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QUASI-ISOMETRIES BETWEEN HYPERBOLIC METRIC SPACES,

QUANTITATIVE ASPECTS

VLADIMIR SHCHUR

Abstract. This is a preliminary version of my PhD thesis. In this text we discuss
possible ways to give quantitative measurement for two spaces not being quasi-isometric.
From this quantitative point of view, we reconsider the definition of quasi-isometries and
propose a notion of ”quasi-isometric distortion growth” between two metric spaces. We
revise our article [30] where an optimal upper-bound for Morse Lemma is given, together
with the symmetric variant which we call Anti-Morse Lemma, and their applications.

Next, we focus on lower bounds on quasi-isometric distortion growth for hyperbolic
metric spaces. In this class, Lp-cohomology spaces provides useful quasi-isometry invari-
ants and Poincaré constants of balls are their quantitative incarnation. We study how
Poincaré constants are transported by quasi-isometries. For this, we introduce the notion
of a cross-kernel. We calculate Poincaré constants for locally homogeneous metrics of
the form dt

2 +
∑
i
e
2µitdx

2
i , and give a lower bound on quasi-isometric distortion growth

among such spaces.
This allows us to give examples of different quasi-isometric distortion growths, includ-

ing a sublinear one (logarithmic) provided by unipotent locally homogeneous spaces.
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Part 1. Introduction

1. The quantitative quasi-isometry problem

1.1. General idea. Gromov’s quasi-isometry classification problem for groups [4] has
given rise to a large amount of works (for the reader’s convenience, we include a sur-
vey of the quasi-isometry classification problem in Section 4). When two groups are shown
to be non-quasi-isometric, it would be desirable to give a quantitative measurement of this
(we thank Itai Benjamini for bringing this issue to our attention). The aim of our research
is to measure quantitatively how far two spaces are from being quasi-isometric at scale
R > 0, and study on examples what may happen as R tends to infinity.

Let X and Y be two metric spaces not quasi-isometric to each other. Given some
positive real number R, consider quasi-isometries between subsets in X and Y respectively
of diameter of the order of R. These subsets are bounded spaces so there exists a (λ, c)-
quasi-isometry with minimal λ = λ(R). For simplicity, we shall assume that additive
constants c are much less than λ(R). We want to study how λ(R) behaves as R goes
to infinity. Later, we shall give precise (and rather cumbersome) definitions, but in this
introduction, we content ourselves with a rather vague one.

1.2. Example. We consider the following theorem as the prototype of a quantitative re-
sult. Y. Shalom and T. Tao gave a quantitative version of Gromov’s famous theorem
stating that every finitely generated group of polynomial growth is virtually nilpotent.

Theorem 1. (Y. Shalom, T. Tao [23]) Let G be a group generated by a finite (symmetric)
set S and suppose that one has a polynomial growth condition

|BS(R)| ≤ Rd

for some

R > exp(exp(CdC))

for some sufficiently large absolute constant C. Then G contains a finite index subgroup
H which is nilpotent of step at most Cd.
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A corollary of this theorem is

Corollary 1. Let (G,S) be a finitely generated group. Assume that G is not virtually
nilpotent. Then

|BS(R)| ≥ Rσ(log logR)
σ

for any R > 1/σ, where σ > 0 is a sufficiently small absolute constant.

This has the following consequence for our quantitative quasi-isometry problem.

Example 1. Nilpotent versus non-nilpotent groups.

Let G and H be finitely generated groups, with H virtually nilpotent and G not virtually
nilpotent group. Pick finite generating systems S ⊂ G and S ⊂ H and get metric spaces GS
and HS′ . If Θ : BGS (R) → HS′ is a (λ, c)-quasi-isometric embedding, then Θ(BGS (R)) ⊂
BHS′ (λR+ c)). Let Λ be a λ+ c-lattice in BGS (R). One can pick Λ in such a way that

|Λ| ≥ |BGS (R)|
BGS (λ+ c)

≥ e−C(λ+c)|BGS (R)|.

On the other hand, since Θ is injective on Λ,

|BHS′ (λR + c))| ≥ |Λ|.

Hence,

|BS′(λR+ c))| ≥ e−C(λ+c)|BS(R)|,

where C = C(G,S).
Now as H is virtually nilpotent, |BS′(R′))| ≤ K(R′)d where d depends on H only and

K depends on H and S′. So Corollary 1 implies that

Rσ(log logR)
σ ≤ |BS(λ+ c)|K(λR + c)d

and for R big enough we conclude that

λ+ c ≥ C(log logR)σ logR,

where C = C(G,S,H, S′) is a constant depending on the groups and generating systems,
but σ is universal.

The fact that G does not have polynomial growth gives a mere λ(R) ≥ Ω(logR). Shalom
and Tao’s theorem gives an extra factor of (log logR)σ.

2. Summary of results

Here we will briefly discuss our results.
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2.1. Morse Lemma. Roughly speaking, the Morse lemma states that in a hyperbolic
metric space, a (λ1, λ2, c1, c2)-quasigeodesic (see definitions 3, 14) γ belongs to a λ1λ2(c1+
c2)-neighborhood of every geodesic σ with the same endpoints. Our aim is to prove the
optimal upper bound for the Morse lemma.

Theorem 2 (Morse lemma). Let γ be a (λ1, λ2, c1, c2)-quasi-geodesic in a δ-hyperbolic
space E and let σ be a geodesic segment connecting its endpoints. Then γ belongs to an
H-neighborhood of σ, where

H = Aλ1λ2

(

c1 + c2 + δ + 1

)

,

and A is some universal constant.

We will prove this theorem in Section 9.2. This result is optimal, i.e., there exists an
example of a quasi-geodesic such that the distance of the farthest point of γ from σ is
λ1λ2 min{c1, c2}/4 (see Section 10).

The Morse lemma plays an important role in the geometry of hyperbolic spaces. For
example, it is used to prove that hyperbolicity is invariant under quasi-isometries between
geodesic spaces [1] (see Chapter 5.2, Theorem 12): let E and F be δ1- and δ2-hyperbolic
geodesic spaces. If there exists a (λ, c)-quasi-isometry between these two spaces, then

δ1 ≤ 8λ(2H + 4δ2 + c).

We expect our optimal bound in the Morse lemma to be a useful tool in the quantitative
quasi-isometric embedding problem for hyperbolic metric spaces.

2.2. Anti-Morse Lemma. We give a second illustration. In certain hyperbolic metric
spaces, self-quasi-isometries fixing the ideal boundary move points a bounded distance.
Directly applying the Morse lemma yields a bound of H ∼ λ2c, while the examples that
we know achieve merely λc. For this problem, we can fill the gap partially. Our argument
relies on the following theorem, which we call the anti-Morse lemma.

Theorem 3 (anti-Morse lemma). Let γ be a (λ, c)-quasi-geodesic in a δ-hyperbolic metric
space and σ be a geodesic connecting the endpoints of γ. Let 4δ ≪ lnλ. Then σ belongs
to a Ham-neighborhood of γ, where Ham = A3 (δ lnλ1λ2 + δ + c1 + c2), here A3 is some
universal constant.

We prove Theorem 3 in Section 11.
As an example of an application of Anti-Morse Theorem we show that the center of a

ball in a tree cannot be moved very far by a self-quasi-isometry.

Proposition 1. Let O be the center of a ball of radius R in a d-regular metric tree T
(d ≥ 3). Let f be (λ1, λ2, c1, c2)-self-quasi-isometry of this ball. Then

d(f(O), O) ≤ min{R,λ1Ham + c1 + λ1(c1 + c3 + 1)}.
Because δ = 0 for a tree, we have d(f(O), O) . λ log λc for sufficiently large λ. We prove

this proposition in Section 12.
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In Section 14, we define the class of geodesically rich hyperbolic spaces (it contains all
Gromov hyperbolic groups), for which we can prove the following statement.

Theorem 4. Let X be a geodesically rich δ-hyperbolic metric space and f be a (λ1, λ2, c1, c2)-
self-quasi-isometry fixing the boundary ∂X. Then for any point O ∈ X, the displacement
d(O, f(O)) ≤ λ1(Ham + r1) + 2c1 + A4, where r1 and A4 are constants depending on the
geometry of the space X.

In Part 2, we shall first discuss the geometry of hyperbolic spaces and prove a lemma
on the exponential contraction of lengths of curves with projections on geodesics. We then
discuss the invariance of the ∆-length of geodesics under quasi-isometries. Using these
results, we prove the quantitative version of the Morse and anti-Morse lemmas. We define
the class of geodesically rich spaces; for this class, we estimate the displacement of points by
self-quasi-isometries that fix the ideal boundary. Finally, we show that this class includes
all Gromov hyperbolic groups.

2.3. Lower bounds for negatively curved locally homogeneous spaces. The third
part is devoted to the study of the transport of Poincaré inequalities by quasi-isometries.
Using these results we will give a lower bound for the (λ, c)-quasi-isometric distortion
between balls of radius R in spaces of the form Zµ = T

n × R with exponential metrics

dt2+
∑

i e
2µitdx2i and dt

2+
∑

i e
2µ′itdx2i , where all µi, µ

′
i are assumed to remain bounded both

from below and above. Essentially our theorem states that the quasi-isometric distortion
growth function is linear.

Theorem 5. (Rough version. For a precise statement, see Theorem 24). Every (λ, c)-
quasi-isometric embedding of an R-ball in Zµ into Zµ′ satisfies

λ+ c ≥
(∑

µi
µn

−
∑
µ′n
µ′n

)

R.

The proof of this theorem involves several results which could have an independent
interest and more applications. First, we study the transport of Poincaré inequalities by
quasi-isometries. For this purpose we propose to use “cross-kernels”. These objects are
naturally obtained as follows. Let X and Y be two metric spaces, f : X → Y a quasi-
isometry and ψ(y1, y2) a kernel on Y . The composition relatively to the first argument
ψ(f(x), y) is an example of a cross-kernel. Cross-kernels help us to transport functions
from Y to X and allow us to control quantitatively their Poincaré constants.

Further, we establish an upper-bound for the Poincaré constant of ball in an exponential
metric dt2 +

∑

i e
2µitdx2i ,

Cp(µ) ≤ c
(

p,
∑

µi

)

(1 + (max
i
µi)R),

where c(p,
∑
µi) is a constant depending only on p and the sum of µi.

2.4. Upper bounds. In Part 4, we shall give a construction of quasi-isometries between
balls in hyperbolic metric spaces. We begin with the approximation (up to an additive error
depending on hyperbolicity constant) of the distance between two points. Let (X,P0) ne
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a hyperbolic metric space with the base points P0. Let P1, P2 ∈ X be two points in this
space, the distances to the base point are d(P1, P0) = t1 and d(P2, P0) = t2. Now consider
the geodesics P0P1 and P0P2, denote by −t∞ the logarithm of visual distance between the
ends at infinity of this geodesics. Then up to an additive error

d(P1, P2) = t1 + t2 −min{t1, t2, t∞}.
Using this formula we find quasi-isometry constants for the restriction on balls of a map

Θ between X and Y which is a kind of radial extension of a homeomorphism θ between
ideal boundaries. The following is a non technical statement of Theorem 25, see Section
18 for a complete statement.

Theorem 6. Let X, Y be hyperbolic metric spaces. Let θ : ∂X → ∂Y be a homeomorphism.
We define the following function. For R > 0,

K(R) = sup

{∣
∣
∣
∣
log

dy0(θ(ξ1), θ(ξ2))

dx0(ξ1, ξ2)

∣
∣
∣
∣
|dx0(ξ1, ξ2) ≥ e−R ∨ dx0(θ(ξ1), θ(ξ2)) ≥ e−R

}

.

Here dx0 , dy0 denote visual metrics on ideal boundaries. Then there exists a (K(R),K(R))-
quasi-isometry between BX(x0, R) and BY (y0, R).

For Zµ, Zµ′ = T
n×R with exponential metrics we show that K(R) = maxi |µi/µ′i−1|R.

Then we give an example of non-quasi-isometric negatively curved homogeneous manifolds
with K(R) . logR.

3. Statement of the quantitative quasi-isometry problem

3.1. Definition of quasi-isometry.

Definition 1. Two metric spaces X and Y are said to be roughly quasi-isometric if there
exists two maps f : X → Y , g : Y → X and two constants λ > 0 and c ≥ 0 such that

• |f(x)− f(y)| ≤ λ|x− y|+ c for every x, y ∈ X,
• |g(x′)− g(y′)| ≤ λ|x′ − y′|+ c for every x′, y′ ∈ Y ,
• |g(f(x)) − x| ≤ c for every x ∈ X,
• |f(g(x′))− x′| ≤ c for every x′ ∈ Y .

The word rough is often dropped away.

The first two conditions mean that f and g are nearly Lipschitz if we are looking from
afar. The two latter conditions provide that f and g are nearly inverse of each other. It
is easy to check that the composition of two quasi-isometries is also a quasi-isometry. So,
quasi-isometries provide an equivalence relation on the class of metric spaces.

Remark 1. Definition 1 is invariant under taking inverse maps.

Definition 2. A map f : E → F between metric spaces is a rough (λ, c)-quasi-isometric
embedding if for any two points x, y of E

1

λ
(|x− y|E − c) ≤ |f(x)− f(y)|F ≤ λ|x− y|E + c.
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This definition follows from the definition for two spaces being quasi-isometric but it
does not include the existence of a nearly inverse map. We can easily transform Definition
2 to make it equivalent to Definition 1 by adding the condition that f is nearly surjective.
We ask that the image of E is c-dense in F : for every point y of F there exists a point x
of E such that d(y, f(x)) < c.

3.2. Choice of a class of maps. What do we exactly mean by quasi-isometric distortion
at scale R ?

We propose three different settings. Let X and Y be metric spaces. Let x0, y0 be base
point in X and Y . Given R > 0, three families of maps can be considered.

(1) Quasi-isometries of BX(x0, R) onto BX(y0, R).
(2) Quasi-isometries of BX(x0, R) onto BX(y0, ρ(R)), for some function ρ : R+ → R+.
(3) Quasi-isometric embeddings of BX(x0, R) to Y .

Neglecting the additive constant c for a while, these families give rise to distortion
functions λ1(R), λ2(R) and λ3(R).
λ1 has the advantage of letting X and Y play symmetric roles. We shall see next that

lower bounds on λ1 can be obtained easily. In fact, λ1 may tend to infinity even if X and
Y are quasi-isometric. It is therefore rather surprising that non trivial upper bounds on
λ1 can be given (Theorem 6).
λ2 seems to be appropriate in certain settings, as examples below will show.
λ3 is non-symmetric. It is natural in the sense that it stays bounded if and only if there

exists a quasi-isometric embedding of X to Y . It looks harder to estimate from below.
Nevertheless, this is what is done in Theorem 5.

3.3. Example illustrating the behaviour of λ1. Let X and Y be two regular trees Td1
and Td2 respectively, suppose that d1 < d2. Consider two balls of radius R in both of these
spaces, denote them by Bd1(R) and Bd2(R) respectively. What is the lower bound for the
constants of quasi-isometry between them? The volume of Bd1(R) is dR1 and the volume
of Bd2(R) is dR2 . A (λR, cR)-quasi-isometry f ′R : Bd1(R) → Bd2(R) should preserve (in
quasi-isometric sense) volumes. In our future calculations we will drop some multiplicative
constants (which are bounded constants which depend only on a whole space and not on
the particular radius R)

Divide Bd1(R) in balls of radius cR. The image of such a ball has maximal possible
radius (λR + 1)cR and the number of such balls is V ol(Bd1(R))/V ol(Bd1(cR)) = dR1 /d

cR
1 .

By definition of a quasi-isometry Bd2(R) should be covered by images of these balls, hence
V ol(Bd2(R)) ≤ dR1 /d

cR
1 V ol(Bd2((λR + 1)cR))

dR2 ≤ dR1 /d
cR
1 d

(λR+1)cR
2 .

From this relation we conclude that λRcR = Ω(R). On the other hand, we know from
[24] that two regular trees of degrees at least 4 are quasi-isometric.
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3.4. Example illustrating the behaviour of λ2. Take a d-regular tree. Now transform
it in a d(d−1)-regular tree in a following way. Take an origin, drop away all its neighbours
and add edges to all their ancestors (all the points of second level). Now we delete all
points of third level and connect directly the points of second levels with corresponding
points of fourth level. As a result we get a new tree which is evidently (2, 1)-quasi-isometric
to the initial one. Moreover, any ball Bd(R) is (2, 1)-quasi-isometric to a ball in a new tree
of radius R/2.

3.5. Role of the additive parameter c. Quasi-isometry constants are pairs (λ, c). Up
to now, we have neglected the additive constant c. But this cannot be done with impunity,
as the following examples show.

Example 2. Intervals.

Consider intervals IR = [0, 1], Iλ
R
= [0, λ] in R and IZ = [0, 1], Iλ

Z
= [0, λ] in Z. The λ

times stretching of IR to Iλ
R
is a (λ, 0)-quasi-isometry as inner points of IR fill the inner

points of an image. The natural embeddings of IZ in IR and Iλ
Z
in Iλ

R
are both (1, 1)-quasi-

isometries, though the stretching of IZ to Iλ
Z
is a (1, λ)-quasi-isometry.

IR
(λ,0)−−−→ Iλ

R

(1, 1) ↓ ↓ (1, 1)

IZ
(1,λ)−−−→ Iλ

Z

Example 3. Line versus plane.

Consider R and R
2. Here we will describe a (c1R, c2)-quasi-isometry between balls in

these spaces (c1 and c2 are two universal constants). A ball in R is just an interval of length
R. Stretch it R times and then fill a ball in R2 with a serpentine or a zigzag with width 1.
It is easy to check that this is indeed a (R, 1)-quasi-isometry. Now change R by Z and R

2 by
Z
2. Though there exist evident (1, 1)-quasi-isometries between balls in R and Z and balls

in R
2 and Z

2 provided by natural embeddings, there is no (c′1R, c
′
2)-quasi-isometry between

Z and Z
2. Moreover, the additive constant should be of order R with small constant c′2.

The reason is that by definition, the image should be c′2-dense. That is the range should
be covered by the balls of radius c′2 centered in the images of points of the departure space,
hence

V ol(BZ2(R)) ≤ |BZ(R)|V ol(BZ2(cR)).

In BZ(R) we have only R points and up to some universal multiplicative constants we get

R2 ≤ R(c′2)
2

what leads to

c′2 ≥ R.
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BR(R)
(R,0)−−−→ IR(R

2)
(1, 1) ↓ ↓ (1, 1)

IR(Z)
(1,R)−−−→ IR(Z

2)

We arrive at

Conclusion 1. In the quantitative problem both the multiplicative and the additive pa-
rameters are important.

3.6. Choice of a numerical measurement of distortion. Here we want to present a
form of definition of quasi-isometries which is more convenient for quantitative problems
and to study compositions of quasi-isometries. For this purpose, we shall observe that,
under composition, quasi-isometry constants behave like elements of the affine group of
the line. We shall introduce a natural distance on the affine group and prove that it is a
function of λ+ c2/λ+ 1/λ, where λ and c are quasi-isometry’s constants.

Sometimes it will be useful for us to distinguish constants as follows.

Definition 3. We say that a map f : X → Y is a quasi-isometric embedding if there exist
constants λ1, λ2, c1, c2 such that for any two points x1, x2 ∈ X

1

λ2
(dX(x1, x2)− c2) ≤ dY (f(x1), f(x2)) ≤ λ1dX(x1, x2) + c1.

We say that X and Y are quasi-isometric if the image f(X) is c3-dense in Y for some given
constant c3.

