus on the objective functions, and f stands for the problem α|β|f .

Proposition 1

The following reductions hold, ∀f 0 ,

f 1 ∈ Γ : 1.1 f 0 ∝ F ℓ (f 0 , f 1) and f 1 (N 0) ∝ F ℓ (f 0 , f 1 (N 1)) 1.2 f 0 ∝ ε(f 0 /f 1) 1.3 f 1 (N 0) ∝ ε(f 0 /f 1 (N 1))
Proof 1.1 Take the linear combination where the coefficient associated with f 1 is equal to zero; take the linear combination where the coefficient associated with f 0 is equal to zero.

1.2 Take a large value for ε 1 associated to f 1 . 1.3 Finding a solution which satisfies f 1 (N 1) ≤ ε is equivalent to the decision version of problem α|β|f 1 (N 0) with subset N 1 .

Proposition 2

The following reductions from bicriteria scheduling hold, ∀f 0 , f 1 ∈ Γ :

2.1 F ℓ (f 0 , f 1 (N 0)) ∝ F ℓ (f 0 , f 1 (N 1)) 2.2 ε(f 0 /f 1 (N 0)) ∝ ε(f 0 /f 1 (N 1))
Proof Take N 1 = N 0 and the problems are the same.

The consequence is that if a bicriteria scheduling problem is NP-hard, then the corresponding problem with one agent and a global objective function is NP-hard.

Proposition 3

The following reductions from multi-agent scheduling hold:

3.1 F ℓ (f 1 , f 2 (N 2)) ∝ F ℓ (f 1 , f 2 (N 0)), ∀f 1 ∈ Γ , ∀f 2 ∈ Γ Σw ∪ {L max , U j } 3.2 ε(f 2 (N 2)/f 1) ∝ ε(f 2 (N 0)/f 1), ∀f 1 ∈ Γ , ∀f 2 ∈ Γ Σw ∪ {L max , U j } Proof If f 2 ∈ Γ Σw , one can build an instance to problem α|β|F ℓ (f 1 (N 1), f 2 (N 0)) with w j = 0 for the jobs that are not in N 1 . Because f 2 ∈ Γ Σw , f 2 (N 0) = f 2 (N 2).
The proof holds for the ε-constraint approach.

If f 2 ∈ {L max , U j , w j U j }, one can build an instance to problem α|β|F ℓ (f 1 (N 1), f 2 (N 0)) with d j = HV for each job j / ∈ N 1 (HV being an high value). Because f 2 ∈ {L max , U j , w j U j }, the problems are the same. The same reasoning can be applied to the ε-constraint approach.

Proposition 4

The following reductions from multi-agent with a global objective function hold:

4.1 F ℓ (f 1 (N 1), f 0) ∝ F ℓ (f 1 (N 0), f 0), ∀f 1 ∈ Γ Σw ∪ {L max , U j }, ∀f 0 ∈ Γ . 4.2 ε(f 0 /f 1 (N 1)) ∝ ε(f 0 /f 1 (N 0)), ∀f 1 ∈ Γ Σw ∪ {L max , U j }, ∀f 0 ∈ Γ .
Proof See the proof for Proposition 3.1.

These simple reductions are shown in Figs. 2 and3. Tables 1 and2 In this section, we present some polynomially solvable problems. Note that because the makespan is a constant, single-machine problems involving C 0 max as a global objective function are single objective problems. Thus, problems of type 1||F ℓ (f 1 , C 0 max), 1||ε(f 1 /C 0 max) and 1||ε(C 0 max /f 1) have the same complexity as problems 1||f 1 (N 0), ∀f 1 ∈ Γ .

Proposition 5

The following problems can be solved in polynomial time:

5.1 1||F ℓ (L 0 max , C 1 max) and 1||ε(L 0 max /C 1 max) 5.2 1||F ℓ (L 0 max , L 1 max) and 1||ε(L 0 max /L 1 max)
Proof 5.1 Suppose that jobs are numbered in EDD order. All the sequences EDD(N 1 ∪ {n 1 + 1, . . . , j })//EDD({j +

λ 1 f 1 (N 1) λf 0 (N 0) C 0 max L 0 max C 0 j T 0 j U 0 j w j C 0 j w j T 0 j w j U 0 j C
f 1 (N 1) ≤ ε 1 Min f 0 (N 0) C 0 max L 0 max C 0 j T 0 j U 0 j w j C 0 j w j T 0 j w j U 0 j C 1 max P P P H o H H H L 1 max P P P H o H H H C 1 j P o H H H H H H T 1 j H H H H H H H H U 1 j P o H H o H H H w j C 1 j P H H H H H H H w j T 1 j H H H H H H H H w j U 1 j H H H H H H H H
1, j + 2, . . . , n}) for all j ∈ {n 1 + 1, n 1 + 2, . . . , n} are tested.