Study compositions of quasi-isometries. Let f : X → Y and g : Y → Z be (λ1, c1, λ2, c2)-
and (µ1, c1, µ2, d2)-quasi-isometries respectively (we use 3 here as definition of quasi-isometries).
x1, x2 are two points in X. Hence

dY (f(x1), f(x2)) ≤ λ1dX(x1, x2) + c1,

dX(f
−1(y1), f

−1(y2)) ≤ λ2dY (y1, y2) + c2.

and

dZ(g(y1), g(y2)) ≤ µ1dY (y1, y2) + d2,

dY (g
−1(z1), g

−1(z2)) ≤ µ2dZ(z1, z2) + d2.

hence for g ◦ f we have

dZ(g ◦ f(x1), g ◦ f(x2)) ≤ λ1µ1dX(x1, x2) + µ1c1 + d1,

dX((g ◦ f)−1(z1), (g ◦ f)−1(z2)) ≤ λ2µ2dZ(z1, z2) + λ2d2 + c2.

We see that the distortion of metrics by a quasi-isometry f can be encoded into two
matrices

F1 =

(
λ1 c1
0 1

)

, F2 =

(
λ2 c2
0 1

)

,
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and in matrix form we can write
(
dY
1

)

≤ F1

(
dX
1

)

.

Hence the composition h = g ◦ f is encoded by matrices

G1F1, F2G2.

Let D be a left-invariant distance on R ⋊ R. We set D(f) = D((λ1, c1), (1, 0)) the

distance to an isometry and D̃ = max{D(f),D(f−1)}. It is easily seen that D̃ satisfies the
triangle inequality from the following relation (which uses that D is left-invariant)

D(h) = D((µ1d1)(λ1, c1), (1, 0)) ≤ D((µ1d1)(λ1, c1), (µ1, d1)) +D((µ1, d1), (1, 0)) =

= D((λ1, c1), (1, 0)) +D((µ1, d1), (1, 0)) = D(f) +D(g).

Consider the vector space of symmetric square matrices of size two with trace 0

Y =

{(
a b
b −a

)

, a, b ∈ R

}

.

The map S ∈ Y 7→ exp(S) mod O (where O stands for all orthogonal matrices) is a
diffeomorphism from Y to SL2R/SO(2). Moreover, any matrix S defines a geodesic t 7→ etS

mod O, and

D(1, etS) = t||S|| = t
√

a2 + b2.

Take any real u and v. So considering the inverse diffeomorphism, we get that there
exist real a, b and an orthogonal matrix O such that

(
u v
0 1

u

)

= e

(

a b
b −a

)

O.

For the product of this matrix with the transposed one

(
u v
0 1

u

)(
u 0
v 1

u

)

=

(
u2 + v2 v

u
v
u

1
u2

)

= e

(

a b
b −a

)

OOT e

(

a b
b −a

)

= e
2

(

a b
b −a

)

.

On the one hand, eigenvalues of this matrix are roots of the equation

x2 − (u2 + v2 +
1

u2
)x+ 1 = 0,

on the other hand as the matrix

1√
a2 + b2

(
a b
b −a

)

is orthogonal with trace being equal to 0 we conclude that the eigenvalues of its exponential

are e±2
√
a2+b2 . So we conclude that the distanceD =

√
a2 + b2 is a function of u2+v2+1/u2.
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Here we present an isomorphism for

{(
u v
0 1

u

)}

and

{(
λ c
0 1

)}

. It is given by the

following formulas u = sign(λ)
√

|λ| and v = sign(λ)c/
√

|λ|.
Finally, we see that

Conclusion 2. If f is an (λ1, c1, λ2, c2)-quasi-isometric embedding, we setD(f) = D((λ1, c1), (1, 0))+
D((λ2, c2), (1, 0)). Then D(f) is a function of D0 = λ1+ c21/λ1 +1/λ1 +λ2+ c22/λ2 +1/λ2.

3.7. Statement of quantitative problem. We finally come up with a precise notion of
quasi-isometric distortion growth.

Definition 4. Let (X,x0) be a space with a base point, Y be another space. Then we call
quasi-isometric distortion growth the function

DG(X,x0, Y )(R) = inf
{
D|∃f : BX

x0(R) → Y is a quasi-isometric embedding,D(λ, c) ≤ D0

}
,

where BX
x0(R) is a ball in X centred at x0 of radius R.

We remind that D0(λ, c) = λ+ c2/λ+ 1/λ.

3.8. Example : maps to trees. In the following proposition we can take for example a
hyperbolic plane as the space X.

Proposition 2. Let X be a metric space. We suppose that for any points x, y and any
positive real numbers R and R′ ≤ R/2 the set Bx(R)\By(R) is connected. Let Y be a tree,
let f : Bx(R) → Y be a (λ1, λ2, c1, c2)-quasi-isometric embedding. Then R ≤ 8λ2c1 + 4c2.

Proof. Let x1, x2 be two points of Bx(R) with distance at least R between them. Denote
yi = f(xi) for i = 1, 2.

For any point y of a geodesic (y1, y2) there exists a point z ∈ Bx(R) such that d(f(z), y) ≤
c1. It follows from the fact that the image of (x1, x2) is c1-connected by the definition of
a quasi-isometric embedding (for any point x ∈ Bx(R) Diam(f(x)) ≤ c1) and every c1-
connected path between y1 and y2 includes the geodesic (y1, y2) in its c1-neighbourhood.

Now consider a chain of points {xi} connecting x1, x2 and such that d(xi, xi+1) < c1/λ1.
Hence, in the image d(f(xi), f(xi+1)) < 2c1 and so there exists i such that d(f(xi), y) ≤ 2c1
Notice that Y \By(2c1) has several connected components and the distance between these
components is at least 4c1.

Suppose that a point z is rather far from both x1 and x2: d(z, xi) > 4λ2c1 + c2, i = 1, 2.
In the set Bx(R) \ Bz(4λ2c1 + c2) we also find a c1/λ1-chain. Hence, there exists a point
z′ /∈ Bz(4λ2c1 + c2) of this path such that d(f(z′), y) ≤ 2c1. Hence, d(f(z), f(z′)) ≤ 4c1
and by property of quasi-isometry d(z, z′) ≤ 4λ2c1 + c2, so z

′ ∈ Bz(4λ2c1 + c2). What
leads to the contradiction with our hypothesis. Hence, for any y ∈ (y1, y2) there exists
z′ ∈ Bx1(4λ2c1 + c2) ∪Bx2(4λ2c1 + c2) such that d(f(z′), y) ≤ 2c1.

Consider two points y′, y′′ with d(y′, y′′) ≤ c2/λ2 such that z′ ∈ Bx1(4λ2c1 + c2) and
z′′ ∈ Bx2(4λ2c1 + c2). So, d(z′, z′′) ≥ R − 8λ2c1 − 2c2 and d(f(z′), f(z′′)) ≤ c2/λ2. Hence
R− 8λ2c1 − 2c2 ≤ λ2(c2/λ2) + c2 = 2c2. So we get R ≤ 8λ2c1 + 4c2. �
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4. Quasi-isometric classification - survey

One of the first appearances of quasi-isometries was the proof of the famous Mostow
rigidity theorem. It is proved by showing that equivariant quasi-isometries are within
bounded distance of isometries.

Theorem 7. (G. Mostow [8]) Suppose that n ≥ 3 and Γ,Γ′ ⊂ Isom(Hn) are lattices and
ρ : Γ → Γ′ is an isomorphism. Then ρ is induced by an isometry, i.e. there exists an
isometry α ∈ Isom(Hn) such that α ◦ γ = ρ(γ) ◦ α for all γ ∈ Γ.

Mostow extended the previous theorem to all rank one symmetric spaces. In the course
of the proof, he establishes the following fact.

Theorem 8. (G. Mostow [8]) Let X and X ′ be two rank 1 symmetric Riemannian spaces
of negative curvature. If X and X ′ are quasi-isometric then they are isometric.

Mostow’s theorem was followed by generalizations of P. Pansu [10] (case of rank one)
and B. Kleiner and B. Leeb [12] (higher ranks) (see for example the lecture notes of C.
Drutu and M. Kapovich [9] for a survey on quasi-isometric rigidity). These generalizations
help to proceed in quasi-isometric classification of some important classes of metric spaces.

Theorem 9. (B. Kleiner, B. Leeb [12]) For 1 ≤ i ≤ k, 1 ≤ j ≤ k′ let each Xi,X
′
j be

either a nonflat irreducible symmetric space of noncompact type (in addition assume that
X has rank 2) or an irreducible thick Euclidean Tits building with cocompact affine Weyl

group (in addition assume that X has Moufang Tits boundary). Let X = E
n×
∏k
i=1Xi and

X = E
n′ ×∏k′

j=1X
′
j be metric products. Then there exists a bijection σ and homotheties

Xi → X ′
σ(i).

The quasi-isometric classification of 3-manifolds is a hard and open problem, only partial
results have been achieved yet. For example we do not know if the fundamental groups of
all (closed) graph manifolds are quasi-isometric. At least, the following result reduces the
problem to the case of non-positively curved manifolds.

Theorem 10. (M. Kapovich, B. Leeb [13]) Let M be a Haken manifold of zero Euler
characteristic (which is neither Nil nor Sol), equipped with a Riemannian metric. Then
there exists a compact non-positively curved 3-manifold N with totally geodesic flat bound-
ary and a bilipschitz homeomorphism between the universal covers of M and N which
preserves the canonical decomposition. In particular, the fundamental groups π1(M) and
π1(N) are quasi-isometric.

Also a special case of Schwartz’ theorem (with n = 3) gives some results for classification
of 3-manifolds.

Theorem 11. (R. Schwartz [14]) Let G 6= Isom(H2) be a rank one Lie group. Suppose
that Γ,Γ′ are non-uniform lattices in G which are quasi-isometric to each other. Then there
exists an isometry g ∈ Isom(Hn) such that the groups Γ′ and gΓg−1 are commensurable.

This theorem holds more generally for simple Lie groups of rank 1. For higher ranks we
have Wortman’s result.
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Theorem 12. (K. Wortman [15]) Let K be a global field and S a finite nonempty set of
inequivalent valuations containing all of the Archimedean ones. Suppose G is a connected
simple K-group of adjoint type that is placewise not rank one with respect to S. Let Λ be
a finitely generated group, and assume there is a quasi-isometry φ : Λ → G(OS). If G is
K-isotropic and K is a number field, then there exists a finite index subgroup ΛS of Λ and
a homomorphism φ : ΛS → G(OS) with a finite kernel and finite co-image such that

sup
λ∈ΛS

d (φ(λ), ψ(λ)) <∞.

Wortman’s theorem also covers non K-isotropic fields and function fields, but the result
is not complete in this case.

Theorem 13. (U. Hamenstädt [29]) Two negatively curved homogeneous spaces are quasi-
isometric if and only if their isometry groups are cocompact subgroups of the same Lie
group.

A lot of results are obtained for solvable groups. For nilpotent groups we have the
following theorems of P. Pansu and Y. Shalom.

Theorem 14. (P. Pansu [10]) Let Γ and Γ′ be two quasi-isometric finitely generated nilpo-
tent groups. The associated graded Lie groups gr(Γ⊗ R) and gr(Γ′ ⊗ R) are isomorphic.

Theorem 15. (Y. Shalom [25]) Quasi-isometric finitely generated nilpotent groups have
the same Betti numbers.

The theorem of B. Farb and L. Mosher deals with solvable Baumslag-Solitar groups
BS(1, n) (n is an integer) which are given by the presentations

BS(1, n) =< a, b|aba−1 = bn > .

Theorem 16. (B. Farb, L. Mosher [16]) Let m,n ≥ 2 be two integers, then BS(1, n) and
BS(1,m) are quasi-isometric if and only if they are commensurable. This holds if and only
if there exist integers r, i, j such that n = ri and m = rj.

Further, A. Eskin, D. Fisher and K. Whyte proved the following theorems for solvable
groups.

Theorem 17. (A. Eskin, D. Fisher, K. Whyte) Let Γ be a finitely generated group quasi-
isometric to Sol. Then Γ is virtually a lattice in Sol.

They launched a program for analyzing quasi-isometries of Lie groups of the form R
m
⋉M

Rn whose completion is still in progress. Here is an instance of the expected results.

Theorem 18. Suppose M , M ′ are diagonalisable matrices with no eigenvalues on the unit
circle, and G = R⋉M Rn, G

′ = R⋉M ′ Rn. Then G and G′ are quasi-isometric if and only
if M ′ has the same absolute Jordan form as Mα for some α ∈ R.

Parts and special cases of this theorem are proved in different articles of A. Eskin, D.
Fisher, K. Whyte [17, 18, 19], T. Dymarz [20] and I. Peng [21, 22].

An alternate way of proving that two groups are not quasi-isometric is to show that
certain algebraic features are quasi-isometry invariants. Results of that kind for solvable
groups appear in Y. Shalom’s paper [25].
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Part 2. Morse Lemma

Hyperbolic metric spaces have recently appeared in discrete mathematics and computer
science (see, e.g., [2]). The notion of δ-hyperbolicity turns out to be more appropriate than
other previously used notions of approximation by trees (e.g., tree width). This motivates
our search for optimal bounds for a cornerstone of hyperbolic group theory like the Morse
lemma.

This part is devoted to the quantitative version of the Morse Lemma, its “anti”-variant
and their applications.

In the published article [30], a quasi-isometric embedding was defined as

Definition 5. A map f : E → F between metric spaces is a rough (λ, c)-quasi-isometric
embedding if for any two points x, y of E

1

λ
|x− y|E − c ≤ |f(x)− f(y)|F ≤ λ|x− y|E + c.

The difference is in the lower bound as the additive constant in it is c and not c/λ. We
revised all proofs and examples using our new definition. All previously obtained results
remain true. The main difference in our new proof of Morse Lemma appears in Lemma
10 on exponential contraction. It was previously stated only for ∆-connected curves, see
Lemma 9 in [30]. Now we do not need to substitute a given quasi-geodesic with a continuous
one any more.

5. Basics of hyperbolic geometry

The contemporary research on hyperbolic groups and hyperbolic spaces was started in
1987 by M.Gromov in his paper [Gr].

5.1. Metric definition. In this text we will use following notations for distances between
points and sets. Let E be a metric space with metric d. We write |x− y| for the distance
d(x, y) between two points x and y of the space E. For a subset A of E and a point x,
d(x,A) denotes the distance from x to A.

Definition 6. Let X be a metric space and x, y, z be three points in X. The Gromov
product (x|y)z of x and y at z is

(x|y)z =
1

2
(|x− z|+ |y − z| − |x− y|) .

To explain the geometrical meaning of this definition, we introduce tripods which are
presented as three points in a metric tree with the branches connecting these points (it is
possible that the lengths of some edges is 0).

Proposition 3. Let x, y, z be three points in some metric space X. Then there exists a
tripod T and an isometry f : x, y, z → T such that f(x), f(y) and f(z) are the endpoints of
the tripod T . Moreover, the lengths of the branches of T are exactly equals to corresponding
Gromov’s product.
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The proof is evident, verify it directly by the definition of Gromov’s product. Now we
are ready to give the definition of δ-hyperbolic spaces.

Definition 7. A metric space X is called δ-hyperbolic if for any four points x, y, z, w the
inequality

(x|z)w ≥ min (x, y)w, (y, z)w − δ

holds.

This definition can be rewritten in another form. There are three ways to divide these
four points into pairs. Introduce the corresponding sums of distances

p = |x− w|+ |z − y|
m = |x− y|+ |z − w|
g = |x− z|+ |y −w|.

Redenote the points to have that p ≤ m ≤ g. Then the definition can be rewritten in the
following form

g ≤ m+ 2δ.

That is the greatest sum cannot exceed the mean sum by more than by 2δ.

5.2. Case of geodesic metric spaces.

Definition 8. A geodesic (geodesic segment, geodesic ray) σ in a metric space E is an
isometric embedding of a real line (real interval I, real half-line R+) in E.

We write xy for a geodesic segment between two points x and y (in general, there
could exist several geodesic paths between two points; we assume any one of them by this
notation). A geodesic triangle xyz is a union of three geodesic segments xy, yz, and xz.

If δ-hyperbolic space X is geodesic we can use one more equivalent definition of δ-
hyperbolicity in terms of ”thin triangles”. For two given points x, y we will denote by xy
a geodesic segment between them. In general such a geodesic segment is not necessarily
unique so under this notation we assume one of these geodesic segments.

A geodesic metric space is a space such that there exists a geodesic segment xy between
any two points x and y. Geodesic δ-hyperbolic spaces can be described in terms of thin
triangles.

Definition 9. A geodesic triangle xyz is called δ-thin if the distance from any point p of
xy to the union of xz and yz does not exceed δ:

d(p, xz ∪ yz) ≤ δ.

Proposition 4. A geodesic metric space E is δ-hyperbolic if and only if every geodesic
triangle is 1

2δ-thin.

According to M. Bonk and O. Schramm [6], every δ-hyperbolic metric space embeds
isometrically into a complete δ-hyperbolic geodesic metric space. So, many theorems can
be reduced to the investigation of geodesic hyperbolic spaces using the definition of hyper-
bolicity in terms of δ-thin triangles. Usually the factor 1

2 is dropped in the last definition.
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Example 4. • One of the most important examples of δ-hyperbolic spaces are metric
trees, here δ = 0.

• Fundamental groups of compact Riemannien manifolds with negative (sectional)
curvature are δ-hyperbolic.

Take some group G and a presentation P =< X,R > of G. Introduce a word metric
on G. That is the length of any element g is the minimal length of a word (of generators)
which is needed to write g in P . It is easy to check that it is indeed a metric. The next
theorem shows that in some sense most finite presentations are hyperbolic.

Theorem 19 (Gromov). Fix integers p and q. Consider all presentations P with p gen-
erators (|X| = p) and q relators (|R| = q). Denote by Nhyp(n1, . . . , nq) the number of all
hyperbolic presentations with the lengths of relators equal to n1, . . . , nq, by N(n1, . . . , nq)
the number of all presentations with the same property. Then

Nhyp(n1, . . . , nq)

N(n1, . . . , nq)
→ 1

as ni → ∞ (i = 1, . . . , q).

5.3. Divergence. Now we are going to introduce the notion of divergence function which
allows us to estimate lengths of paths which leave a ball together with two diverging
geodesics. Later this approach will help us show that the length of a curve lying far from
a geodesic is very marge.

Definition 10. Let F be a metric space. We say that e : N → R is a divergence function
for the space F if any point x ∈ F and any two geodesic segments γ = (x, y) and γ′ = (x, z)
it holds: for any R, r ∈ N such that R+r does not exceed lengths of γ, γ′ if d(γ(R), γ′(R)) >
e(0) and σ is a pass from γ(R+ r) to γ′(R+ r) in the closure of the complement of a ball

BR+r(x) (that is in X \BR+r(x)) then the length of σ is at greater than e(r).

While two points move along two geodesic rays, the distance between them grows linearly
by the triangle inequality which is true in all metric spaces. Though we will see that if two
such geodesics leave some bounded tube then the lengths of paths connecting two points
on them and lying in the complement of the ball grow exponentially in any hyperbolic
space (for example the length of a circle grows exponentially with the radius). If e is an
exponential function then we say that geodesics diverge exponentially.

Theorem 20. In a hyperbolic space geodesics diverge exponentially.

An amazing fact is that the opposite statement is also true and even more: a non-linear
divergence in a geodesic space implies that the divergence function is exponential and,
finally, that the space is hyperbolic. Though here we are not going to prove this result.

5.4. Isoperimetry. An other important property, characterizing hyperbolic spaces, is that
the isoperimetric inequality is linear for them,

Area(D) ≤ Aipl,
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where l is the length of a closed curve filled by an optimal disk D and Aip is some constant
depending on a particular space. Let us explain how isoperimetric inequalities can be
generalized to the case of groups.