The best sequence with the linear combination gives an optimal solution for the function F ℓ (L 0 max , C 1 max) and the best sequence that satisfies C max (N 1) ≤ ε gives an optimal solution for function L 0 max . The problem can be solved in O(n 2) time. The formal proof can be obtained by pairwise interchange arguments.

5.2 There exists an optimal solution such that the jobs of N 1 and the jobs of N \ N 1 are sorted in EDD order. Of course, the global sequence obtained may not follow the EDD order.

Let us consider the problem 1||ε(L 0 max /L 1 max). Let edd denote the global EDD sequence and let edd 1 denote the EDD sequence for the jobs of N 1 . An optimal algorithm is given in Table 3. This algorithm ensures, firstly, that the epsilon-constraint is verified. Then, the jobs are scheduled according to edd order to the greatest extent possible. This algorithm finds the optimal solution in O(n log n) time. Now let us consider the 1||F ℓ (L 0 max , L 1 max) problem. The polynomial time dynamic programming algorithm proposed by [START_REF] Yuan | A note on the scheduling with two families of jobs[END_REF] in the multi-agent case can be applied to solve this problem.

Notice that problems 1||F ℓ (L 0 max , C 1 j) and 1||ε(L 0 max / C 1 j) remain open.

Proposition 6

The following problems can be solved in polynomial time:

6.1 1||F ℓ (C 0 j , C 1 max) and 1||ε(C 0 j /C 1 max) 6.2 1||F ℓ (C 0 j , L 1 max) and 1||ε(C 0 j /L 1 max)
Proof 6.1 An optimal solution always exists with the jobs in N 1 and the jobs in N \ N 1 being sequenced in the shortest processing time (SPT) order. Furthermore, for the makespan objective, only the completion time of the last job of N 1 has to be considered. Thus, the jobs before the last job of N 1 are sequenced in SPT order, whether or not they belong to N 1 . Let us suppose that the jobs of N 1 in SPT are numbered as follows: {1, 2, . . . , n 1 }. Let us also suppose that the jobs of N \ N 1 are {n 1 + 1, n 1 + 2, . . . , n}. We evaluate the sequences SPT(N 1 ∪ {n 1 + 1, . . . , j })//SPT({j + 1, j + 2, . . . , n}) for all j ∈ {n 1 + 1, n 1 + 2, . . . , n}, where a//b stands for the concatenation of a and b. The best sequence is the optimal solution of the problem. This algorithm can be implemented in

O(n log n) time. 6.2 Problem 1||ε(C 0 j /C 1 max) is polynomial. If P N 1 = J j ∈N 1 p j < ε, there is no feasible solution.
Otherwise, an optimal solution can be obtained by the following two-step algorithm:

1. determine the initial solution by ordering the jobs of N in SPT order 2. move the last jobs in N 1 to the left in such a way that the new solution satisfies the ε-constraint.

The complexity is bounded by O(n log n). 6.2 Problem 1||F ℓ (C 0 j , L 1 max) has the same complexity as problem 1||F ℓ (L 0 max , C 0 j), which is solvable in O(n 2) (see Hoogeveen 1992 and Proposition 4). Problem 1||ε(C 0 j /L 1 max) is equivalent to the 1| dj | C j problem, which can be solved in polynomial time [START_REF] Hoogeveen | Minimizing completion time and maximum cost simultaneously is solvable in polynomial time[END_REF].

Proposition 7

The following problems can be solved in polynomial time:

7.1 1||F ℓ (w j C 0 j , w ′ j C 1 j) 7.2 1||F ℓ (w j C 0 j , C 1 max)
Proof 7.1 We set w ′′ j = λ 0 × w j + λ 1 × w ′ j and solve problem 1|| w ′′ j C 0 j (see [START_REF] Baker | A multiple-criterion model for machine scheduling[END_REF]. We deduce that problems 1||F ℓ (w j C 0 j , C 1 j) and 1||F ℓ (C 0 j , w j C 1 j) are also polynomially solvable. 7.2 Suppose that the jobs of N 1 are numbered according to the weighted shortest processing time (WSPT) order. Apply the algorithm for 7.1 with w ′ j = 0, ∀j = n 1 and w ′ n 1 = 1.

For i = 1 to n 1 do di = d i + ε
Endfor Schedule the jobs of N 1 in edd 1 order as late as possible and so that the deadline is respected.

t = 0 For i = 1 to n 1 do Consider S i = {j ∈ N \ N 1 , d j ≤ d i },

Endif

Endfor For all the preempted jobs do

In order to obtain a non-preemptive solution, shift the parts of the job to the right so that its completion time is not changed and the jobs of N 1 complete earlier.

Endfor

Application of simple reductions from known NP-hard problems Proposition 8

The following problems are NP-hard:

8.1 1||F ℓ (f 0 , f 1) and 1||ε(f 0 /f 1), ∀f 0 ∈ { T j , w j T j , w j U j }, ∀f 1 ∈ Γ 8.2 1||F ℓ (f 0 , f 1) and 1||ε(f 0 /f 1), ∀f 0 ∈ Γ , ∀f 1 ∈ { T j , w j T j , w j U j } 8.3 1||F ℓ (L 0 max , w j C 1 j) and 1||F ℓ (w j C 0 j , L 1 max) 8.4 1||F ℓ (C 0 j , U 1 j) and 1||ε(C 0 j / U 1 j) 8.5 1||F ℓ (U 0 j , C 1 j) and 1||ε(U 0 j / C 1 j) 8.6 1||F ℓ (U 0 j , w j C 1 j) and 1||ε(U 0 j / w j C 1 j)

Proof 8.1 Deduced from prop. 1.1 and 1.2. 8.2 Deduced from prop. 1.1 and 1.3. 8.3 This item is true, because 1||F ℓ (L 0 max , w j C 0 j) has been proved to be NP-hard in Hoogeveen (1992) (see Proposition 2.1).

8.4 Problem 1||Lex(U 0 j , C 0 j) is proved to be NPhard in [START_REF] Huo | Complexity of two dual criteria scheduling problems[END_REF] (with Lex being the lexicographic minimisation, i.e., Min C 0 j is subject to U 0 j being optimal). With an appropriate choice of weights, we can show that 1||Lex(U 0 j , C 0 j) ∝ 1||F ℓ (U 0 j , C 0 j). As a consequence, this last problem is NP-hard. Thus, 1||F ℓ (C 0 j , U 1 j) is also NP-hard (see Proposition 2.1). We deduce that problem 1||F ℓ (w j C 0 j , U 1 j) is also NPhard. The second property is true because 1||ε(C 0 j / U 0 j) has been proved NP-hard in [START_REF] Nelson | Scheduling with multiple performance measures: the one-machine case[END_REF] (see Proposition 2.1). 8.5 For 1||F ℓ (U 0 j , C 1 j), see the proof 8.4. 8.6 This is an immediate reduction from 8.5.

Proposition 9

The following problems are NP-hard: 9.1 1||ε(L 0 max / w j C 1 j) 9.2 1||ε(w j C 0 j /C 1 max) and 1||ε(w j C 0 j /L 1 max) 9.3 1||ε(w j C 0 j / U 1 j)

Proof 9.1 The decision version of this problem is to find a sequence so that w j C 1 j ≤ ε 1 and L 0 max ≤ ε 0 . The proposition comes because problem 1||ε(w j C 1 j /L 2 max) is proved NP-hard in [START_REF] Agnetis | Scheduling problems with two competing agents[END_REF] (see Proposition 3.2). 9.2 This proposition has the same proof as 9.1. 9.3 The proof of this proposition has the same reasoning as the proof for 9.1 because problem 1||ε(w j C 1 j / U 2 j) is proved to be NP-hard in [START_REF] Agnetis | Scheduling problems with two competing agents[END_REF].

The case of total completion time criteria

First we prove the NP-hardness of the 1||ε(C 0 j / C 1 j) problem in the case of one agent. Then, we provide a pseudo-polynomial time dynamic programming algorithm for problem 1||ε(C 0 j / C 1 j).

Establishing the complexity

In this section, we consider the epsilon-constraint problem for which the two objective functions are the total comple- No simple reduction can be used for deriving a complexity result. We show that the problem is NP-hard.