Let G be a finitely generated group, P =< X|R > a finite presentation of G. Closed
curves in the Cayley polyhedron correspond to words w ∈ F (X) representing the unity of
G and, hence, they can be expressed in F (X) in the form

w = (u−1
1 rα1

1 u1) . . . (u
−1
n rαnn un)

where u1 ∈ F (X), ri ∈ R, αi ∈ {−1, 1}. Of course, in general there exists infinitely many
of such decompositions.

Definition 11. The least value of n is called the area of w.

Definition 12. The Dehn (or isoperimetric) function f : N → N is

f(l) = max {Area(w)|w = 1, |w| = l} .
Any finitely generated group has different presentations with different Dehn functions.

The following lemma helps us to establish the relation between them.

Lemma 1. Let G be a group and let P and Q be two finite presentations of G with Dehn
functions f and g respectively. Then there exist constants a1, a2, a3, a4 ∈ N such that for
any n ∈ N

f(n) ≤ a1g(a2n+ a3) + a4.

Now we can conclude that if for some presentation, Dehn function is bounded by a
linear (polynomial, exponential etc) function, then for any presentation of that group
Dehn function is also bounded by a function of the same type. Moreover, the type of
isoperimetric inequalities is invariant under quasi-isometries, see Definition 1.

5.5. Comparison with trees. A metric tree is one of the most important examples of
hyperbolic spaces. Most properties of hyperbolic spaces can be illustrated in trees and
theorems in this subject should be first verified for them. The following theorem establishes
a close relation between general hyperbolic spaces and trees. It says that if we are looking
from far away, then a hyperbolic space looks similar to a tree. We will write |x| for the
distance from x to the base point.

Theorem 21. Let X be a δ-hyperbolic metric space with a base point w and k be a positive
integer. If |X| ≤ 2k + 2 then there exist a finite metric tree with a base point t and a map
Φ : X → T such that

(1) Φ preserves distances to the base point,

|Φ(x)− t| = |x|
for any point x of X.

(2) |y − x| − 2kδ ≤ |Φ(y)− Φ(x)| ≤ |y − x| for any two points x, y of X.
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6. The geometry of δ-hyperbolic spaces

In this section we will give some lemmas on geometry of triangles, perpendiculars and
projections in δ−hyperbolic metric spaces.

Definition 13. In a metric space, a perpendicular from a point to a curve (in particular,
a geodesic) is a shortest path from this point to the curve.

Of course, a perpendicular is not necessarily unique.

Lemma 2. In a geodesic δ-hyperbolic space, let b be a point and σ be a geodesic such that
d(b, σ) = R. Let ba be a perpendicular from b to σ, where a ∈ σ. Let c be a point of σ such
that |b− c| = R+ 2∆. Then |a− c| ≤ 2∆ + 4δ.

Figure 1. Illustration for Lemma 2.

Proof. The triangle abc (see Fig. 1) is δ-thin by the definition of a δ-hyperbolic space.
Hence, there exists a point t ∈ σ such that d(t, ba) ≤ δ and d(a, bc) ≤ δ. Let t1 and t2 be
the respective projections of t on ba and bc. By hypothesis, R is the minimum distance
from b to the points of σ. Therefore, R = |b − a| ≤ |b − t1| + |t1 − t| ≤ |b − t1| + δ and
R ≤ |b − t2| + |t2 − t| ≤ |b − t2| + δ. Hence, |a − t1| ≤ δ and |c − t2| ≤ 2∆ + δ. By the
triangle inequality, we obtain |a− c| ≤ |a− t1|+ |t1 − t|+ |t− t2|+ |t2 − c| ≤ 2∆+ 4δ. �

Remark 2. In particular, all the orthogonal projections of a point to a geodesic lie in a
segment of length 4δ.
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Lemma 3. In a δ-hyperbolic space, let two points b and d be such that |b − d| = ∆. Let
σ be a geodesic and a and c be the respective orthogonal projections of b and d on σ. Let
|a− b| > 3∆+6δ, and let d(d, σ) > d(b, σ). Let two points x1 ∈ ab and x4 ∈ cd be such that
2∆ + 5δ < d(x1, σ) = d(x4, σ) < |a− b| − (∆ + 2δ). Then |x1 − x4| ≤ 4δ and |a− c| ≤ 8δ.

Figure 2. Illustration for Lemma 3.

Proof. (See Fig. 2.) By the triangle inequality and because cd is a perpendicular to σ,
|c− d| ≤ |a− b|+ |b− d|, whence |b− c| ≤ |c− d|+ |b− d| ≤ |a− b|+2|b− d|. By Lemma 2,
|a − c| ≤ 2∆ + 4δ. The triangle abc is δ-thin, |a − x1| > |a − c| + δ. Therefore, by the
triangle inequality, d(x1, ac) > δ, and hence d(x1, bc) ≤ δ. Let x2 denote the point of bc
nearest x1. Because the triangle bcd is also δ-thin and |b−x2| ≥ |b−x1|−|x1−x2| ≥ ∆+δ,
there exists a point x3 ∈ cd such that |x3 −x3| ≤ δ. It follows from the triangle cx1x3 that
|x3 − c| ≥ |x1 − c| − 2δ ≥ |x1 − a| − 2δ. On the other hand, because x5c is a perpendicular
to σ, |x3 − c| ≤ |x3 − x1| + |x1 − a|. Now, |a − x1| = |c − x4|, and hence |x4 − x3| ≤ 2δ.
Finally, we obtain the statement in the lemma: |x1 − x4| ≤ 4δ.

By the triangle inequality and because d(x1, σ) = d(x4, σ), we have |x1 − c| ≤ |c− x4|+
|x4 − x1| ≤ |a− x1|+ 4δ. Hence, using Lemma 2, we conclude that |a− c| ≤ 8δ. �

Lemma 4. Let σ be a geodesic segment, a be a point not on σ, and c be a projection of a on
σ. Let b ∈ σ be arbitrary, and let d denote the projection of b on ac. Then the |c− d| ≤ 2δ.



Quasi-isometries between hyperbolic metric spaces 21

Proof. By hypothesis, bd minimizes the distance from any its points to ac, and because
the triangle bcd is δ-thin, there exists a point e ∈ bd such that d(e, ac) = |e − d| ≤ δ and
d(e, bc) ≤ δ. Because ac is a perpendicular to σ, |a−c| ≤ |a−d|+|d−e|+d(e, bc) ≤ |a−d|+2δ.
Hence |c− d| ≤ 2δ. �

Lemma 5. As in the preceding lemma, let σ be a geodesic segment, a be a point not on
σ, c be a projection of a on σ, and b be some point on σ. Let d denote a point on ac such
that |d− c| = δ and e denote a point on bc such that |e− c| = 3δ. Then

• d(d, ab) ≤ δ, d(e, ab) ≤ δ, d(c, ab) ≤ 2δ, and
• the length of ab differs from the sum of the lengths of the two other sides by at most
8δ,

|a− c|+ |b− c| − 2δ ≤ |a− b| ≤ |a− c|+ |b− c|+ 8δ.

Proof. The triangle abc is δ-thin. Therefore, obviously, d(d, ab) ≤ δ (the distance from a
point of ac to ab is a continuous function). We take a point x ∈ bc such that d(x, ca) ≤ δ.
Using Lemma 4, we obtain |b−x|+d(x, ca) ≥ |b−c|−2δ, and hence |c−x| ≤ d(x, ca)+2δ ≤
3δ.

We now let d1 and e1 denote the respective projections of d and e on ab. Then by the
triangle inequality, we have

• |a− d| − δ ≤ |a− d1| ≤ |a− d|+ δ,
• |b− e| − δ ≤ |b− e1| ≤ |b− e|+ δ, and
• 0 ≤ |d1 − e1| ≤ |d1 − d|+ |d− c|+ |c− e|+ |e− e1| ≤ 6δ.

Combining all these inequalities, we obtain the second point in the lemma. �

Lemma 6. Let σ be a geodesic and a and b be two points not on σ. Further, let a and b
have a common projection c on σ. Let d be a point of σ and c1 be the projection of d on
ab. Then

|d− c| ≤ |d− c1|+ 6δ.

Remark 3. Lemma 6 deals with a geodesic segment. The statement is not true for a
complete geodesic passing through a and b, as can be seen from Fig. 3.

Proof. We take a point e ∈ bc such that |c − e| = δ and consider the triangle bcd (see
Fig. 4). Because bc is a perpendicular to dc, d(e, bd) ≤ δ. Let e1 denote a projection of e
on bd. Let e2 and e3 be the respective projections of e1 on the geodesic segments dc1 and
bc1. Because the triangle dbc1 is δ-thin, either |e1 − e2| ≤ δ or |e1 − e3| ≤ δ.

I. If |e1 − e2| ≤ δ, then |d− c| ≤ |c− e|+ |e− e1|+ |e1 − e2|+ |e2 − d| ≤ |d− c1|+ 3δ.
II. If |e1 − e2| > δ, then the length of the path cee3 is at most 3δ. We apply the same

arguments to ad (we assume that this is possible; otherwise, we could apply the first case
to it). We obtain the points g, g1, and g3 and the length of the path cgg3 is also at most 3δ.
If neither of these paths intersects cc1, then its length does not exceed 6δ (which follows
from consideration of the triangle ce3g3). �
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Figure 3. Illustration for Remark 3.

Lemma 7. Let E be a δ-hyperbolic metric space and abc be a triangle in E. Then the
diameter of the set S of points of the side ab such that distance to bc and ac does not
exceed 2d is not greater than C(d+ δ), where C is a constant.

Proof. Let x be a point of ab such that d(x, bc) ≤ δ and d(x, ac) ≤ δ and y be a point
of ab such that d(y, bc) ≤ d and d(y, ac) < d. Without loss of generality, we assume that
y ∈ (a, x). Because the triangle abc is δ-thin, one of these two distances does not exceed δ.

We first assume that d(y, ac) ≤ δ. Let x′ and y′ be points of ac such that d(x, x′) ≤ δ
and d(y, y′) ≤ δ. We let t, t′, s, and s′ denote the respective projections of x, x′, y,
and y′ on bc. Because x′t′ is a perpendicular to bc, |x′ − t′| ≤ |x′ − x| + |x − t| ≤ 2δ,
and hence |t − t′| ≤ 4δ. If y and y′ are sufficiently far from bc, i.e., if d ≥ 9δ, then
|s − s′| ≤ 6δ by Lemma 3. Otherwise, we can give a rough estimate by the triangle
inequality: |s − s′| ≤ |s − y|+ |y − y′|+ |y′ − s′| ≤ 19δ. Hence, in any case, |s− s′| ≤ 19δ.
We consider two cases.

If s is in the segment [b, t′], then by applying the triangle inequality several times, we
obtain

|b−y| ≤ |b−s|+ |s−y| ≤ |b− t′|+ |s−y| ≤ |b−x|+ |x− t|+ |t− t′|+ |s−y| ≤ |b−x|+5δ+d.

And because |b− y| = |b− x|+ |x− y|, we have |x− y| ≤ 5δ + d.
The same arguments we apply if s ∈ [t′, c]. We merely note that we can replace y with

y′ and t with t′ with respective errors less than δ and 19δ:

|c−y′| ≤ |c−s′|+ |s′−y′| ≤ |c−s′|+ |s′−y′| ≤ |c−s|+19δ+ |s−y|+ δ ≤ |c− t′|+20δ+d.
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Figure 4. Illustration for Lemma 6.

Now, because |c− t′| ≤ |c− x′|+ |x′ − t′| ≤ |c− x′|+ 2δ, we have

|c− x′|+ |x′ − y′| = |c− y′| ≤ |c− x′|+ 22δ + d.

Finally, |x− y| ≤ |y − y′|+ |y′ − x′|+ |x− x′| ≤ 24δ + d.
The case d(y, bc) ≤ δ is treated identically with d and δ interchanged. �

7. Quasi-geodesics and ∆-length

Definition 14. A (λ1, λ2, c1, c2)-quasi-geodesic in F is a (λ1, λ2, c1, c2)-quasi-isometric em-
bedding (in the sense of Definition 3) of a real interval I = [0, l] into F .

Let γ : I → F be a curve. We assume that the interval I = [x0, xn] of length |I| = l gives
the parametrization of the quasi-geodesic γ. We take a subdivision Tn = (x0, x1, . . . , xn)
and let yi, i = 0, 1, . . . , n, denote γ(xi). The anti-mesh of Tn is d(Tn) = min0<i≤n |yi−yi−1|.
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Definition 15 (∆-length). Let γ : I → F be a curve. The value

L∆(γ) = sup
Tn:d(Tn)≥∆

n∑

i=1

|yi − yi−1|

is called the ∆-length of the quasi-geodesic γ.

We note that the values of ∆-length and classical length are the same for a geodesic.

Lemma 8. Let γ : I → F be a (λ1, λ2, c1, c2)-quasi-geodesic. For ∆ ≥ 2c1,

L∆(γ) ≤ 2λ1l.

Proof. By the definition of ∆-length, ∆ ≤ |yi − yi−1| ≤ λ1|xi − xi−1|+ c1. Hence, because
∆ ≥ 2c1, we obtain |xi − xi−1| ≥ (∆− c1)/λ1 ≥ c1/λ1.

Now, by definition of a quasi-geodesic, we have

sup
Tn

∑

i

|yi − yi−1| ≤ sup
Tn

∑

i

(λ1|xi − xi−1|+ c1) ≤ sup
Tn

∑

i

2λ1|xi − xi−1| = 2λ1l,

where the last equality follows because the sum of |xi − xi−1| for every subdivision of the
interval I is exactly equal to the length of I. �

Lemma 9. Let γ : I → F be a (λ1, λ2, c1, c2)-quasi-geodesic. Let R ≥ c2/λ2 be the distance
between the endpoints of γ, and let ∆ ≥ 2c1. Then L∆(γ) ≤ 4λ1λ2R.

Proof. By definition of a quasi-isometry, (l − c2)/λ2 ≤ R ≤ λ1l + c1. Hence, l ≤ λ2R+ c2.
And by Lemma 8, L∆(γ) ≤ 2(λ2R + c2)λ1. In particular, L∆(γ) ≤ 4λ1λ2R for R ≥
c2/λ2. �

8. Exponential contraction

Lemma 10 (Exponential contraction). Let ∆ > 0. In a geodesic δ-hyperbolic space E, let
γ be a ∆/2-connected curve at a distance not less than R ≥ 6∆ + 116δ from a geodesic σ.
Let L∆ be the ∆-length of γ. Then the length of the projection of γ on σ is not greater
than

max

(
4δ

∆
e−KR/38δL∆, 8δ

)

,

where K = ln 2/19.

Proof. Let y0, y1, . . . , yn be points on γ such that ∆ ≤ |yi − yi−1| ≤ 2∆ for i = 1, 2, . . . , n
and y0 and yn are the endpoints of γ. Let yk be the point of this set that is nearest from σ.
We take a perpendicular from yk to σ and a point xk on it with |yk−xk| = 2∆+3δ. Now, on
the perpendiculars from all other points yi, we take points xi such that d(xi, σ) = d(xk, σ)
(see Fig. 5). By Lemma 3, |xi − xi−1| ≤ 4δ for i = 1, 2, . . . , n. Therefore,

n∑

i=1

|xi − xi−1| ≤ n4δ ≤ n∆
4δ

∆
≤ 4δ

∆
L∆.
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Figure 5. Exponential contraction of the length of a curve γ under pro-
jection on a geodesic σ.

We set x̄0 = x0 and x̄n1 = xn and select points x̄i ∈ {x1, x2, . . . , xn−1} such that
8δ ≤ |x̄i − x̄i−1| ≤ 16δ. For each i = 0, 1, . . . , n1, we choose a perpendicular from x̄i to
σ, move x̄i along it a distance 16δ + 3δ = 19δ towards σ, and obtain x1i . By Lemma 3,
|x1i − x1i−1| ≤ 4δ and

n1

∑

i=1

|x1i − x1i−1| ≤ n14δ ≤ 1

2

n1

∑

i=1

|x̄i − x̄i−1| ≤
1

2

n∑

i=1

|xi − xi−1| ≤
1

2

4δ

∆
L∆.

We can continue such a process while the distance from the set of points {xmi , i =
0, 1, . . . , nm} to σ is not less than 19δ and |xm0 − xmnm | ≥ 8δ. After k steps, we have

nk∑

i=1

|xki − xki−1| ≤
1

2k
4δ

∆
L∆ =

4δ

∆
e−((ln 2)/19δ)(19δk)L∆.

We set r = 19δk and K = (ln 2)/19. We need 8δ ≤ (4δ/∆)e−Kr/δL∆ and hence r ≤
(δ/K) ln

(
L∆/2∆

)
. Now, if the distance between the projections of the endpoints |xm0 −xmnm |

is not less than 8δ at some step m, then we use Lemma 3 to do the last projection on
σ, and its length does not exceed 8δ. Otherwise, we must do the last descent to the
distance 55δ using Lemma 3 (the estimate for the projection on a geodesic with ∆ = 16δ
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gives the necessary distance from the set of points to the geodesic to be greater than
3 × 16δ + 6δ = 54δ) and intervals of a length not less than 8δ contract to intervals of a
length not more than δ, and we hence have a contraction factor of unity at the last step.

We need just to notice now that our choice of R allows us to conclude that R − (2∆ +
3δ) + 55δ ≥ R/2, so the number of iterations k ≥ R/38δ. �

9. Quantitative version of the Morse lemma

We are now ready to state and prove the quantitative version of the Morse lemma. In a
δ-hyperbolic space E, any (λ1, λ2, c1, c2)-quasi-geodesic γ belongs to the H-neighborhood
of any geodesic σ connecting its endpoints, where the constant H depends only on the
space E (in particular, on the constant δ) and the quasi-isometry constants λ1, λ2, c1 and
c2.

9.1. Attempts. To motivate our method, we describe a sequence of arguments yielding
sharper and sharper estimates. Here, for simplicity, we will assume that λ1 = λ2 = λ and
additive constants are small relatively to λ. We start with the proof in [1], Chapter 5.1,
Theorem 6 and Lemma 8, where the upper bound H ≤ λ8c2δ was obtained (up to universal
constants, factors of the order log2(λcδ)). The first weak step in this proof is replacing a
(λ, c)-quasi-geodesic with a discrete (λ′, c)-quasi-geodesic γ′ parameterized by an interval
[1, 2, . . . , l] of integers, where λ′ ∼ λ2c. For a suitable R ∼ λ′2, we take an arc xuxv of γ′

and introduce a partition of that arc xu, xu+N , xu+2N , . . . , xv for some well-chosen N ∼ λ′.
The approximation of a δ-hyperbolic space by a tree (see [1], Chapter 2.2, Theorem 12.ii)
is used to obtain an estimate of the form |yu+iN − y′u+(i+1)N | ≤ c′ ∼ lnλ′. By the triangle

inequality, |xu−xv| ≤ |xu−yu|+|yu−yu+N |+· · ·+|yv−xu| ≤ 2(R+λ′)+(N−1|u−v|+1)c′.
On the other hand, λ′−1|u−v| ≤ |xu−xv|. Combining these two inequalities, we obtain an
estimate for |u− v| and hence for the distance from any point of the arc xuxv to the point
xu. The second weak step in this argument is in the estimate of the length of projections,
which can be improved significantly.

Another proof was given in [7]. It allows to obtain the estimate λ2Ham, where Ham

is the constant of the anti-Morse lemma (see Section 11) and is given by the equation
Ham ≃ lnλ + lnHam.

1 It is very close to an optimal upper bound but still not sharp as
the sharp estimate for Ham ≃ lnλ. The proof uses the fact that in a hyperbolic space the
divergence function is exponential.