Proposition 10 There is always an optimal solution that respects the following properties: 10.1 there is no idle time. 10.2 jobs in N 1 follow the SPT order (Shortest Processing Time first). 10.3 jobs in (N \ N 1) follow the SPT order. 10.4 if p i ≤ p j , then i must be scheduled before j ,

∀(i, j) ∈ N 1 × (N \ N 1).
Proof The first point is true because we consider regular criteria. The two next points are true because an interchange of jobs that do not follow the SPT order cannot decrease the solution's quality. The last point is true because otherwise, the permutation of i and j improves both C 0 j and

C 1 j . Note that point 4 is not true if (i, j) ∈ (N \ N 1) × N 1 . Proposition 11 Problem 1||ε(C 0 j / C 1 j) is NP-hard.
Proof We define the problem PWDE (PARTITION with distinct elements) below. Note that this problem has been proved NP-hard in Huynh Tuong et al. (2009):

PWDE: Data: Finite set B of t integer elements a 1 , a 2 , . . . , a t with distinct sizes (a i = a j , ∀i, j), t i=1 a i = 2C.

Question: Is there a subset B 1 of indices such that i∈B 1 a i = i∈{1,2,...,t}\B 1 a i = C? We denote by 1mCC the decision version of problem 1||ε(C 0 j / C 1 j). This problem is defined by 1mCC: Data: A set N 0 of n jobs, a subset N 1 ⊂ N 0 , processing times p j for each job j , 1 ≤ j ≤ n, two integer values Y 0 and Y 1 Question: Is there a one-machine schedule σ for N 0 so that

C 0 j ≤ Y 0 and C 1 j ≤ Y 1 ?
We must prove that PWDE ∝ 1mCC.

We consider an arbitrary instance of PWDE and we assume without loss of generality that a 1 < • • • < a t . We know that min 1≤i≤t-1 a i+1 a i > 1. It is always possible to find α and K such that 1 < α < min 1≤i≤t-1 a i+1 a i and αK ∈ N (if

a ℓ+1 a ℓ = min 1≤i≤t-1 a i+1 a i , take, for instance, α = a ℓ+1 a ℓ +1 and K = a ℓ + 1 if a ℓ+1 = a ℓ + 1 or take α = 10×a ℓ+1 10×a ℓ +1 and K = 10 × a ℓ + 1 otherwise).
Because of the definitions of α and K we have Ka i < αKa i < Ka i+1 < αKa i+1 .

Let

β = α -1, β > 0 and X = K t i=1 (2(t -i + 1) + (2t -2i + 1)α) × a i .
We define an instance of problem 1mCC as follows: n = 2t and

• p (2i-1) = Ka i , ∀i = 1, 2, . . . , t; p (2i) = αKa i , ∀i = 1, 2, . . . , t; • Y 1 = K(1 + α)(t i=1 (t -i + 1) × a i) -KC; Y 0 = X + βKC; • N 1 = {2, 4, 6, . . . , 2t}.
We define an initial solution S 0 = {1, 2, 3, . . . , 2t -1, 2t}, i.e. the sequence where the jobs are sorted according to the SPT rule (see Fig. 4).

We have

n j =1 C j (S 0) = Ka 1 + (Ka 1 + αKa 1) + (Ka 1 + αKa 1 + Ka 2) + (Ka 1 + αKa 1 + Ka 2 + αKa 2) + • • • ⇒ n j =1 C j (S 0) = 2tKa 1 + (2t -1)αKa 1 + (2t -2)Ka 2 + (2t -3)αKa 2 + • • • ⇒ n j =1 C j (S 0) = Ka 1 2t + (2t -1)α + Ka 2 (2t -2) + (2t -3)α + • • • ⇒ n j =1 C j (S 0) = K t i=1 2(t -i + 1) + (2t -2i + 1)α × a i = X.
In the same way, we obtain

j ∈N 1 C j (S 0) = (Ka 1 + αKa 1) + (Ka 1 + αKa 1 J Sched + Ka 2 + αKa 2) + • • • ⇒ j ∈N 1 C j (S 0) = t (Ka 1 + αKa 1) + (t -1)(Ka 2 + αKa 2) + • • • ⇒ j ∈N 1 C j (S 0) = t (1 + α)Ka 1 + (t -1) × (1 + α)Ka 2 + • • • ⇒ j ∈N 1 C j (S 0) = K(1 + α) ta 1 + (t -1)a 2 + • • • ⇒ j ∈N 1 C j (S 0) = K(1 + α) t i=1 (t -i + 1)a i = Y 1 + KC.
Thus, this solution is not a feasible solution for problem 1mCC:

j ∈N C j (S 0) ≤ Y but j ∈N 1 C j (S 0) > Y 1 .
• Let us suppose that the answer to PWDE is 'yes'. We are going to propose a method for permuting consecutive jobs for decreasing C 1 j (this method will increase C 0 j at the same time). We consider the set of jobs G = {j ∈ N 0 | j = 2i with i ∈ B 1 }. Note that G ⊆ N 1 . We define the sequence S 1 by the permutation in S 0 of each job of G with its predecessor:

S 1 [j] = S 0 [j -1], S 1 [j -1] = S 0 [j] for j ∈ G and S 1 [j] = S 0 [j]
for the other jobs.

We have to compute j ∈N 0 C j (S 1) and j ∈N 1 C j (S 1). We first compute these values after the permutation of only two jobs (sequence S ′).

j ∈N 0 C j (S ′) = j ∈N 0 C j S 0 + (p j -p j -1).
Thus,

j ∈N 0 C j S 1 = j ∈N 0 C j S 0 + j ∈G (p j -p j -1) = j ∈N 0 C j S 0 + j ∈G (αKa j/2 -Ka j/2). ⇒ j ∈N 0 C j S 1 = j ∈N 0 C j S 0 + j ∈G (βKa j/2) = j ∈N 0 C j S 0 + βK j ∈G a j/2 ⇒ j ∈N 0 C j S 1 = j ∈N 0 C j S 0 + βK × C = X + βKC = Y. Similarly, j ∈N 1 C j (S ′) = j ∈N 1 C j S 0 -p j -1
Fig. 5 Sequences S 0 and σ ′ and position of job 2i Thus,

j ∈N 1 C j S 1 = j ∈N 1 C j S 0 - j ∈G p j -1 . ⇒ j ∈N 1 C j S 1 = j ∈N 1 C j S 0 - j ∈G Ka j/2 ⇒ j ∈N 1 C j S 1 = j ∈N 1 C j S 0 -KC = Y 1 + KC -KC = Y 1 .
Thus, S 1 is the sequence for which the answer to 1mCC is 'yes'.

• Now suppose that the answer to 1mCC is 'yes' for sequence σ . If σ does not respect the conditions of Proposition 10, then all the jobs are shifted to the left, the SPT rule is applied to the jobs of N 1 , and with respect to the jobs of N 0 \ N 1 and each time condition 10.4 occurs, jobs i and j are switched. A new sequence σ ′ is obtained, so that:

• j ∈N 0 C j (σ ′) ≤ j ∈N 0 C j (σ) ≤ Y
(1)

• j ∈N 1 C j (σ ′) ≤ j ∈N 1 C j (σ) ≤ Y 1 (2)
• and σ ′ satisfies the conditions of Proposition 10. We now compare σ ′ and S 0 . Let us consider the job number 2i. This job is in position 2i in S 0 and it is in position k in σ ′ . Let us suppose that k > 2i. In this case, there is at least one job before 2i in σ ′ with a bigger processing time. This job cannot belong to N 1 , because the jobs of N 1 in σ ′ are sorted according to SPT. Thus this job belongs to N \ N 1 . However, this case is not possible because of condition 10.4. Therefore, k ≤ 2i. Similarly, we can show that job 2i -1 is in position 2i -1 in S 0 and that it is in position l in σ ′ with l ≥ 2i -1. This case is illustrated in Fig. 5.

We define the set of jobs H 2i = {j/(j ≻ σ ′ 2i) ∧ (p j < p 2i) ∧ (j ∈ N 0 \ N 1)}. For instance, job 2i -1 belongs to H 2i . These jobs are the jobs of N 0 \ N 1 that precede job 2i in S 0 .