To prove the anti-Morse lemma, the authors of [7] take a point p of the geodesic σ that is
the distant from the quasi-geodesic γ and construct a path α between two points of γ such
that α is in the complement of the ball of radius d(p, γ) with the center p. Finally, they
compare two estimates of the length: one estimate follows from the hypothesis that α is a
quasi-geodesic, and the other is given by the exponential geodesic divergence. To prove the
Morse lemma, they take a (connected) part γ1 of γ that belongs to the complement of the
Ham-neighborhood of the geodesic σ, and they show that the length of γ1 does not exceed

1Be careful while reading [7] because a slightly different definition of quasi-geodesics is used there with
λ1 = λ

2; cf. Lemma 9.
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2λ2Ham by the definition of a quasi-geodesic. In [7], they also use another definition of a
quasi-geodesic, which is less general than our definition because, in particular, it assumes
that a quasi-geodesic is a continuous curve. Consequently, some technical work is needed
to generalize their results.

To improve these bounds, we use Lemma 10 (exponential contraction) instead of expo-
nential geodesic convergence and Lemma 9, which do not require discretization as in [1]
and provide a much more precise estimate for a length of a projection. We can then take
R = lnλ and obtain H ≤ O(λ2 lnλ) by a similar triangle inequality.

Below, we prove the Morse and anti-Morse lemmas independently. We only mention
that arguments in [7] can be used to deduce the optimal bound for the Morse lemma from
the anti-Morse lemma. We can also obtain an optimal upper bound for H from Lemma 11.

We now sketch the proof of a stronger result (but still not optimal): H ≤ O(λ2 ln∗ λ),
where ln∗ λ is the minimal number n of logarithms such that ln . . . ln

︸ ︷︷ ︸

n

λ ≤ 1.

The preceding argument is used as the initial step. It allows assuming that the endpoints
x and x′ of γ satisfy |x−x′| ≤ O(lnλ). Then comes an iterative step. We prove that if xx′

is an arc on γ and |x− x′| = d1, then there exist two points y and y′ at distance at most
C2(c, δ)λ

2 from a geodesic σ1 connecting x and x′ such that d2 := |y − y′| ≤ C3(c, δ) ln d1.
Indeed, we choose a point z of the arc xx′ that is farthest from σ1 and let σ′ denote a
perpendicular from z to σ1. If all points of the arc xx

′ (on either side of z) whose projection
on σ′ is at a distance ≤ λ2 from σ1 are at a distance not less than ln d1 from σ′, then
Lemma 10 implies that the length of the arc is much greater than λ2 ln d1, contradicting
the quasi-geodesic assumption. Hence, there are points y and y′ that are near σ′. We
can arrange that their projections on σ′ are near each other, which yields |y − y′| ≤ ln d1.
We apply this relation several times starting with d1 = C1(c, δ) ln λ until di ≤ 1 for some
i = ln∗ λ.

In summary, we use two key ideas to improve the upper bound of H: exponential
contraction and consideration of a projection of γ on a different geodesic σ′.

9.2. Proof of the Morse lemma. We use the same ideas to prove the quantitative version
of the Morse lemma, but we should do it more accurately.

Remark 4. In Section 10 we will give examples (properly parametrized and discretized rays
in a tree) where H = λ1λ2min{c1, c2}/4.

Proof of Theorem 2. First, we notice that a (λ1, λ2, c1, c2)-quasi-geodesic γ is a c1-connected
curve. We will use Lemma 9 and Lemma 10 to get control on the ∆-length of γ with
∆ = 2max{c1, δ}.

We introduce the following construction for subdividing the quasi-geodesic γ. We let z
denote the point of our quasi-geodesic that is farthest from σ. Let σ0 = σ be the geodesic
connecting the endpoints of γ. Let σ′0 be the geodesic minimizing the distance between
z and σ0 (because σ0 is a geodesic segment, σ′0 is not necessarily perpendicular to the
complete geodesic carrying σ0). Let s0 denote the point of intersection of σ0 and σ′0. Let
s′0 be the point of σ

′
0 such that the length of the segment [s0, s

′
0] is equal to 9δ. We consider
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Figure 6. Illustration of proof of Theorem 2

the set of points of γ whose projections on σ′0 belong to the segment [s0, s
′
0]. The point z

separates this set into two subsets γ+0 and γ−0 (see Fig. 6).
Let d±0 denote the minimal distance of points of γ±0 to σ′0. We also introduce the following

notation:

• d0 = d+0 + d−0 + δ;
• γ1 is a c1-connected component of γ \ (γ+0 ∪ γ−0 ) containing z and is also a quasi-
geodesic with the same constants and properties as γ;

• σ1 is a geodesic connecting the endpoints of the sub-quasi-geodesic γ1;
• L1 is the ∆-length of γ1.

Applying the same idea to the curve γ1, the same point z, and the geodesic σ1, we
obtain the geodesic σ′1, the parts γ±1 of the quasi-geodesic, and the distances d±1 . We have
l(σ′0) ≤ l(σ′1)+ δ+6δ. To show this, we apply Lemma 6 assuming that c = s′0, d = z, and a
and b are the endpoints of γ1. Continuing the process, we obtain a subdivision of γ by γ±i
and two families of geodesics σi and σ

′
i. Finally, for some n, we obtain dn ≤ c2+6∆+161δ

(the choice of such a bound will allow us to apply Lemma 10 on exponential contraction
for all i < n).

The quantity Li is the length of the subcurve γi−1, which is also a quasi-geodesic. Hence,
l(σ′n) ≤ Ln ≤ 4dnλ1λ2 by construction. Therefore,

l(σ′0) ≤
n∑

i=1

9δ + 4(c2 + 6∆+ 161δ)λ1λ2.
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Our goal is to estimate n.
By Lemma 10, we obtain

L∆(γ
+
i ∪ γ−i ) ≥ 9δ

∆

4δ
max(eKd

+

i+1
/38δ , eKd

−

i+1
/38δ) ≥ 9∆

4
eK(di+1−δ)/76δ .

On the other hand, L∆(γ
+
i ∪ γ−i ) = Li − Li+1 + 2∆. Hence, setting C0 = (9∆/4)e−K/78,

we have

(1) C0e
Kdi+1/78δ ≤ Li − Li+1 + 2∆.

Let g±i be a point of γ±i that minimizes the distance to σ′i. The part of the quasi-geodesic
γ between g+i and g−i is also a quasi-geodesic with the same constants and properties. By

the triangle inequality, |g−i − g+i | < d+i + d−i + δ. Therefore, by construction (see the
beginning of the proof) and because di ≥ c2 + 6∆+ 78δ ≥ c2 for i < n,

(2) Li ≤ 4λ1λ2di.

The function de−d is decreasing. Therefore, because di ≥ 1
4λ1λ2

Li, we obtain

K

2δ
die

−Kdi/2δ ≤ K

2δ

1

4λ1λ2
Lie

−(K/(8δλ1λ2))Li .

We are now ready to estimate n:

n =
n∑

i=1

1 =
1

C0

n∑

i=1

e−Kdi/2δC0e
Kdi/2δ ≤ 1

C0

8λ1λ2δ

K

n∑

i=1

e−(K/8δλ1λ2)Li
K

8λ1λ2δ
(Li−1−Li+2∆).

Setting Xi = (K/8λ1λ2δ)Li, we have

n∑

i=1

1 ≤ λ1λ2δ

8C0K

n∑

i=1

e−Xi(Xi−1 −Xi) + 2∆/C0

n∑

i=1

e−Xi ,

and because the function e−X is decreasing for X ≥ 0, we can use the estimate

n∑

i=1

e−Xi(Xi−1 −Xi) ≤
∫ ∞

0
e−XdX = −e−x|∞0 = 1.

Summarizing all facts, we finally obtain the claimed result

H = 4λ1λ2

(
δ

8C0K
+ c2 + 12c1 + 78δ

)

+A0,

we recall that K = ln 2/19 and C0 = (9∆/4)e−K/38 and A0 = 8/9eK/38. Lastly we notice
that δ/∆ ≤ 1 and A0 ≤ λ1λ2A0. �



30 VLADIMIR SHCHUR

10. Optimality of Theorem 2

Proposition 5. Let T be a metric tree. Then for any constants λ1, λ2 ≥ 1 and c1, c2 ≥ 0
there exists a (λ1, λ2, c1, c2)-quasi-geodesic γ such that Morse constant H ≥ λ1λ2 min{c1, c2}/4−
min{c1, c2}.

Proof. We will construct explicitely such a quasi-geodesic γ : I → T , where I is a parametri-
sation interval.

Consider a geodesic ray σ with base point s1 in the tree T . Denote by c = min{c1, c2}Let
I be an interval of length l = λ2c/2. Divide I by intervals I1, I2, . . . , In of length l1 = c/λ1.
Let s2, . . . , sn be consequent points of σ such that |si − si−1| = c/2 for i = 2, . . . , n. We
assume

• γ(Ii) = si for any i ≤ n/2,
• γ(Ii) = sn−i otherwise.

First, we check that γ is indeed a (λ1, λ2, c1, c2)-quasi-isometry. If two points x1, x2 of I
are in the same little interval Ii then

|x1 − x2| − c2
λ2

≤ l1 − c2
λ2

≤ |γ(x1)− γ(x2)| = 0 ≤ λ1|x1 − x2|+ c1.

If x1 and x2 are in different intervals Ii and Ik then the distance between their images is
at least c/2 and for the left-hand inequality we have

|x1 − x2| − c2
λ2

≤ l − c2
λ2

≤ c

2
≤ |γ(x1)− γ(x2)|.

Finally, we prove the right-hand inequality. We have (|i − k| − 1)l1 ≤ |x1 − x2| and also
|γ(x1)− γ(x2)| ≤ c|i− k|. Hence,

λ1|x1 − x2|+ c1 ≥ (|i− k| − 1)c+ c1 ≥ |γ(x1)− γ(x2)|.
We see easily that H ≥ 1/2 · c/2 · l/l1 − c = λ1λ2c/4 − c. �

11. Anti-Morse lemma

We have already proved that any quasi-geodesic γ in a hyperbolic space is at distance
not more than λ1λ2(c1 + c2 + δ) from a geodesic segment σ connecting its endpoints. This
estimate cannot be improved. But the curious thing is that this geodesic belongs to a
lnλ-neighborhood of the quasi-geodesic! We can therefore say that any quasi-geodesic
is lnλ-quasiconvex. This upper bound can be improved in some particular spaces: for
example, any quasi-geodesic is c1-quasiconvex in a tree.

The proof of Theorem 3 (see the introduction) that we give below is based on using

• Lemma 10 (exponential contraction) to prove that at the distance lnλ from the
geodesic the length of σ is at most λ2 lnλ and

• an analogue of Lemma 10 to prove that the length of a circle of radius R is at least
eR (up to some constants).
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Lemma 11. Let X be a hyperbolic metric space, γ be a (λ1, λ2, c1, c2)-quasi-geodesic, and
σ be a geodesic connecting the endpoints of γ. Let (yu, yv) be an arc of γ such that no point
of this arc is at distance less than C1 lnλ1λ2 + C2 from σ and yu and yv are the points of
the arc nearest from σ. Then the length of the projection of the arc (yu, yv) on σ does not
exceed max {8δ, C3 (δ lnλ1λ2 + δ + c1 + c2)} (with some well-chosen constants C1 = O(δ),
C2 = O(δ + c1) and a universal constant C3).

Proof. By the definition of a quasi-geodesic, we have

|u− v| − c2
λ2

≤ |yu − yv| ≤ λ1|u− v|+ c1.

On the other hand,

|yu − yv| ≤ |yu − y′u|+ |y′u − y′v|+ |y′v − yv|,
where y′u and y′v are the projections of yu and yv on σ. We adjust constants C1 = O(δ)
and C2 = O(∆ + δ) such that

R = C1 lnλ1λ2 + C2 =
38δ

K
ln 32(λ1λ2)

2 + 6∆ + 116δ.

We assume ∆ = 2max{c1, δ} (such a choice allows applying Lemma 9). We apply the
lemma on exponential contraction (we assume that the length of the arc is rather large for
using the estimate with an exponential factor and not to treat the obvious case where the
length of the projection is 8δ). We let l(yu, yv) denote the ∆-length of the arc (yu, yv):

|y′u − y′v| ≤ l(yu, yv)
4δ

∆
e−KR/38δ = e−(a1δ+a2∆)4δ

∆
· 1

32(λ1λ2)2
l(yu, yv),

where a1 and a2 are some positive universal constants, we denote E1 = exp (−(a1δ + a2∆)) <
1. Combining all these inequalities and using Lemma 9, we obtain

|u− v| − c2
λ2

≤ |yu − yv| ≤ 2R+ E1
4δ

∆
· 1

32(λ1λ2)2
l(yu, yv)

≤ 2R+
1

8(λ1λ2)2
4λ1λ2|yu − yv|

≤ 2R+
1

2λ1λ2
(λ1|u− v|+ c1).

We therefore conclude that |yu − yv| ≤ C3λ1λ2 (δ lnλ1λ2 + δ + c1 + c2), hence l(yu, yv) ≤
C3(λ1λ2)

2 (δ lnλ1λ2 + δ + c1 + c2), where C3 is come universal constant and, finally, the
length of the projection of the arc (yu, yv) of γ does not exceed

max {8δ, C3 (δ lnλ1λ2 + δ + c1 + c2)}
. �

Proof of Theorem 3. The proof follows directly from Lemma 11. Because we have already
proved that for every point z′ ∈ σ, there exists a point z ∈ γ such that the projection of z
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on σ is at distance not more than several times c1 + δ from z′. For simplicity, we therefore
assume that for any point of σ, there exists a point of γ projecting on this point.

Assume Ham = C4(δ lnλ1λ2 + δ + c1) where C4 is just a universal constant which can
be found from Lemma 11. If the distance between z and z′ is less than Ham, then the
statement is already proved. If not, then we take an arc (yu, yv) of γ containing the point z
such that the endpoints yu and yv are at the distance Ham from σ and these points are the
points of this arc that are nearest from σ. Hence, by Lemma 11, the length of the projection
(which includes z) of the arc (yu, yv) does not exceed max {8δ, C3 (δ lnλ1λ2 + δ + c1 + c2)}.
Therefore, the distance from z to yu (and yv) is not greater than C5 (δ lnλ1λ2 + δ + c1 + c2)
with some universal constant C5. �

12. Application of Anti-Morse Lemma

Proposition 6. Let X,Y be two geodesic hyperbolic spaces, let f : X → Y be a (λ1, λ2, c1, c2)-
quasi-isometry. Let σ be a geodesic in X. Then the distance from γ̃ = f(σ) ⊂ Y to any
geodesic connecting its ends is at most λ1H

X
am + c1, where H

X
am is a anti-Morse constant

for the space X.

We see that in case of a quasi-isometry instead of a quasi-isometric embedding we have
a stronger result than Morse Lemma.

Proof. Let σ̃ ⊂ Y be a geodesic connecting the ends of γ̃. Define also a quasi-geodesic
γ = f−1(σ̃) in X. Because σ and γ share their ends, we can apply the Anti-Morse Lemma
to them, so σ ⊂ UHam(γ) lies in HX

am = (c1 + c2 + δ) log λ1λ2-neighbourhood of γ. Now
applying f to σ and γ we obtain that γ̃ ⊂ Uλ1HX

am+c1(σ̃). �

12.1. Proof of Proposition 1. Here, we prove Proposition 1 (see the introduction). We
call any connected component of the ball B = B(O,R) with deleted center O a branch.
We call points that are sent to the branch containing the image of the center f(O) green
points and all other points of T red points.

Proof of Proposition 1. We show that there exist two red points r1 and r2 such that
d(O, r1r2) ≤ r = c3 + 1.

By Definition 1, a c-neighborhood of every point of the border should contain a point
of the image. We must have at least (d−1)dR−c3−1 red points near the border (we exclude
the green part). The number of points in each connected component of the complement
of the ball of radius r is less than dR−r. Therefore, there is a constant c3 depending on
the tree only such that if r ≥ c3, then one component contains an insufficient number of
points to cover the boundary of B. Hence, there exist two red points r1 and r2 in different
components of the complement of B(O, r), which means that the geodesic r1r2 passes at a
distance less than r from the center O. It follows that the quasi-geodesic f(r1r2) passes at
distance less than λ1r+ c1 from f(O) and belongs to a (λ1Ham + c1)-neighborhood of the
geodesic f(r1)f(r2) by Proposition 6. Because every path from f(O) to f(r1)f(r2) passes
through O, we conclude that d(O, f(O)) < λ1(Ham+ c1)+ c1+λ1r. We need only choose a
good value for r. Simply calculating the number of points in above mentioned components
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gives the estimate 1 + d + d2 + · · · + dR−r ≤ (1/ ln d)dR−r+1. For r = c3 + 1, we have
(1/ ln d)dR−r+1 ≤ (d− 1)dR−c3−1, which completes the proof. �

13. Geodesically rich spaces

Definition 16. A metric space X is said to be geodesically rich if there exist constants r0,
r1, r2 such that for every pair of points p and q with |p− q| ≥ r0, there exists a geodesic γ
(with ends at infinity) such that d(p, γ) < r1 and |d(q, γ)− |q − p|| < r2.

Remark 5. We introduced the notion of geodesically rich spaces in [30], see Definition 11.
Still now we do not need the second condition to estimate a displacement of points under
self-quasi-isometries fixing ideal boundary so we change the definition to a weaker form.

Example 5. A line and a ray are not geodesically rich.

Example 6. Nonelementary hyperbolic groups are geodesically rich. We prove this later.

Any δ-hyperbolic metric space H can be embedded isometrically in a geodesically-rich
δ-hyperbolic metric space G (with the same constant of hyperbolicity). We take a 3-regular
tree with a root (T,O), assume that G = H × T , and set the metric analogously to a real
tree:

• the distance between points in the subspace (H,O) equals the distance between the
corresponding points in H;

• the distance between other points equals the sum of the three distances from the
points to their projections on (H,O) and between their projections on (H,O).

It is easy to show that the space G is δ-hyperbolic and geodesically rich. But such a
procedure completely changes the ideal boundary of the space. We therefore ask another
question:

Remark 6. It is not always possible to embed a δ-hyperbolic metric spaceH isometrically in
a geodesically rich δ-hyperbolic metric space G with an isomorphic boundary. An example
can be provided by a δ-hyperbolic space with as isolated point at the ideal boundary.
As an illustration, consider a real line R. Its ideal boundary contains only two points.
Now consider a δ-hyperbolic space H with the same ideal boundary ∂H = {ξ1, ξ2} and
an isometric embedding γ : R → H (hence, γ is a geodesic). We will show that every
point p ∈ γ lies at distance at most 2δ from any infinite geodesic σ what means that H is
not geodesically rich. Because H is δ-hyperbolic, the triangle pξ1ξ2 with sides coinciding
with γ and σ is δ-thin. Hence, there exists a point q ∈ σ such that d(q, γ(ξ1, p)) ≤ δ and
d(q, γ(ξ2, p)) ≤ δ. And we conclude that d(p, σ) ≤ 2δ because γ is a geodesic.

Lemma 12. Let G be a nonelementary hyperbolic group. Then there exist constants c0,
c1, and c2 such that for every two points p and q in the group G with |p − q| > r0, there
exists a geodesic γ such that d(p, γ) ≤ r1 and ||p− q| − d(q, γ)| ≤ r2.

Proof. We first assume that p is the unity of the group. We argue by contradiction: we
suppose that the statement is false, i.e., there exists a sequence of points qn such that
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Figure 7. Illustration for Lemma 12.

|qn− p| → ∞ as n→ ∞, and all pairs p and qn do not satisfy the conditions in the lemma.
We suppose that ξ is a limit point of this sequence. We supply the boundary of the group
with a visual metric.

We prove by contradiction that there exists ε > 0 such that for any point ξ there exist
points η and η′ on the ideal boundary G(∞) such that that the pairwise visual distances
between ξ, η, and η′ are greater than ε (see Fig. 7). In other words, we will prove that the
union of the three balls of radius ε with centers ξ, η and η′ does not cover the whole ideal
boundary. On the contrary, we suppose that there exist three sequences of points ξn, ηn
and η′n such that the union of B(ξn, 1/n), B(ηn, 1/n) and B(η′n, 1/n) includes G(∞). By
compactness, we can assume that ξn → ξ, ηn → η and η′n → η′, and we find that G(∞)
belongs to the union of B(ξ, 2/n), B(η, 2/n) and B(η′, 2/n). Hence, the ideal boundary
contains only the three points ξ, η and η′, which contradicts the assumption that G is
nonelementary. We show that the geodesic γ with the endpoints η and η′ satisfies the
conditions in the lemma, which leads to the contradiction.

In what follows, we write ξ, η, and η′ but assume that we consider three sequences of
points converging to the corresponding points of the ideal boundary. The triangle pηη′ is
δ-thin. We take a point s of ηη′ such that d(s, pη) ≤ δ and d(s, pη′) ≤ δ. We let t and t′

denote projections of s respectively on pη and pη′. By the triangle inequality, we have

|η − t|+ |η′ − t′| − 2δ ≤ |η − η′| ≤ |η − t|+ |η′ − t′|+ 2δ.

By hypothesis,

visdistp(η, η
′) = e−(η|η′)p > ε.
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Hence,

|p− η|+ |p− η′| − |η − η′| < 2ε0,

where ε0 = − ln ε
Combining the two inequalities, we obtain |p − t| + |p − t′| ≤ 2(ε0 + δ) and d(p, ηη′) ≤

2ε0+3δ. The same arguments applied to the triangles pηξ and pη′ξ show that the distance
from the point p to the geodesics ηξ and η′ξ also does not exceed 2ε0 + 3δ. We let p1, p2,
and p3 denote the respective projections of p on ηη

′, ηξ, and η′ξ and q denote the projection
of ξ on ηη′. By the triangle inequality, |p1−p2| ≤ |p1−p|+ |p−p2| ≤ 2(2ε0+3δ). Applying
Lemma 5 to the triangles qξη and qξη′, we find that the point q is not farther than 2δ from
both ηξ and η′ξ. Therefore, both p1 and q are at bounded distances from ηξ and η′ξ, and
we can apply Lemma 7, whence it follows that p1 and q are near each other at a distance
of the order ε0 + δ. �

This Lemma proves that a nonelementary hyperbolic group satisfies the definition of
geodesically rich space.

14. Quasi-isometries fixing the ideal boundary

We now give some estimates of the displacement of points in geodesically rich spaces
under quasi-isometries that fix the ideal boundary. We do not yet know whether these
results are optimal.

Theorem (see Theorem 4 in the introduction). Let X be a geodesically rich hyperbolic
metric space. Let f : X → X be a (λ1, λ2, c1, c2)-self-quasi-isometry fixing the boundary
∂X. Then any point O ∈ X can be displaced at most at distance d(f(O), O) ≤ λ1(Ham +
r1) + 2c1 + r0 + r2.

Proof. Consider a point O and its image f(O). If d(O, f(O)) < r0, there is nothing to prove.
Otherwise, let γ be a geodesic such that d(O, γ) ≤ r1 and |d(f(O), γ) − d(O, f(O))| ≤ r2
and in particular, d(f(O), γ) ≥ d(O, f(O))| − r2. Such a geodesic exists by definition of
geodesic ally rich.

Because f(γ) is a quasi-geodesic with the same endpoints as γ, the quasi-geodesic lies
near γ: f(γ) ⊂ Uλ1Ham+c1(γ) by Proposition 6. Also since d(O, γ) ≤ r1, in the image
d(f(O), f(γ)) ≤ λ1r1 + c1. Combining all the arguments, we obtain

d(O, f(O)) ≤ d(f(O), γ) + r2 ≤ λ1Ham + c1 + r2 + λ1r1 + c1.

�

The property of being geodesically rich plays crucial role here. For example a translation
of a real line R (which is an isometry) fixes its ideal boundary but still moves its point to
any pregiven distance.
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Part 3. Poincaré inequalities and quasi-isometries

14.1. The critical exponent for Lp-cohomology. Lp-cohomology groups provides in-
variants for quasi-isometries. The continuous first Lp-cohomology group of a hyperbolic
metric spaceX is

LpH1
cont(X) :=

{
[f ] ∈ LpH1(X)|f extends continuously to X ∪ ∂X

}
,

where X∪∂X is Gromov’s compactification of X. Following the works of Pierre Pansu, and
Marc Bourdon and Bruce Kleiner [26], we define the following quasi-isometric numerical
invariant of X

p 6=0(X) = inf
{
p ≥ 1|LpH1

cont(X) 6= 0
}
.

If p 6=0 achieves different values for two spaces X and Y , then X and Y are not quasi-
isometric. We expect that the difference |p 6=0(X) − p 6=0(Y )| also bounds for below the
quasi-isometrical distortion growth. We are able to prove this only for a family of examples.

Let Zµ and Zµ′ be two variants of the space Tn×(−∞,∞) with metrics dt2+
∑
e2µitdx2i

and dt2 +
∑
e2µ

′

itdx2i respectively. The main result of this part is a sharp lower bound for
the quasi-isometrical distortion growth between Zµ and Zµ′ , of the form

const
(
p 6=0(Zµ′)− p 6=0(Zµ)

)
R.

14.2. Scheme of proof. Constants in Poincaré inequalities are the quantitative incarna-
tion of Lp-cohomology.

Let X be a Riemannian manifold. Let p be a number in [1,∞]. Then the L
p-norm

| · |p of functions and vectorfields make sense. We will say that C = C(X, p) is a Poincaré
constant for X and L

p if for any function f in L
p there exists such a constant c (which is

in fact a mean value of f over X) such that the Poincaré inequality holds

|f − c|p ≤ C|∇f |p.

Variants of this definition appear in the litterature. In an appendix 21, we shall check that
these definitions are equivalent, up to universal constants.

For the family of spaces Zµ, it is known that p 6=0(Zµ) =
∑

µi
max µi

. We show that

• if p > p 6=0(Zµ), then the Poincaré constant for a ball of radius R satisfies

Cp(B
Zµ(R)) ≥ const.(V olB(R))1/p;

• if p ≤ p 6=0(Zµ), then

Cp(B
Zµ(R)) = o

(

(V olB(R))1/p
)

.

Next, we show that under transport by a (λ, c)-quasi-isometry, Cp is multiplied or divided

by at most e(λ+c)/a for some positive constant a. Transport under quasi-isometric embed-
dings is more delicate, this is why our arguments work only for a family of examples. For
these examples, we are able to get a lower bound. Roughly speaking, it states
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Assume that p 6=0(Zµ′) < p < p 6=0(Zµ). If there exists a (λ, c)-quasi-isometric embedding

BZµ(R) → Zµ′ , which induces an isomorphism on fundamental groups, then

Cp(B
Zµ(R)) ≥ const.e−(λ+c)/aCp(B

Zµ′ (R)).

This yields

λ+ c ≥ a(log(Cp(B
Zµ′ (R))) − log(Cp(B

Zµ(R)))

∼ (p 6=0(Zµ′)− p 6=0(Zµ))R.

which is the announced lower bound on quasi-isometric distortion growth.

15. Regularisation and quasi-isometries

In this section we will study how Poincaré inequalities are transformed under quasi-
isometries. For this purpose we will introduce the notion of cross-kernels, which will help
us to regularize transported functions.

15.1. Kernels. First we recall what are classical kernels.

Definition 17. LetX be a geodesic space, dx a measure onX. A kernel ψ is a non-negative
function on X ×X such that

• ψ is bounded, ψ ≤ Sψ;
• for every x ∈ X

∫

X ψ(x, x
′)dx′ = 1;

• the support of ψ is concentrated near the diagonal: there exist constants εψ > 0,
τψ > 0 and Rψ < ∞ such that ψ(x, y) > τψ if d(x, y) ≤ εψ; ψ(x, y) = 0 if
d(x, y) > R.

Rψ is called the width, εψ the radius of positivity, Sψ the supremum and τψ the margin of
ψ.

The convolution of two kernels is

ψ1 ∗ ψ2 =

∫

X
ψ1(x, z)ψ2(z, y) dz,

the result is also a kernel. The convolution of a kernel and a function is

g ∗ ψ(x) =
∫

X
g(z)ψ(x, z) dz.

Lemma 13. For any ε > 0 there exists a kernel ψ on X×X and a constant τ such that for
any two points x1, x2 such that d(x1, x2) < ε we have ψ(x1, x2) > τ . Moreover, τ depends
exponentially on ε

τ = cτe
−ε,

where cτ depends only on the local geometry of the space X.
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Proof. We start from kernel

ψ′(x, x′) = vol(B(x, 1))−11{d(x,x′)≤1}

with radius of positivity ε′ = 1 and margin τ ′ = v(1)−1, where, for r > 0, v(r) denotes
the infimum of volumes of balls of radius r in X. We know from the proof of Lemma 1.2
in [11] that the m-th convolution ψ′∗m has radius of positivity ε′m ≥ m(ε′/2) = m/2 and
margin τ ′m ≥ τ ′mv(12 )

m−1. �

Definition 18. A cocycle on Y is a map a : Y ×Y → R such that for every y1, y2, y3 in Y ,

a(y1, y2) = a(y1, y3) + a(y2, y3).

The convolution of a cocycle with a kernel is defined by

a ∗ φ(x, x′) =
∫

Y×Y
a(y, y′)φ(x, y)φ(x′, y′) dy dy′.

Definition 19. Let ψ be a kernel and a a cocycle on X. The semi-norm Np,ψ is defined
by

Np,ψ(a) =

(∫

X×X
|a(x1, x2)|pψ(x1, x2) dx1 dx2

)1/p

.

The following facts are known, see [11].

Lemma 14. 1) Semi-norms Np,ψ are pairwise equivalent. More precisely, let ψ1 and ψ2

be two kernels. Then
Nψ2

≤ ĈNψ1
,

where

Ĉ =
supψ1 supψ2

cτ

Rψ2

εψ1
(2e)R

ψ2/εψ1 .

Let the space X be a Riemannian manifold and have the following properties: (1) its
injectivity radius is bounded below, (2) its Ricci curvature is bounded from below. Then the
volumes of balls are bounded below (Croke inequality [3]) and above (Bishop inequality).

2) For any function g define a cocycle u(x, y) = g(x) − g(y). Then for any p and
any kernel ψ′ with bounded derivatives there exists a kernel ψ1 such that the L

p-norm of
∇(g ∗ ψ′) (we regularise g) is bounded from above by a ψ1-seminorm of the corresponding
cocycle u

||∇(g ∗ ψ′)||p ≤ Np,ψ1
(u)

with the kernel ψ1 defined as follows

ψ1 =
sup∇ψ′ supψ′

vol(B(z′, Rψ′))
1{d(z,z′)≤Rψ′}.

3) Conversely, there also exists a kernel ψ2 such that

Np,ψ2
(u) ≤ C||∇g||p,

where C depends only on dimension. Here the kernel ψ2 can be taken as

ψ2(x, y) = max{1,Θ(x, y)−1}1{d(x,y)≤R},
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where Θ(x, y) is the density of the volume element in polar coordinates and R > 0 can be
chosen arbitrarily.

In the third hypothesis we propose to use R = 1, then ψ2 is bounded by 1 and the
width of its support is also 1. For reader’s convenience, we include the proof of the second
statement of this Lemma, following [11].

Proof. Denote by α the cocycle u ∗ ψ′. Then for any y,

∇(α ∗ ψ′)(x) =
∂α(x, y)

∂x
=

∫
(
g(z′)− g(z)

)
dxψ

′(z, x)ψ′(z′, y) dz dz′.

Choose y = x. Then we obtain

|∇(g ∗ ψ′(x))| ≤ sup∇ψ′ supψ
∫

B(x,Rψ)×B(x,Rψ)
|g(z′)− g(z)| dz dz′.

Now applying Hölder inequality we get the needed statement with the kernel

ψ1 =
sup∇ψ′ supψ′

vol(B(z′, Rψ′))
1{d(z,z′)≤Rψ′}.

�

15.2. Cross-kernels. Let X,Y be two metric spaces, let f : X → Y and f ′ : Y → X
be (K, c)-quasi-isometries between them such that for any x ∈ X, d(x, f ′ ◦ f(x)) ≤ c and
vice versa (that is, they are inverse in the quasi-isometrical sense). Let g be a measurable
function on Y . We want to find a way to transport g by our quasi-isometry (using the
regularisation) to obtain a similar measurable function on X. We will take

h(x) =

∫

Y
g(z)ψ(f(x), z) dz

as a function on X corresponding to g.
We are going to construct a numerical function on X × Y which will play the role of a

kernel. Indeed, a cross-kernel can be considered as the composition (relatively to the first
variable) of a quasi-isometry from X to Y and a kernel on Y ×Y . Conversely, a cross-kernel
generates a quasi-isometry.

Definition 20. A cross-kernel is a bounded non-negative function φ : X × Y → R such
that

• for all x ∈ X,
∫

Y φ(x, y) dy = 1;

• for all R > 0 there exists Qφ1 > 0 such that if d(y, y′) ≥ Qφ1 and d(x, x′) ≤ R, then
that φ(x, y)φ(x, y) = 0;

• for all R > 0 there exists Qφ2 > 0 such that if d(y, y′) ≤ R and d(x, x′) ≥ Qφ2 , then
φ(x, y)φ(x′, y′) = 0;

• there exists a constant Sφ such that for any y ∈ Y ,
∫

X φ(x, y) dx ≤ Sφ;

• there exist τφ, Dφ such that for any y ∈ Y the set {x ∈ X|φ(x, y) > τφ} contains
a ball of radius Dφ.
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Remark 7. For our purposes, the third axiom could be replaced with a weaker one: there
existsR > 0 such that for any y ∈ Y there exist x0 ∈ X such that for any x ∈ X with
d(x, x0) > R, φ(x, y) = 0. But we prefer our definition as it is more symmetric and easier
to apply.

Before we construct a cross-kernel with a quasi-isometry and a kernel, we will show that
a cross-kernel φ defines a quasi-isometry. Simply let f : X → Y be defined as follows
x 7→ {y|φ(x, y) > τφ}. We notice that if we remove the last hypothesis in the definition,
we get a quasi-isometric embedding instead of a quasi-isometry.

Lemma 15. If ψ is a kernel on Y ×Y and f is a (λ1, λ2, c1, c2)-quasi-isometry or a quasi-
isometric embedding from X to Y . In case of a quasi-isometry we also assume that the
radius of positivity of ψ is at least ζλ2 + c2 with ζ > 0, then φ(x, y) = ψ(f(x), y) is a

cross-kernel on X × Y and Qφ1 (R) ≤ 2Rψ + λ1R + c1, Q
φ
2 (R) ≤ λ2(2R

ψ + R + c2) and

Sφ ≤ (2λ1R
ψ + c1) supY×Y ψ. In case of a quasi-isometry Dφ ≥ ζ and τφ = τψ ≥ cτe

−εψ .

Proof. 1) Evidently, for any x ∈ X
∫

Y φ(x, y) dy = 1 by the definition of kernels.
2) Check the second axiom. Take two points x1, x2 such that d(x1, x2) ≤ R1 and

two points y1, y2 such that d(y1, y2) ≥ 2Rψ + λ1R1 + c1. If d(f(x1), y1) ≥ Rψ, there is
nothing to prove as ψ(f(x1), y1) = 0. Otherwise d(f(x2), y2) ≥ d(y1, y2) − d(f(x2), y1) ≥
d(y1, y2) − (d(f(x2), f(x1)) + d(f(x1), y1)) ≥ d(y1, y2) − (λ1d(x1, x2) + c1 + Rψ) ≥ Rψ.
Hence, ψ(f(x2), y2) = 0.

3) Check the third axiom. Take two points y1, y2 such that d(y1, y2) ≤ Q1 and two points
x1, x2 such that d(x1, x2) ≥ λ2(2R

ψ + Q1 + c2). If d(f(x1), y1) ≥ Rψ, there is nothing
to prove as ψ(f(x1), y1) = 0. Otherwise d(f(x2), y2) ≥ d(f(x1), f(x2)) − d(f(x1), y2) ≥
d(f(x1), f(x2)) − (d(f(x1), y1) + d(y1, y2)) ≥ d(x1, x2)/λ2 − c2 − (Rψ + Q1) ≥ R. Hence,
ψ(f(x2), y2) = 0.

4) Check the fourth axiom. For any y ∈ Y , if d(f(x), y) > Rψ then ψ(f(x), y) = 0.
Hence, the diameter of the set of points Xy ∈ X such that for any x ∈ Xy d(f(x), y) ≤ Rψ,

is less than λ12R
ψ + c1. Hence,

∫

X φ(x, y)dx ≤ (2λ1R
ψ + c1) supY×Y ψ.

5) If d(f(x), y) < ζλ2+ c2 then φ(x, y) > τψ. Hence, the diameter of the set of points of
X with this property is at least ζ. �

Remark 8. If, in the previous Lemma f is a quasi-isometric embedding, then we do not
need the condition on radius of positivity of ψ.

15.3. Transporting cocycles.

Definition 21. Let a be a cocycle on Y and φ a cross-kernel on X × Y . The convolution
of a with φ is the cocycle defined on X by

a ∗ φ(x, x′) =
∫

Y×Y
a(y, y′)φ(x, y)φ(x′, y′) dy dy′.

Lemma 16. Let φ : X × Y → R be a cross-kernel, let a be a cocycle on Y and let ψ be a
kernel on X. Then

Nψ(a ∗ φ) ≤ CNψ̃(a),
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where ψ̃ is a kernel on Y and

C ≤
(
supψ

τ

)1/p

(Sφ)2/p,

where τ = cYτ e
−Qφ

1
(Rψ) (for the definition of constant cYτ see lemma 13, it depends on the

local geometry of the space Y only).
In particular, if φ is associated with a (λ1, λ2, c1, c2)-quasi-isometry or a quasi-isometric

embedding,

C ≤ 1

cYτ
(supψ)3/pe((2+λ1)R

ψ+c1)/p(2λ1R
ψ + c1)

2/p.

Proof.

(Nψ(a ∗ φ))p =
∫

X×X
|a ∗ φ(x, x′)|pψ(x, x′)dxdx′ =

=

∫

X×X

∣
∣
∣
∣

∫

Y×Y
a(y, y′)φ(x, y)φ(x′, y′)dydy′

∣
∣
∣
∣

p

ψ(x, x′)dxdx′

By Hölder inequality

≤
∫

X×X

∫

Y×Y
|a(y, y′)p|φ(x, y)φ(x′, y′)dydy′ψ(x, x′)dxdx′

Assume ψ′(y, y′) =
∫

X×X φ(x, y)φ(x
′, y′)ψ(x, x′)dxdx′

=

∫

Y×Y
|a(y, y′)|pψ′(y, y′)dydy′.

Now we need to show that ψ′ is dominated by some kernel ψ′′.
First we will prove that ψ′(y, y′) = 0 if d(y, y′) > Rψ

′

for some Rψ
′

.
If d(x, x′) > Rψ then by the definition of kernels ψ(x, x′) = 0, hence

ψ′(y, y′) =
∫

X×X
φ(x, y)φ(x′, y′)ψ(x, x′)dxdx′ =

=

∫

(x1,x2)∈X×X,d(x1,x2)≤Rψ
φ(x, y)φ(x′, y′)ψ(x, x′)dxdx′.

If d(x, x′) < Rψ then by definition of cross-kernels there exists a number Qφ1 (R
ψ) such

that if d(y, y′) > Qφ1 we have φ(x, y)φ(x′, y′) = 0. We estimate ψ′(y, y′) from above in an
evident way

ψ′(y, y′) ≤ supψ

∫

X×X
φ(x, y)φ(x′, y′)dxdx′ ≤ supψ(Sφ)2.
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By Lemma 13 we conclude that there exists a kernel ψ̃ such that ψ̃(y, y′) ≥ τ = cYτ e
−Qφ

1

whenever the distance between y, y′ does not exceed Qφ1 . Hence,

ψ′(y, y′) ≤ supψ

τ
(Sφ)2ψ̃(y, y′).