We have

C 2i (S 0) = C 2i (σ ′) + k∈H 2i p k according to the definition of H 2i . ⇒ C 2i (σ ′) = C 2i S 0 - k∈H 2i p k ⇒ j ∈N 1 C j (σ ′) = j ∈N 1 C j S 0 - j ∈N 1 k∈H j p k ⇒ j ∈N 1 C j (σ ′) = Y 1 + KC - j ∈N 1 k∈H j p k . (3) Because (2) that j ∈N 1 C j (σ ′) ≤ Y 1 , we have Y 1 + KC - j ∈N 1 k∈H j p k ≤ Y 1 ⇒ KC ≤ j ∈N 1 k∈H j p k ⇒ KC ≤ j ∈N 1 k∈H j Ka (k+1)/2 ⇒ C ≤ j ∈N 1 k∈H j a (k+1)/2 . (4)
Due to condition 10.4, from the initial solution S 0 , the position of jobs j ∈ N 1 in σ ′ would be unchanged or moved to the left. Similarly, the position of jobs j ∈ N 0 \ N 1 in σ ′ would be unchanged or moved to the right. The deviation of the completion time of a job j ∈ N 0 \ N 1 between two sequences σ ′ and S 0 is determined by the total processing times of the jobs of N 1 which are scheduled after j in S 0 , and they are also scheduled before j in σ ′ . For instance, in Fig. 5, the deviation of the completion time of job 2i -1 between two sequences σ ′ and S 0 is at least equal to p 2i . More generally, we have

C 2i-1 (σ ′) = C 2i-1 S 0 + k∈N 1 |2i-1∈H k p k ⇒ j ∈N \N 1 C j (σ ′) - j ∈N \N 1 C j S 0 = j ∈N \N 1 k∈N 1 |j ∈H k p k ⇒ j ∈N 0 \N 1 C j (σ ′) - j ∈N 0 \N 1 C j S 0 = k∈N 1 |j ∈H k j ∈N 0 \N 1 p k = k∈N 1 j ∈H k p k .
Thus, the deviation of the total completion times between two sequences σ ′ and S 0 is defined as follows:

j ∈N 0 C j (σ ′) - j ∈N 0 C j S 0 = j ∈N 1 C j (σ ′) - j ∈N 1 C j S 0 + j ∈N 0 \N 1 C j (σ ′) - j ∈N 0 \N 1 C j S 0 .
Due to (3), we have

j ∈N 1 C j (σ ′) - j ∈N 1 C j S 0 = j ∈N 1 k∈H j p k ⇒ j ∈N 0 C j (σ ′) - j ∈N 0 C j S 0 = k∈N 1 j ∈H k p k - j ∈N 1 k∈H j p k ⇒ j ∈N 0 C j (σ ′) - j ∈N 0 C j S 0 = j ∈N 1 k∈H j (p j -p k). Because p j > p k where j ∈ N 1 , k ∈ H j , we have p j ≥ p k+1 with j, k + 1 ∈ N 1 and k ∈ H j ⇒ j ∈N 0 C j (σ ′) - j ∈N 0 C j S 0 ≥ j ∈N 1 k∈H j (p k+1 -p k) = j ∈N 1 k∈H j (αKa (k+1)/2 -Ka (k+1)/2) ⇒ j ∈N 0 C j (σ ′) - j ∈N 0 C j S 0 ≥ βK j ∈N 1 k∈H j a (k+1)/2 ⇒ j ∈N 0 C j (σ ′) ≥ j ∈N C j S 0 + βK j ∈N 1 k∈H j a (k+1)/2 .
(5) According to (2) and because j ∈N 1 k∈H j a (k+1)/2 ≥ C, we have the following:

j ∈N 0 C j (σ ′) ≥ j ∈N C j S 0 + βKC = Y. (6)
Consequently, thanks to (1) and (6), we deduce that

j ∈N 0 C j (σ ′) = Y .
In other words, all inequalities (4), (5) should become equalities:

j ∈N 1 k∈H j a (k+1)/2 = C, p j = p k+1 where j ∈ N 1 , k ∈ H j .
Let us recall that the processing times of the jobs are all different. Hence, either p j = p k+1 (i.e.

|H j | = 1) or |H j | = 0 where j ∈ N 1 , k ∈ H j . ⇒ |H j | ≤ 1, ∀j ∈ N 1 ⇒ The equality j ∈N 1 k∈H j a (k+1)/2 = C defines the subset B 1 of PWDE.
Consequently, the answer for the question of the PWDE problem is 'yes' (i.e., jobs j with |H j | = 1 give a subset B 1 of PWDE).

We deduce that problems 1||ε(C 0 j / w j C 1 j), 1||ε(w j C 0 j / C 1 j) and 1||ε(w j C 0 j / w j C 1 j) are also NP-hard. 5.2 A dynamic programming algorithm for the 1||ε(C 0 j / C 1 j)

We have to both minimise C 0 j and respect the constraint that C 1 j ≤ ε 1 . We assume that the jobs in N 1 are numbered from 1 to n 1 = |N 1 | with p 1 ≤ p 2 ≤ • • • ≤ p n 1 and that the jobs in N \ N 1 are numbered from n 1 + 1 to n with p n 1 +1 ≤ p n 1 +2 ≤ • • • ≤ p n . We introduce the following notations: P is the sum of the processing times of all the jobs, P (i,j) = 1≤k≤i p k + n 1 +1≤k≤j p k . We denote by F (i, j, q) = C 0 j the minimum cost that must arise when the jobs {1, 2, . . . , i} ∈ N 1 and the jobs {n 1 + 1, n 1 + 2, . . . , j } ∈ N \ N 1 are scheduled. q corresponds to C 1 j . The general recursive relation is F (0, n 1 , 0) = 0, F (i, j, q) = +∞, ∀i > n 1 , ∀j ≤ n 1 , ∀q, F (i, j, q) = +∞, ∀i ≤ n 1 , ∀j ∈ {n 1 , n 1 + 1, . . . , n}, ∀q < 0 ∨ q > ε 1 , F (i, j, q) = min F (i -1, j, q -P (i,j)) + P (i,j) , F (i, j -1, q) + P (i,j)   ∀i ∈ {1, . . . , n 1 } ∀j ∈ {n 1 + 1, . . . , n} ∀0 ≤ q ≤ ε 1   .

The optimal solution is given by min 0≤q≤ε 1 F (n 1 , n, q). The execution time of this algorithm is in O(n 1 (nn 1)ε 1).

Proposition 12 An optimal solution to the problem 1||ε(C 0 j / C 1 j) can be determined in O(n 2 ε 1) time.

Conclusion

In this paper, we consider a new family of scheduling problems at the frontier of multi-agent and multicriteria scheduling. Subsets of jobs are in competition with the whole set of jobs for the use of resources and a compromise solution has to be found. We consider the problem of scheduling independent jobs on a single machine, without additional constraints and the objective functions are of two types: the εconstraint approach and a linear combination of the criteria. We notice that these results can be extended to the case of goal programming and enumerative approaches. Some simple reductions from multicriteria scheduling problems are established, and polynomially solvable problems and NP-hard problems are identified. A pseudopolynomial time dynamic programming algorithm is proposed for solving the case of total completion time.

This category of problems may have a lot of practical applications, and it leads to a wide area of research problems. While some complexity results remain open, some approximation schemes can be constructed for these problems as well as exact and approximated heuristic algorithms. Considering more than one agent is also a challenging perspective, as the problems combine the aspects of multicriteria scheduling and multi-agent scheduling problems, making the problems more complicated to handle. Computing the size of the Pareto set is also an interesting problem.

 summarise the complexity results that are established in the rest of this paper for single-machine problems ('H' indicates an NP-hard problem, 'P' indicates a polynomial problem and 'o' indicates an open problem).

Fig. 1 Fig

 1 Fig. 1 Some complexity results on multi-agent scheduling problems

Fig. 4

 4 Fig. 4 Initial sequence with 10 jobs

Table 1

 1 Complexity results in the case of a linear combination of criteria. Notice that this matrix is a priori not symmetric

Table 2

 2 Complexity results after simple reductions in the case of the ε-constraint

	1 max	P	P	P	H	o	P	H	H
	L 1 max	P	P	P	H	o	H	H	H
	C 1 j	P	o	P	H	H	P	H	H
	T 1 j	H	H	H	H	H	H	H	H
	U 1 j	P	o	H	H	o	H	H	H
	w j C 1 j P	H	P	H	H	P	H	H
	w j T 1 j H	H	H	H	H	H	H	H
	w j U 1 j H	H	H	H	H	H	H	H

Table 3

 3 Algorithm for problem 1||ε(L 0 max /L 1 max)

 in edd order Schedule jobs in S i from date t with preemption if necessary (without changing the start time of the jobs of N 1)

	If there is an idle time before job i. Then
	Shift job i to the left.
	t = C i
	Else
	t = completion time of the last job of S i

Acknowledgements This work has been supported by the project ANR-08-BLAN-0331-01, funded by the "National Research Agency" (ANR).