�

Theorem 22. Let X,Y be two quasi-isometric spaces, let φ be a cross-kernel on X × Y ,
let CX denote the p-Poincaré constant for X. Then the Poincaré constant CY for Y is
bounded from above by

CY ≤ const(X)const(Y )
C̃(Y )Q

φ
1
(0)(supφ)2 + CX supφV (Qφ2 (0))

Dφτφ
,

where multiplicative constants depends only on the local geometry of X and Y .

Proof. The idea of our proof is the following. By Minkowski inequality we will show that

||g||p ≤ Nψ(dg) + ||h||p.
We know that the semi-norm Nψ is bounded from above by the Lp norm. So, applying

Poincaré inequality to h and then Lemma 16 for cocyles to ∇h we will get the upper-bound
for Poincaré constant for g. In other words,

||g||p ≤ Nψ(dg) + ||h||p ≤ ||∇g||p + Cpoincare||∇h||p ≤ ||∇g||p + CcocycleCpoincare||∇g||p.
First step. We have

∫

Y
|g(z)|pdz ≤ 1

Dφτφ

∫

X×Y
|g(z)|pφ(x, z)dxdz.

Here we need just to notice that for any z
∫

X φ(x, z)dx ≥ Dφτφ.

Second step. Now by Minkowski inequlity applied to (
∫
|g(z)|pφ(x, z)dxdz)1/p we get

(∫

|g(z)|pφ(x, z)dzdx
)1/p

≤
(∫

|g(z) − h(x)|pφ(x, z)dzdx
)1/p

+

(∫

|h(x)|pφ(x, z)dzdx
)1/p

=

=

(∫

|g(z) − h(x)|pφ(x, z)dzdx
)1/p

+

(∫

|h(x)|pdx
)1/p

Third step. For any points z ∈ Y and x ∈ X we have

g(z) − h(x) = g(z) −
∫

Y
g(y)φ(x, y)dy =

by definition of cross-kernel
∫

Y φ(x, y)dy = 1 so we go on

= g(z)

∫

Y
φ(x, y)dy −

∫

Y
g(y)φ(x, y)dy =

∫

Y
(g(z) − g(y))φ(x, y)dy.

Now we apply H older inequality

|g(z) − h(x)|p ≤
∫

Y
|g(z) − g(y)|pφ(x, y)dy.
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So,

(∫

|g(z) − h(x)|pφ(x, z)dzdx
)1/p

≤
(∫

|g(z) − g(y)|pφ(x, y)φ(x, z)dzdxdy
)1/p

.

Fourth step. Evidently,
∫

X φ(x, y)φ(x, z)dx is uniformly bounded, and it vanishes

outside of a strip of width Qφ1 (0) (take R = 0 for the second property of cross-kernel).
Hence, there exists a kernel ψ on Y × Y and constants C1 = C1(φ, Y ) and C2 = C2(Y )
such that
(∫

|g(z) − g(y)|pφ(x, y)φ(x, z)dzdxdy
)1/p

≤ C1

(∫

|g(z) − g(y)|pψ(z, y)dzdy
)1/p

=

= C1Np,ψ(g(z) − g(y)) ≤ C1C2||∇g||p.

Let ψ̃Y be a model kernel on Y with the margin τ̃Y and radius of positivity ε̃Y . Fix some

r < ε̃Y . Assume m to be the least integer such that m(ε̃Y − r) ≥ Qφ1 (0). Hence, if we take

ψ = ψ̃mY , we set

C1 =
(supφ)2

τ̃
m/p
Y v(r)(m−1)/p

,

where v(r) is the infimum of volumes of balls of radius r.
Fifth step. We apply Poincaré inequality to h

||h||p ≤ CX ||∇h||p.

We have already discussed that any semi-norm defined by a kernel and an L
p-norm are

equivalent. Hence, we can apply Lemma 16 for cocycles to ||∇h|| and ||∇g|| just adding
some multiplicative constant C3 = CX3 C

Y
3

||h||p ≤ CXC3 supφV (Qφ2 (0))||∇g||p,

where V (Qφ2 (0)) is supremum of volumes of all balls of radius Qφ2 (0) in X.
Final step. Combining all these results we conclude that

||g||p ≤
1

τC
(||h||p + C1C2||∇g||p) ≤

1

Dφτφ
(CXC3||∇g||p + C1C2||∇g||p) =

=
C1C2 + C3CX supφV (Qφ2 (0))

Dφτφ
||∇g||p.

�

Now summarizing all the results of this section we know that quasi-isometries preserve
Poincaré inequalities. Moreover, if CX is a Poincaré constant for the domain, then the
Poincaré constant CY for the range does not exceed C(1 + CX), where C is exponential
in function of the quasi-isometric distortion, up to some multiplicative constants which
depend on the local geometry of X and Y .
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16. Poincare inequality for exponential metric

We will give an upper bound for the Poincaré constant in a ball of radius in a space with
the metric dt2 +

∑

i e
2µitdx2i .

Theorem 23. Let X̃ = R+ × R
n with the metric dt2 +

∑

i e
2µitdx2i . Let X = X̃/Γ where

Γ is a lattice of translations in the factor R
n. Then the Poincaré constant for a ball B(R)

in X is

Cp(µ) ≤ C(p, µ) + Cp(T
n)eµnR,

where C(p, µ) is a constant depending only on p and µ =
∑
µi, Cp(T

n) is a Poincaré
constant for a torus T

n.

First, we fix the direction θ = (x1, . . . , xn).

16.1. Poincaré inequality for fixed direction. Let f be a function such that its partial
derivative ∂f/∂t is in L

p(ehtdt, [0,+∞)). By Hölder inequality we get

∫ +∞

0

∣
∣
∣
∣

∂f

∂t

∣
∣
∣
∣
dt ≤

(∫ +∞

0

∣
∣
∣
∣

∂f

∂t

∣
∣
∣
∣

p

eµtdt

)1/p (∫ +∞

0
e−(µt/p)(p/(p−1))

)1−1/p

< +∞.

Hence, for every fixed direction θ there exists a limit limt→∞ f(t, θ).
Here we will prove the Poincare inequality for the fixed direction θ in a ball of radius R

(we allow R to be infinity, in this case we deal with a complete space). Assume cθ = f(R, θ)
or cθ = limt→∞ f(t, θ) if R = ∞. We write

∫ R

a
|f(t)− cθ|peµtdt ≤ C(p, µ)

∫ R

a
|f ′(t)|peµtdt,

where C(p, µ) is a constants depending only on p and µ.
First, if R = ∞, prove that |f(t) − cθ|peµt → 0 as t → ∞. Apply the Newton-Leibniz

theorem and then Hölder inequality to |f(t)− cθ|. We have

|f(t)− cθ| =
∣
∣
∣
∣

∫ ∞

t

∂f

∂s
ds

∣
∣
∣
∣
≤
∫ ∞

t

∣
∣
∣
∣

∂f

∂s

∣
∣
∣
∣
ds ≤(3)

≤
(∫ ∞

t

∣
∣
∣
∣

∂f

∂s

∣
∣
∣
∣

p

eµtdt

)1/p (∫ ∞

t
e−µs/(p−1)ds

)1−1/p

.

Calculate the last integral
∫ ∞

t
e−µs/(p−1)ds = −p− 1

µ
e
− µs
p−1 |∞t =

p− 1

µ
e
− µt
p−1 .

Denote the constant D0 =
(
p−1
µ

)1−1/p

|f(t)− cθ|p ≤ D0e
−µt
∫ +∞

t

∣
∣
∣
∣

∂f

∂s

∣
∣
∣
∣

p

eµsds.
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Hence

|f(t)− cθ|peµt ≤ D0

∫ +∞

t

∣
∣
∣
∣

∂f

∂s

∣
∣
∣
∣

p

eµsds→ 0

as t→ +∞.
Now we integrate by parts

∫ R

a
|f(t)− cθ|peµtdt =

[

|f(t)− cθ|p
eµt

µ

]R

a

−
∫ R

a
f ′(t)|f(t)− cθ|p−1 e

µt

µ
dt.

As cθ = f(R)
∫ R

a
|f(t)− cθ|peµtdt = −|f(a)− cθ|p

eµa

µ
−
∫ R

a
f ′(t)|f(t)− cθ|p−1 e

µt

µ
dt.

By Hölder inequality

∫ R

a
f ′(t)|f(t)− cθ|p−1 e

µt

µ
dt ≤

(∫ R

a
|f ′(t)|peµtdt

)1/p(∫ R

a
|f(t)− cθ|peµtdt

)(p−1)/p

Introduce following notations

X =

∫ R

a
|f(t)− cθ|peµtdt

Y =

∫ R

a
|f ′(t)|peµtdt

So,

X ≤ |f(0)− cθ|p + Y 1/pX(p−1)/p ≤ Y + Y 1/pX(p−1)/p.

Dividing by Y we obtain

X

Y
≤ 1

µ
+

(
X

Y

)(p−1)/p

.

This inequality is true only if X ≤ C(p, µ)Y which proves Poincaré inequality for fixed
direction.

16.2. Poincaré inequality for exponential metric. Introduce the following notations
f̃r(t, θ) = f(r, θ) (the function is considered as a function of two variables), fr(θ) = f(r, θ)
(the function is considered as a function of one variable).

We have already proved that for any θ ∈ T
n

∫ R

0
|f(t, θ)− f(R, θ)|pehtdt ≤ c

∫ R

0

∣
∣
∣
∣

∂f

∂t

∣
∣
∣
∣
ehtdt.

We change metric
∫ R

R−1
||∇efr||pLp(Tn)dr ≤ epµnR

∫

B(R)\B(R−1)
|∇f |pdr.
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Write Poincaré inequality on torus for the function fr(θ). There exists a number cr such
that ∫

Tn

|fr(θ)− cr|pdθ ≤ (Cp(T
n))p

∫

Tn

|∇efr(θ)|pdθ,

where Cp(T
n) is a Poincaré constant for Tn.

Assume c =
∫ R
R−1 crdr and we obtain

||f − c||Lp(B(R)) =

∥
∥
∥
∥

∫ R

R−1
(f − cr)dr

∥
∥
∥
∥
Lp(B(R))

≤
∥
∥
∥
∥

∫ R

R−1
(f − fr)dr

∥
∥
∥
∥
Lp(B(R))

+

∥
∥
∥
∥

∫ R

R−1
(fr − cr)dr

∥
∥
∥
∥
Lp(B(R))

≤
∫ R

R−1

(
||f − fr||Lp(B(R)) + ||fr − cr||Lp(B(R))

)
dr

≤ C(p, µ)||∇f ||Lp(B(R)) +Cp(T
n)eµnR||∇f ||Lp(B(R)\B(R−1))

17. Lower bound on Poincaré constant

Let Zµ denote T
n × R equipped with metrics dt2 +

∑
e2µitdx2i , where we suppose µ1 ≤

µ2 ≤ . . . ≤ µn. In this section we will give a lower bound for the quasi-isometric distortion
growth between two spaces Z = Zµ and Z ′ = Zµ′ , using our results on transported Poincaré
inequalities. Let O, O′ = (0, . . . , 0) be base points of Z and Z ′ respectively. First we notice
that the width of Tn × (−∞, 0] is finite so it is at finite distance from a ray (−∞, 0], so
from now on, we shall focus our attention on the part of BZ(O,R) where t ≥ 0.

Theorem 24. Let Z,Z ′ be two locally homogeneous hyperbolic metric spaces with metrics
dt2 +

∑
e2µitdx2i and dt2 +

∑
e2µ

′

itdx2i respectively, 0 < µ1 ≤ µ2 ≤ . . . ≤ µn and 0 < µ′1 ≤
µ′2 ≤ . . . ≤ µ′n. Assume also that

∑
µi/µn >

∑
µ′n/µ

′
n. Suppose that there exist constants

a and b such that for any i b ≤ µi, µ
′
i ≤ a. Then there exist constants G0(a, b), G1(a, b)

and G2(a, b) such that the following holds.

• Let Θ : BZ(R) → Z ′ be a continuous (λ1, λ2, c1, c2)-quasi-isometric embedding, in-
ducing an isomorphism on fundamental groups. Suppose that Θ sends base point to
base point, Θ(O) = O′ and that R > const(λ1 + c1 + 1)(λ2 + c2 + 1)/µ′n (with uni-
versal multiplicative constant). If p >

∑
µ′i/µ

′
n, up to replacing Z with a connected

2-sheeted covering, Poincaré constant Cp(µ) for a ball of radius R in the space Z
is bounded from below by

Cp(µ) ≥ (G0(a, b))
1/p (λ1 + c1)

−3/p−2/p2 e−(9/p+3/p2)(λ1+c1)e(
∑

µi/p)R
(

p−
∑

µ′i/µ
′
n

)1/p
.

• The distortion growth (see Definition 4) for quasi-isometrical embedding of BZ(R)
into Z ′ is bounded from below by

DG(R) ≥ G1

(∑
µi

µn
−
∑
µ′n
µ′n

)

R−G2,
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provided that R ≥ R0 for some ineffective constant R0.

Remark 9. The assumption that Θ be continuous is not that restrictive: every quasi-
isometric embedding is within bounded distance of a continuous quasi-isometric embedding,
with a slight loss on additive constants.

If dim(Z) ≥ 3, the assumption that Θ be isomorphic on fundamental groups is not that
restrictive either. In Lemma 17, we shall show that this is automatic, but unfortunately
the argument introduces an ineffective constant, which therefore arises in the distorsion
growth estimate.

We will prove this theorem in several steps. First we introduce non-trivial double-
covering spaces of Z̃ and Z̃ ′ of Z and Z ′. We prove that Θ lifts to a (λ1, λ2, 2c1, c2)-quasi-

isometry. Then we take a test-function eπixn on Z̃ ′ which depends only on one coordinate
xn. It varies very slowly outside of some ball, so the absolute value of the transported and
regularised function v on Z̃ stays near to 1. Lemmas 14 and 16 help us to control how the
lower bound of Poincaré constant changes under transport. This helps us get a lower bound
for Poincaré constant of Z̃ in function of {µi}, {µ′i} and the constants of quasi-isometric

embedding. We also have an upper bound for the Poincaré constant of Z̃ by Theorem 23.
The combination of these results provides a lower bound for the distortion growth for Z
and Z ′.

17.1. Quasi-isometric embeddings and fundamental groups.

Lemma 17. Let Z,Z ′ be two spaces of the described form with equal dimensions n+1 ≥ 3.
Then for any λ1 ≥ 1, λ2 ≥ 1, c1 ≥ 0, c2 ≥ 0 there exists R0 = R0(λ1, λ2, c1, c2) such that
if R > R0 and a continuous map f : BZµ(O,R0) → Zµ′ is a (λ1, λ2, c1, c2)-quasi-isometric
embedding, then f induces an isomorphism on the fundamental groups π1(Zµ) → π1(Zµ′).

Proof. We provide a proof by contradiction. Assume that for arbitrarily large values of R,
there exists a map fR : BZ(R) → Z ′ which is a (λ1, λ2, c1, c2)-quasi-isometric embedding
which is not isomorphic on fundamental groups. Pick a 2c1/λ1-dense and c1/λ1-discrete
subset Λ of Z. Notice that if fR is a (λ1, λ2, c1, c2)-quasi-isometry, then fR is bi-Lipschitz
on BZ(R) ∩ Λ. Conversely, if a map defined on B(R) ∩ Λ is bi-Lipschitz, then it can be
continuously extended on B(R) as a quasi-isometric embedding. Indeed, away from a ball,
Z ′ is contractible up to scale c1.

If d(O′, fR(O)) → ∞ then for R large enough fR is homotopic to 0, hence fR lifts to

f̃R : BZ(R) → Z̃ ′ = Xµ′ which is homogeneous. Now up to composing f̃R with an isometry

we can suppose that it preserves the center f̃R(O) = O′. By Ascoli’s theorem, we can find

a sequence f̃Rj |Λ which uniformly converges to f̃ |Λ : Z ∩Λ → Z̃ ′ which is also bi-Lipschitz.

We continuously extend f̃|Λ to f̃ : Z → Z̃ ′, f̃ is a quasi-isometric embedding. Its extension
to ideal boundaries is continuous and injective. By the theorem of invariance of domain,
∂f̃ : T n ≃ ∂Xµ = Sn is open, and thus a homeomorphism. This provides a contradiction
if n ≥ 2.

If d(O′, fR(O)) stays bounded, we can directly use Ascoli’s theorem, and get a lim-
iting continuous quasi-isometric embedding f . Again, f extends to the ideal boundary,
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∂f : ∂Z → ∂Z ′, the map ∂f is continuous and injective. Because ∂Z and ∂Z ′ have the
same dimension, ∂f is an open map by the theorem of invariance of domain and ∂f is
a homeomorphism. Hence, ∂f induces an isomorphism on fundamental groups. If Rj is
sufficiently large, then fRj is at bounded distance from f and hence fRj also induces an
isomorphism π1(BZ(R)) → π1(Z

′). This contradiction completes the proof. �

Remark 10. The proof does not provide an effective value of R0.

17.2. Lifting to a double covering space. Introduce a double covering of Z ′. Let
Z̃ ′ = R

n−1/Zn−1 × R/2Z × [0;+∞). Consider the map Z̃ ′ → Z ′ defined by

(x1, x2, . . . , xn, t) 7→ (x1, x2, . . . , xn mod 1, t).

So we identify (x1, x2, . . . , xn, t) and (x1, x2, . . . , xn +1, t) in Z̃ ′. Consider a complex func-

tion u(x1, x2, . . . , xn, t) = eπixn on Z̃ ′.
Composition of u with deck transformation ι′ : Z̃ ′ → Z̃ ′

ι′ : (x1, x2, . . . , xn, t) 7→ (x1, x2, . . . , xn + 1, t)

gives u ◦ ι′ = −u.
We have Θ : Z → Z ′ which is a continuous map inducing an isomorphism in fundamental

groups, and we have Z̃ ′ which is a covering space of Z ′. We need to show that there exists
a non-trivial covering space Z̃ → Z such that the following diagram commutes.

Z̃
Θ̃−→ Z̃ ′

πZ ↓ ↓ πZ′

Z
Θ−→ Z ′

Define
Z̃ =

{
(z, z̃′)|z ∈ Z, z̃′ ∈ π−1

Z′ (Θ(z))
}
,

that is Z̃ ⊂ Z × Z̃ ′. Let [γ′] be a loop in Z ′ which does not lift to a loop in Z̃ ′. By
hypothesis, there exists a loop γ in Z such that Θ(γ) is homotopic to γ′. Then γ does not

lift to a loop in Z̃. There exists an isometry ι of order 2 on Z̃ such that Θ̃ ◦ ι = ι′ ◦ Θ̃.

17.3. Θ lifts to a quasi-isometric embedding. Here we will prove that in the con-
structed double coverings Θ lifts to a (λ1, λ2, 2c1, c2)-quasi-isometric embedding. We need
two preliminary lemmas concerning distances in two-fold coverings.

Lemma 18. Let Z = Zµ be a locally homogeneous space. Let z be a point in Z in the region
where t ≥ 0. Let c = t(z). Every loop based at z′ of length less than c

4 is null-homotopic.

Proof. Let γ be a non null-homotopic geodesic loop at z. Assume that its length is < c
4 .

Let σ :]−∞, c] be a geodesic ray joining the unique ideal boundary point of the part of Z
where t ≤ 0 to z. Let γt be the geodesic loop based at σ(t), homotopic to σ−1

[t,c]γσ[t,c]. The

length of γt is a nonnegative, convex function of t, which tends to 0 as t tends to infinity,
so it is nondecreasing. Therefore length(γ0) ≤ c

4 . The null-homotopic loop γ−1
0 σ−1γσ lifts

to a geodesic quadrangle ABCD in the universal covering X of Z, with t(A) = t(B) = 0,
t(C) = t(D) = c. Let δ denote the hyperbolicity constant of X. By definition, there exist
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points P and Q in X such that P (resp. Q) sits at distance at most δ from all sides of
the triangle ABC (resp. ACD). Since t(P ) ≤ c

4 , t(Q) ≥ c − c
4 , there exist points P ′ and

Q′ ∈ AD such that d(P ′, BC) ≤ 2δ, d(Q′, BC) ≤ 2δ and d(P ′, Q′) ≥ c
2 − 4δ.

Let −a be the upper bound of the sectional curvature of X. Then.... �

Lemma 19. Let γ be a geodesic in Z with end-points z3, z4, the length of γ be b. Let z2 be
a point at distance a from the base point z1 = O. Assume also that d(z1, z4) = d(z2, z3) = t.
Then there exist two points u1 on z1z4 and u2 on z2, z3 such that

d(u1, u2) ≤ .

Proof. Up to a normalisation, we can suppose that the curvature of Z K ≤ −1. Then we
can compare it with a CAT (−1) space X. The metric on X in polar coordinates is

ds2 = dr2 + sinh2 rdθ2.

Consider a triangle z1z3z4, let a triangle x1x3x4 ⊂ X be a triangle of comparison for it. The
geodesic x3x4 lies in the area {t− b ≤ r ≤ t+ b}. Then we have for the angle ∠x3x1x4 = θ

θ ≤
∫

γ
dθ ≤

∫

γ

ds

sinh r
≤ 1

sinh(t− b)

∫

γ
ds =

b

sinh(t− b)
.

Let u1 be a mid-point of z1z4, that is d(z1, u1) = t/2, v1 is a corresponding point on x1x4.
Let u′ be a point of z1z3 such that d(z1, u2) = t/2, its corresponding point on x1x3 is v′.
Then

d(u1, u
′) ≤ d(v1, v

′) ≤
∫

sinh
t

2
dθ = θ sinh

t

2
≤ b

sinh(t/2)

sinh(t− b)
,

where we integrated along an arc of a circle between v1 and v′ centred in x1.
In the same manner we consider the triangle z1z2z3. Take a point u2 on z2z3 such that

d(z3u2) = d(z3u
′) = d(z1z3)− t/2. Then

d(u′u2) ≤ a
sinh(t′ − t/2)

sinh(t− a)
.

�

Lemma 20. Let z1, z2 be two points in Z such that d(O′,Θ(z1)) > c1 or d(O′,Θ(z2)) > c1
and d(z1, z2) ≤ c1/λ1. Then d(Θ̃(z̃1), Θ̃(z̃2)) = d(Θ(z1),Θ(z2)).

Proof. Let z̃1 ∈ Z̃ be such that d(Õ, z̃1) > c1. Set

W = {z̃2 ∈ Z̃|, d(z̃1, z̃2) ≤ c1},
U = {z̃2 ∈W |d(Θ̃(z̃1), Θ̃(z̃2)) = d(Θ(z1),Θ(z2))} ⊂W,

V = {z̃2 ∈W |d(Θ̃(z̃1), ι
′ ◦ Θ̃(z̃2)) = d(Θ(z1),Θ(z2))} ⊂W.

By construction, W = U ∪ V . Let us show that the intersection of U and V is empty

U ∩ V = {z̃2 ∈W |d(Θ̃(z̃1), ι
′ ◦ Θ̃(z̃2)) = d(Θ̃(z̃1), Θ̃(z̃2))}.

If (z̃1, z̃2) ∈ U∩V , then the geodesic segments connecting Θ̃(z̃1) with Θ̃(z̃2) and Θ̃(z̃1) with

ι′ ◦ Θ̃(z̃2) induce a loop γ in Z ′ of length 2d(Θ(z1),Θ(z2)) ≤ 2 (λ1(c1/λ1) + c1) = 4c1 which
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is not homotopic to 0. According to Lemma 18, this is incompatible with the assumption
that d(O′,Θ(z1)) > c1. Hence, U ∩ V is empty. Since U is non-empty (it contains at least
z̃1) and closed in W , V is closed in W and W is connected, we conclude that U = W ,
which finishes the proof. �

Lemma 21. A (λ1, λ2, c1, c2)-quasi-isometric embedding Θ : Z → Z ′ lifts to a (λ1, λ2, 2c1, c2)-

quasi-isometric embedding Θ̃ : Z̃ → Z̃ ′.

Proof. The lefthand inequality in the definition of quasi-isometric embedding is evident as
in a covering space distances cannot diminish. Let γ̃ ⊂ Z̃ be a geodesic between z̃1 and z̃2.
Let t1 be the first point such that d(Θ̃γ(t), Õ′) ≤ c1 and t2 be the last point with such a
property. Then

d(Θ̃(z̃1), Θ̃(z̃2)) ≤ d(Θ̃γ̃(t1), Θ̃γ̃(t2)) + d(Θ̃(z̃1), Θ̃γ̃(t1)) + d(Θ̃(z̃1), Θ̃γ̃(t2)).

By definition of t1 and t2 d(Θ̃γ̃(t1), Θ̃γ̃(t2)) ≤ 2c1. Now divide parts of γ between Θ̃(z̃1)

and Θ̃γ̃(t1) and between Θ̃(z̃1) and Θ̃γ̃(t2) by segments of length c1/λ1. We apply the
previous lemma to them, so

d(Θ̃(z̃1), Θ̃γ̃(t1)) + d(Θ̃(z̃1), Θ̃γ̃(t2)) ≤ N

(

λ1
c1
λ1

+ c1

)

,

where N ≤ d(z̃1, z̃2)/(c1/λ1) is a number of segments in the subdivision. So,

d(Θ̃(z̃1), Θ̃(z̃2)) ≤ 2c1 + 2λ1d(z̃1, z̃2).

�

17.4. Proof of the first statement of Theorem 24. Let ψ′ be a kernel on Z̃ invariant
by isometry, that is for any isometry ι

ψ′(ι(z̃1), ι(z̃2)) = ψ′(z̃1, z̃2).

Let also φ be a cross-kernel constructed with the quasi-isometry Θ̃ and a kernel ζ on Z̃ ′

which is also invariant by isometries. Define a complex function v on Z̃ as follows

v = (u ∗ φ) ∗ ψ′.

Then v ◦ ι = −v. Indeed,
v ◦ ι = (u ∗ φ) ∗ ψ′ ◦ ι = (u ∗ φ ◦ ι) ∗ ψ′.

On the other hand,

u ∗ φ ◦ ι =
∫

u(z̃′)φ(ιz̃, z̃′)dz̃′ =
∫

u(z̃′)ζ(ι′Θ̃(z̃), (ι′)2z̃′)dz̃′ =

=

∫

u(z̃′)ζ(Θ̃(z̃), ι′z̃′)dz̃′ =
∫

u(ι′z̃′)ζ(Θ̃(z̃), z̃′)dz̃′ = −u ∗ φ

hence, v is skewsymmetric with respect to ι. We get immediately that
∫
v = 0. Now we

apply successively Lemma 14 and Lemma 16.
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Step 1. By Lemma 14 there exists a kernel ψ1 on Z̃ which is controlled by a and b and
such that

(∫

|∇(u ∗ φ ∗ ψ′)|p
)1/p

≤ Nψ1
(u ∗ φ),

where for ψ1 we have the width of support is Rψ1 = Rψ
′

and

supψ1 ≤
sup∇ψ′ supψ′

infz volB(z̃, Rψ)
.

Step 2. By Lemma 16 there exists a kernel ζ1 on Z̃ ′ such that

Nψ1
(u ∗ φ) ≤ C̃Nζ1(u),

where the width of support of ζ1 is 2Rζ + λ1R
ψ′

+ c1, the supremum of ζ1 is

sup ζ1 =
supψ1

cYτ
e2R

ζ+λ1Rψ
′

+c1(2λ1R
ζ + c1)

2

and

C̃ =
1

cYτ
(supψ1)

3/pe

(

(2+λ1)Rψ
′

+c1
)

/p
(

(2 + λ1)R
ψ′

+ c1

)2/p
.

Step 3. Applying Lemma 14 we get that there exists a kernel ζ2 on Z̃ ′ such that

Nζ2(u) ≤ C(n)||∇u||p,

we remind that the constant C(n) depends only on the dimension of Z̃ ′ if the Ricci curvature
is bounded from below, that is supµi is bounded.

Step 4. Here we merely need to pass from Nζ1 to Nζ2 . We apply Lemma 14 once more

Nζ1 ≤ ĈNζ2 ,

where

Ĉ =
sup ζ1 sup ζ2

cYτ

Rζ2

εζ2
(2e)(2R

ζ+λ1Rψ
′

+c1)/εζ2 .

Choose ψ′ and ζ such that Rψ
′

= 1 and Rζ = 1. Then supψ′ and sup ζ are controlled
by a and b. We note also that εζ2 = 1. So combining all inequalities we get

∫

B(R)
|∇v|p ≤ C1(a, b) (λ1 + c1)

3+2/p e(9+3/p)(λ1+c1)

∫

Tn×[0,+∞]
|∇u|p,

where C1(a, b) is a constant depending only on a, b and dimension n. Denote Q = λ1 + c1.
The distortion growth DG ≥ 1/2Q so we will establish a lower bound for Q now. Assume

C(Q) = (λ1 + c1)
3+2/p e(9+3/p)(λ1+c1).
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Let us compute |v(z̃)| for z̃ which is rather far from the center. In fact we require that

d(Õ, z̃) ≥ R0 = λ2/µ
′
n log 8π + 2λ2(λ1 + c1) + c2 + 1.

|(u ∗ φ) ∗ ψ′(z̃)| =

∣
∣
∣
∣

∫

X

∫

Y
u(z̃′)ζ(Θ̃(z̃1), z̃

′)ψ′(z̃, z̃1)dz̃
′dz̃1

∣
∣
∣
∣

≥
∣
∣
∣
∣

∫

X

∫

Y
(u(z̃′)− u(Θ̃(z̃)) + u(Θ̃(z̃)))ζ(Θ̃(z̃1), z̃

′)ψ′(z̃, z̃1)dz̃
′dz̃1

∣
∣
∣
∣

≥
∣
∣
∣
∣

∫

X

∫

Y
(u(Θ̃(z̃)))ζ(Θ̃(z̃1), z̃

′)ψ′(z̃, z̃1)dz̃
′dz̃1

∣
∣
∣
∣

−
∣
∣
∣
∣

∫

X

∫

Y
(u(z̃′)− u(Θ̃(z̃)))ζ(Θ̃(z̃1), z̃

′)ψ′(z̃, z̃1)dz̃
′dz̃1

∣
∣
∣
∣

≥ 1−
∫

X

∫

Y
|u(z̃′)− u(Θ̃(z̃))|ζ(Θ̃(z̃1), z̃

′)ψ′(z̃, z̃1)dz̃
′dz̃1.

ψ′(z̃, z̃1) is non-zero if d(z̃, z̃1) ≤ Rψ
′

= 1 and ζ(Θ̃(z̃1), z̃
′) is non-zero if d(z̃′, Θ̃(z1)) ≤ Rζ =

1. So the diameter of the set Ŝ of points z̃′ such that the integrand is non-zero, is at most
2λ1 + c1 + 2 ≤ 4(λ1 + c1). Assume ẑ′ = Θ̃(z̃) ∈ Ŝ. Then by the mean value theorem, for

any point z̃′ ∈ Ŝ,

|u(z̃′)− u(ẑ′)| ≤ |z̃′ − ẑ′| sup
z̃′∈Ŝ

|∇u(z̃′)| ≤ 4(λ1 + c1) sup
z̃′∈Ŝ

∣
∣
∣
∣

∂u

∂x̃n

∣
∣
∣
∣
e−µ

′

nt ≤ 4π(λ1 + c1)e
−µ′nt

≤ 4π(λ1 + c1) sup
ẑ′∈Ŝ

e−µ
′

nd(O
′,ẑ′) ≤ 4π(λ1 + c1)e

−µ′n((R0−1−c2)/λ2−2(λ1+c1)) ≤ 1

2
.

Hence we have proved that
1

2
≤ |(u ∗ φ) ∗ ψ′(z)| ≤ 1.

And we conclude from this relation that for R > R0
∫

B(R)
|v|p ≥ 1

2p
vol(B(R))− vol(B(R0)) ≥ e(

∑

µi)R/2p+1.

Let us compute the integral
∫
|∇u|p.

∫

|∇u|p =
∫ ∣
∣
∣
∣

∂u

∂xn

∣
∣
∣
∣

p

e−µ
′

npte(
∑

µ′i)tdtdxn = π

∫ +∞

0
e(
∑

µ′i−pµ′n)tdt =
µ′nπ

−∑µ′i/µ
′
n + p

.

Hence the Poincaré constant Cp(µ) for Z satisfies

(Cp(µ))
p ≥ ||v||p

||∇v||p ≥ ||v||p
C1(a, b)C(Q)||∇u||p

≥
(
µ′nπ2

p+1C1(a, b)C(Q)
)−1

e(
∑

µi)R(p−
∑

µ′i/µ
′
n).

This proves the first claim in Theorem 24.
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17.5. Proof of the second statement of Theorem 24. Let Θ : BZ(R) → Z ′ be
a (λ1, λ2, c1, c2)-quasi-isometric embedding. Approximate Θ with a continuous quasi-
isometric embedding. According to Lemma 17, for R large enough (the bound is not
effective, however), Θ is isomorphic on fundamental groups. Lemma 18 implies that Θ
moves the origin a bounded distance away. Indeed, a non null-homotopic loop of length
1 based at O is mapped to a non null-homotopic loop of length ≤ Q = λ1 + c1 based at
Θ(O). This implies that t(Θ(O)) ≤ 4Q and d(O′,Θ(O)) ≤ 4Q+ 1.

The space Z̃ is of the form T̃ × R where T̃ → T is a connected 2-sheeted covering
space of torus, that is T̃ is also a torus. Hence we can apply Theorem 23. We have
Cp(µ) ≤ C2(a, b)e

µnR. So we arrive to

(
µ′nπ2

p+1C1(a, b)C(Q)
)−1/p

e(
∑

µi/p)R
(

p−
∑

µ′i/µ
′
n

)1/p
≤ C2(a, b)e

µnR.

Hence with C3(a, b) = (µ′nπ2
p+1C1(a, b))

1/pC2(a, b),

C3(a, b)C(Q) ≥ e(
∑

µi/p−µn)R
(

p−
∑
µ′i

µ′n

)1/p

.

We have calculated that C(Q) = Q3+2/pe(9+3/p)Q. Combining these results, assuming
p =

∑
µ′i/µ

′
n + 1/R and using the fact that Q ≥ logQ, we get for R large enough

Q ≥ G1(a, b)

(∑
µi

µn
−
∑
µ′n
µ′n

)

R−G2(a, b)

with G1(a, b) and G2(a, b) being constants depending only on a and b.
This finishes the proof of Theorem 24.

Part 4. Examples of different distortion growths

18. Approximation of distances and an example of QI

Let X,Y be two geodesic hyperbolic metric spaces with base points x0 ∈ X, y0 ∈ Y .
Let θ : ∂X → ∂Y be a homeomorphism between ideal boundaries.

Hypothesis 1. Assume that there exists a constant D such that for any x ∈ X there exists
a geodesic ray γ from the base point γ(0) = x0 and passing near x: d(x, γ) < D.

We are going to construct approximatively (up to D) a map Θ extending the boundary
homeomorphism θ. Take some point x and a geodesic ray γ from x0 passing near x:
d(γ, x) < D. Then γ(∞) is a point on ideal boundary ∂X. The corresponding point
θ(γ(∞)) ∈ ∂Y defines a geodesic ray γ′ such that γ′(0) = y0 and γ′(∞) = θ(γ(∞)). Set
Θ(x) = γ′(d(x0, x)). So, by construction, Θ preserves the distance to the base point. Still,
it depends on the choices of γ and γ′.

Definition 22. Define the following quantity

K(R) = sup

{∣
∣
∣
∣
log

dy0(θ(ξ1), θ(ξ2))

dx0(ξ1, ξ2)

∣
∣
∣
∣
|dx0(ξ1, ξ2) ≥ e−R ∨ dx0(θ(ξ1), θ(ξ2)) ≥ e−R

}

.
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We are going to prove that Θ is a
(

1 + 2K(R)
D+δ ,D + δ + 2K(R)

)

-quasi-isometry. We

begin with a Lemma which gives an approximation (up to an additive constant) of the
distance between two points in a hyperbolic metric space. In its proof, all equalities hold
with a bounded additive error depending linearly on δ.

Lemma 22. Let P1, P2 be two points in a hyperbolic metric space Z. Let P0 be a base
point (possibly at infinity). Let distances (horo-distances if P0 is at infinity) from P1 and
P2 to P0 be d(P1, P0) = t1 and d(P2, P0) = t2. Assume that there exists points P∞

1 and
P∞
2 such that P1 (resp. P2) belongs to the geodesic ray defined by P0 and P∞

1 (resp. P∞
2 ).

Denote by

t∞ = − log visdistP0
(P∞

1 , P∞
2 )

the logarithm of visual distance seen from P0. Then up to adding a multiple of δ,

d(P1, P2) = t1 + t2 − 2min{t1, t2, t∞}.

Proof. Let P ′
0 be a projection of P0 on the geodesic P∞

1 P∞
2 . By Lemma 5, P ′

0 lies at distance
at most 2δ from both P0P

∞
1 and P0P

∞
2 . Hence, up to an additive constant bounded by 4δ

the distance between P0 and P ′
0 is equal to Gromov’s product of P∞

1 and P∞
2 . It follows

that t∞ = d(P0, P
′
0) = − log visdist(P1, P2).

The triangle P0P
∞
1 P∞

2 is δ-thin. Notice that ifP1 (or P2) lies near the side P∞
1 P∞

2 then
t1 ≥ t∞. Otherwise, t1 ≤ t∞ (both inequalities are understood up to an additive error δ).
This follows from the definition of the point P ′

0 as a projection and Lemma 5.
Hence, if t1, t2 ≥ t∞, d(P1, P2) = d(P1, P0) + d(P2, P0)− 2d(P0, P

′
0) = t1 + t2 − 2t∞.

If t1 ≤ t∞ ≤ t2, d(P1, P2) = d(P1, P
′
0) + d(P ′

0, P2) = t2 − t1.
Finally, if t1, t2 ≤ t∞, we get d(P1, P2) = |t1 − t2| = t1+ t2 − 2min{t1, t2} as P1 lies near

P0P
∞
2 .

�

Lemma 23. Let Z and Z ′ be two hyperbolic metric spaces. Let Θ be the radial extension
of a boundary homeomorphism θ, as described at the beginning of this section. Then for
any two points P1, P2 ∈ B(P0, R) ⊂ Z such that d(P1, P2) > c, we have

dZ′(Θ(P1),Θ(P2))

dZ(P1, P2)
≤ 1 + 2

K(R)

c
.

If d(P1, P2) < c,

dZ′(Θ(P1),Θ(P2)) < 2K(R) + c.

Proof. We will use the same notations as in Lemma 22. Visual distance d∞Z between P∞
1 and

P∞
2 and the (horo-)distance t∞ from P0 to P∞

1 P∞
2 are connected by the relation e−t∞ =

d∞(P∞
1 , P∞

2 ). In the same way we define t′∞ as the (horo-)distance for corresponding
images.

By Lemma 22 we know that d(P1, P2) = t1 + t2 − 2min{t1, t2, t∞}.
Assume first d(P1, P2) > c. We will write dZ = d(P1, P2) for the distance between P1

and P2 and dZ′ = d(Θ(P1),Θ(P2)) for the distance between their images.
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We have to consider four cases depending on the relative sizes of t1, t2, t0 and t′∞ as
they determine values of minima defining dZ and dZ′ . Without loss of generality, we may
assume that t1 ≤ t2.

1st case If both t1 < t∞ and t1 < t′∞, then

dZ′

dZ
=
t2 − t1
t2 − t1

= 1,

and this case is trivial.
2nd case If t∞ < t1 and t′∞ < t1. We have to give an upper bound for

dZ′

dZ
=
t1 + t2 − 2t′∞
t1 + t2 − 2t∞0

.

Consider

t′∞ − t∞ = log
d∞(θ(P∞

1 ), θ(P∞
2 ))

d∞(P∞
1 , P∞

2 )
.

Because dZ > c, we have t1 + t2 − 2t∞ > c hence e(t1+t2)/2e−t∞ > ec/2. And as t1, t2 ≤ R
we obtain for visual distance d∞Z ≥ ec/2e−R ≥ e−R. We conclude that

|t′∞ − t∞| ≤ K(R).

Finally,

dZ′

dZ
=
dZ′ − dZ + dZ

dZ
= 1 +

t′∞ − t∞
t1 + t2 − t∞

≤ 1 +
1

c
|t′∞ − t∞|.

3d case Now let t∞ < t1 < t′∞. Then

dZ′ − dZ = t2 − t1 − (t1 + t2 − 2t∞) = 2(t∞ − t1) ≤ 0,

which leads to
dZ′

dZ
≤ 1.

4th case Finally if t′∞ < t1 < t∞0 then

dZ′ − dZ = (t1 + t2 − 2t′∞)− (t2 − t1) = 2(t1 − t′∞) ≤ 2(t∞0 − t′∞).

We know that t1 ≤ R and at the same time we have t′∞ < t1, hence t
′
∞ < R and visual

distance between P∞′
1 and P∞′

2 is at least e−R. Now as in the 2nd case we obtain that
t∞0 − t′∞ ≤ K(R) and hence

dZ′

dZ
≤ 1 + 2

K(R)

c
.

Now assume that dZ(P1, P2) ≤ c (we still suppose t1 ≤ t2), hence the distance t∞ > t2
and we are either in first or fourth situation. In the first case, t1 < t∞ and t1 < t′∞ so dZ′ =
dZ ≤ c. In the fourth case, we have still dZ′ −dZ ≤ 2K(R) and hence d′Z ≤ c+2K(R). �

Applying the Lemma both to Θ and Θ−1, we get the following Theorem.
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Theorem 25. Let X,Y be two geodesic hyperbolic metric spaces with base points x0 ∈ X,
y0 ∈ Y . Assume that there exists a constant D such that for any x ∈ X there exists a
geodesic ray γ from the base point γ(0) = x0 and passing near x: d(x, γ) < D (Hypothesis
1). Let the restriction of Θ : ∂X → ∂Y be a homeomorphism between ideal boundaries.

Then Θ is a (λ,Cq)-quasi-isometry, where λ = 1 + 2K(R)
c and Cq = 2K(R) + c. The

constant c can be chosen as c = D + δ where δ is the hyperbolicity constant.

19. Examples

19.1. Bi-Hölder maps. Let θ be a bi-Hölder map:

d(θ(ξ1), θ(ξ2)) ≤ cd(ξ1, ξ2)
α, α < 1,

d(θ(ξ1), θ(ξ2)) ≥
1

c
d(ξ1, ξ2)

β, β > 1.

Assume first that for two points ξ1, ξ2 of the ideal boundary, the visual distance d(ξ1, ξ2) >
e−R. Then we have

log
d(θ(ξ1), θ(ξ2))

d(ξ1, ξ2)
≤ log cd(ξ1, ξ2)

α−1 = −(1− α) log d(ξ1, ξ2) . (1− α)R.

Now, if the visual distance between images of ξ1 and ξ2 satisfiesd(θ(ξ1), θ(ξ2)) > e−R, we
get

d(ξ1, ξ2) ≥
1

c1/α
e−R/α

and hence

log
d(θ(ξ1), θ(ξ2))

d(ξ1, ξ2)
&

1− α

α
R.

We obtain the lower bound for log d(θ(ξ1),θ(ξ2))
d(ξ1,ξ2)

just in the same way as the upper-bound.

If d(ξ1, ξ2) > e−R

log
d(θ(ξ1), θ(ξ2))

d(ξ1, ξ2)
≥ log

1

c
d(ξ1, ξ2)

β−1 = −(1− β) log d(ξ1, ξ2) . (1− β)R.

If d(θ(ξ1), θ(ξ2)) > e−R

log
d(θ(ξ1), θ(ξ2))

d(ξ1, ξ2)
≥ log

1

c
d(θ(ξ1), θ(ξ2))

(β−1)/β = −1− β

β
log d(θ(ξ1), θ(ξ2)) &

1− β

β
R.

This gives

K(R) . max{1− α, 1 − β}R.
In particular, consider two variants of the space T n × [0,+∞) Z and Z ′ with metrics

dt2 +
∑
e2µitdx2i and dt

2 +
∑
e2µ

′

itdx2i respectively. The visual distance between points P1

and P2 is given by

d∞(P1, P2) ∼ max |x1i − x2i |1/µi .
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Pick the identity map θ : ∂Z → ∂Z ′. Then

d∞(θ(P1), θ(P2))

d∞(P1, P2)
∼ maxi |x1i − x2i |1/µ

′

i

maxi |x1i − x2i |1/µi
≤ max

i
|x1i − x2i |1/µ

′

i−1/µi .

Suppose that d(P1, P2) > e−R. Then
∣
∣
∣
∣
log

d∞(θ(P1), θ(P2))

d∞(P1, P2)

∣
∣
∣
∣
≤
∣
∣
∣
∣
log max

i
|x1i − x2i |1/µ

′

i−1/µi

∣
∣
∣
∣
=

= max
i

(

µi

∣
∣
∣
∣

1

µ′i
− 1

µi

∣
∣
∣
∣

∣
∣
∣log |x1i − x2i |1/µi

∣
∣
∣

)

≤ max
i

∣
∣
∣
∣

µi
µ′i

− 1

∣
∣
∣
∣
R.

So, we conclude that K(R) = |maxi(µi/µ
′
i)− 1|R.

Remark 11. More generally, such bi-Hölder maps exist between boundaries of arbitrary
simply connected Riemannian manifolds with bounded negative sectional curvature. The
Hölder exponent is controlled by sectional curvature bounds.

19.2. Unipotent locally homogeneous space. Now assume the space Z is a quotient
R
2/Z2 × R of the space R

2 × R with the metric dt2 + e2t(dx2 + dy2). Consider the space
Z ′ = R

2/Z2
⋉α R, quotient of the space R

2
⋊α R, where α is the 2× 2 matrix

(
1 1
0 1

)

.

The locally homogeneous metric is of the form dt2 + gt where gt = (etα)∗g0

etα
(
x
y

)

=

(
et tet

0 et

)(
x
y

)

=

(
etx+ tety

ety

)

and so gt = d(etx+ tety)2 + d(ety)2 = e2t(dx2 + 2tdxdy + (t2 + 1)dy2).
Let θ : ∂Z → ∂Z ′ be the identity. Consider two points P1 = (x1, y1) and P2 = (x2, y2)

in Z. We will write x = x1 − x2 and y = y1 − y2. For the visual distance between P1, P2

we have

d∞(P1, P2) = max{|x|, |y|}.
For their images θ(P1) and θ(P2) (see section 5 of [27] and [28])

d∞(θ(P1), θ(P2)) = max{|y|, |x − y log |y|}.
First we will give an upper-bound for log(d∞(θ(P1), θ(P2))/d∞(P1, P2)). We have four
different cases.

1st case. If |x| < |y| and |x− y log |y|| < |y|,
d∞(θ(P1), θ(P2))

d∞(P1, P2)
= 1.

2nd case. If |x− y log |y|| < |y| < |x|,
d∞(θ(P1), θ(P2))

d∞(P1, P2)
< 1.
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3d case. If |x| < |y| < |x− y log |y||.
d∞(θ(P1), θ(P2))

d∞(P1, P2)
=

|x− y log y|
|y| ≤ |x|

|y| + | log |y||.

If d∞(P1, P2) > e−R we have e−R < |y| ≤ 1 (the upper bound follows from the fact that y
is a coordinate of a point of a torus) and hence | log |y|| ≤ R and we finish as follows,

d∞(θ(P1), θ(P2))

d∞(P1, P2)
≤ |x|

|y| + | log |y|| ≤ 1 +R.

If d∞(θ(P1), θ(P2)) > e−R we will consider two situations.

• If |x| > |y log |y|| then |x− y log y| < 2|x| and as |x| < |y|
d∞(θ(P1), θ(P2))

d∞(P1, P2)
≤ 2.

• If |x| < |y log |y|| then e−R < |x− y log |y|| < 2|y log |y|| and hence | log |y|| < R, so

d∞(θ(P1), θ(P2))

d∞(P1, P2)
≤ 1 +R.

4th case. Let now |y| < |x| and |y| < |x− y log |y||
d∞(θ(P1), θ(P2))

d∞(P1, P2)
=

|x− y log |y||
|x| ≤ 1 +

|y log |y||
|x| .

We will check two possibilities.

• If |y| ≤ |x|2 then

|y log |y||
|x| =

|y|1/2
|x|

∣
∣
∣|y|1/2 log |y|

∣
∣
∣ ≤ 1.

• Now suppose that |y| ≥ |x|2. If d∞(P1, P2) > e−R, we see easily that |y| ≥ e−2R

and hence
|y log |y||

|x| ≤ |x log |y||
|x| ≤ | log |y|| ≤ 2R.

If d∞(θ(P1), θ(P2)) > e−R we use the fact that |a + b| ≥ 2max{|a|, |b|}. Hence, either
|x| > e−R/2 or |y log |y|| > e−R/2 and so |y| & e−R and we finish the estimation as earlier.

So in the fourth case we have also

d∞(θ(P1), θ(P2))

d∞(P1, P2)
≤ 2R.

Here, we have proved that log(d∞(θ(P1), θ(P2))/d∞(P1, P2)) ≤ logR. Now we proceed
to give also a lower bound for this expression.

1st case. If |x| < |y| and |x− y log |y|| < |y|
d∞(θ(P1), θ(P2))

d∞(P1, P2)
= 1.
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2nd case. If |x− y log |y|| < |y| < |x|
d∞(θ(P1), θ(P2))

d∞(P1, P2)
=

|y|
|x| .

Without loss of generality, assume x > 0. By the construction of Z, |y| < 1 hence log |y| <
0. If 0 < x ≤ y log |y|, we have y < 0. Now transform x ≤ y log |y| as 1 ≤ − log |y|(−y)/x,
hence

−y
x
≥ − 1

log |y| .

Now either d∞(θ(P1), θ(P2)) = |y| > e−R or e−R ≤ d∞(P1, P2) = |x| ≤ y log |y| which also
means that |y| & e−R. So,

|y|
|x| ≥

1

R
.

If on the contrary y log |y| ≤ x we have

(4) x− y log |y| < |y| < x.

First we notice that y log |y| > x−|y| > 0. As |y| < 1 for any point of our space, log |y| < 0
and we conclude that y < 0. Now from (4) we obtain that x < −y(1 − log |y|). As
1− log |y| > 0 we obtain

−y
x
>

1

1− log |y| .

If d∞(θ(P1), θ(P2)) = |y| > e−R, we trivially get that

|y|
|x| >

1

R
.

If e−R ≤ d∞(P1, P2) = |x| we write e−R < x < −y(1 − log |y|) and hence y & e−R, so we
obtain the same result. So, in both cases we come to the same result

∣
∣
∣
∣
log

|y|
|x|

∣
∣
∣
∣
< R.

3d case. Assume |x| < |y| < |x− y log |y||, this case is trivial as

d∞(θ(P1), θ(P2))

d∞(P1, P2)
=

|x− y log y|
|y| ≥ 1.

4th case. Let now |y| < |x| and |y| < |x− y log |y||. We also suppose that x > 0 to save
notation.

(5)
d∞(θ(P1), θ(P2))

d∞(P1, P2)
=

|x− y log |y||
|x| =

∣
∣
∣
∣
1− y log |y|

x

∣
∣
∣
∣
.

If (5) is greater than 1/2 then we have nothing to prove. So suppose that (5) is less than
1/2

−x
2
≤ x− y log |y| ≤ x

2
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and so
x

2
≤ y log |y| ≤ 3x

2
.

The last inequality shows that if either d∞(θ(P1), θ(P2)) ≥ e−R or d∞(P1, P2) ≥ e−R,
|y| & e−R and so we have

|y log |y||
x

≥ |y log |y||
y

= | log |y|| ≥ 1

R
,

which completes our discussion of this example. We have proved that

K(R) . logR.

Part 5. Appendix

20. Poincaré inequality for H
n

Let Hn be n-dimensional hyperbolic space. The metric is written as dr2+sinh2(r)dθ2 in
polar coordinates, this is very close to the exponentially growing metrics studied in section
16. From the results of section 16, little effort is needed to get the Poincaré inequality for
balls in H

n,

(
∫

BHn(R))
|f(x)− c|pdµ

)1/p

≤ Chypp (R)

(
∫

BHn(R)
|∇f |pdµ

)1/p

.

Theorem 26. Let Hn be n-dimensional hyperbolic space. Then for a ball B(R) of Hn the
Poincaré constant does not exceed

Chypp (R) ≤ C(p, n)(1 + eR),

where C(p, n) depends only on p and dimension n.

Proof. We will provide the proof by comparing the hyperbolic metric with an exponential
metric dr2 + e2rdθ2. To pass from the exponential to sinh, we will divide the ball B(R) in
two parts: a little ball near the center and its complement. Finally we will compare the
initial inequality with the Euclidean Poincaré inequality on this small ball and with our
”exponential” inequality (Theorem 23) on the complement.

Let the volume element be dµ = sinhn−1 rdrdθ. We will also write dvolhyp for dµ,
dvoleucl for euclidean volume element and dvolexp for exponential volume element dµexp =

e(n−1)rdrdθ. The idea of the proof is following. First we notice that outside of a ball
B(1) exponential and hyperbolic metrics are equivalent. On the other hand inside of a ball
B(2) hyperbolic metric is equivalent with euclidean metric. This motivates us to use the
partition of unity to prove the initial Poincaré inequality for hyperbolic metric.

Let b =
∮

B(2) fdvoleucl, χ be the continuos function

• χ(x) = 1 if x ∈ B(1)
• χ(x) = 0 if x ∈ H\B(2)
• χ(x) = 2− r if x ∈ B(2)\B(1)



Quasi-isometries between hyperbolic metric spaces 61

We notice that

• sinhn−1 r ≤ e(n−1)r for r ≥ 0,
• e(n−1)r ≤ ce sinh

n−1 r for r ≥ 1 where the constant ce is equal to e
n−1/ sinhn−1 1,

• in B(2) (r ≤ 2) the hyperbolic and euclidean metrics are equivalent

1 ≤ sinhn−1 rdrdθ

rn−1drdθ
≤
(
sinh 2

2

)n−1

.

Now present f − b as follow f − b = χ(f − b) + (1 − χ)(f − b). First we consider the
function b+(1−χ)(f − b). We notice that ∇(b+(1−χ)(f − b)) equals to 0 on B(1), hence

∫

B(R)
|∇(1− χ)(f − b)|p sinh(n−1) rdrdθ =

∫

B(R)\B(1)
|∇(1− χ)(f − b)|p sinh(n−1) rdrdθ.

And we can write

∫

B(R)
|b+ (1− χ)(f − b)− c1|p sinh(n−1) rdrdθ ≤

∫

B(R)
|b+ (1 − χ)(f − b)− c1|pe(n−1)rdrdθ

≤
(
Cexpp,n

)p
∫

B(R)
|∇(1− χ)(f − b)|pe(n−1)rdrdθ

≤ ce
(
Cexpp,n (R)

)p
∫

B(R)
|∇(1− χ)(f − b)|p sinh(n−1) rdrdθ,

where the second inequality is a Poincaré inequality for exponential metric.
Now we will apply to the righthand part of the inequality the following formulas

∇(1− χ)(f − b) = (1− χ)∇f + (f − b)∇(1 − χ).

and

||f1 + f2||pLp ≤ 2(||f1||pLp + ||f2||pLp).

We get that

∫

B(R)
|b+ (1− χ)(f − b)− c1|p sinh(n−1) rdrdθ ≤

≤ cep
(
Cexpp,n

)p

(
∫

B(R)
|∇f |p sinh(n−1) rdrdθ +

∫

B(2)
|f − b|p sinh(n−1) rdrdθ

)

Now we write euclidean Poincare inequality in B(2) with euclidean constant Ceuclp,n (it
depends only on dimension)
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∫

B(2)
|f − b|pdvolhyp ≤

(
sinh 2

2

)n−1 ∫

B(2)
|f − b|pdvoleucl

≤
(
sinh 2

2

)n−1 (

Ceuclp,n

)p
∫

B(2)
|∇f |peucldvoleucl

≤
(
sinh 2

2

)n−1 (

Ceuclp,n

)p
∫

B(2)
|∇f |phypdvolhyp.

Consider the function χ(f − b). It equals to 0 on the complement of B(2) so we can
easily treat this case involving euclidean Poincaré ineqaulity as two metrics are equivalent
there.

∫

B(2)
|χ(f − b)− c2|pdvolhyp ≤

(
sinh 2

2

)n−1 ∫

B(2)
|χ(f − b)− c2|pdvoleucl ≤

≤
(
sinh 2

2

)n−1 (

Ceuclp,n

)p
∫

B(2)
|∇f |pdvoleucl ≤

(
sinh 2

2

)n−1 (

Ceuclp,n

)p
∫

B(2)
|∇f |pdvolhyp.

Now we need to combine all these results. First, we have

∫

B(R)
|f − c1 − c2|pdµ ≤ p

∫

B(R)

(

|b+ (1− χ)(f − b)− c1|p + |χ(f − b)− c2|p
)

dµ,

remind that dµ = dvolhyp. Further, we note that for big enough R
(
sinh 2

2

)n−1 (

Ceuclp,n

)p
≤ cep

(
Cexpp,n (R)

)p

hence
∫

B(R)
|f − c1 − c2|pdµ ≤ cep

2
(
Cexpp,n (R)

)p
2ce

(

Ceuclp,n

)p
(
∫

B(R)
|∇f |pdµ +

∫

B(2)
|∇f |pdµ

)

≤ 4c2ep
2
(

Cexpp,n (R)C
eucl
p,n

)p
∫

B(R)
|∇f |pdµ.

�

21. Equivalence of three forms of the Poincaré inequality

In the literature, we can meet three different definitions of Poincaré inequalities. We
will show that they are equivalent.

Definition 23. • There exists a constant C1
p such that for any function f with ∇f ∈

L
p and its mean value c̃f =

∮
f

||f − c̃f ||Lp ≤ C1
p ||∇f ||Lp ;
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• there exists a constant C2
p such that for any function f with ∇f ∈ L

p there exists
a constant cf

||f − c̃f ||Lp ≤ C2
p ||∇f ||Lp ;

• there exists a constant C3
p such that for any function f with ∇f ∈ L

p

(∮ ∮

X×X
|f(x)− f(y)|pdxdy

)1/p

≤ C3
p

(∮

X
|∇f(x)|pdx

)1/p

.

Proposition 7. All three definitions are equivalent in the sense that C1
p , C

2
p and C3

p differs
only by universal multiplicative constants.

Proof. 1 ⇒ 2 Evident, just assume cf = c̃f .
2 ⇒ 3 Assume g = f − cf . Hence ∇g ∈ L

p and we have ||g||p ≤ C2
p ||∇g||p. So,

∮

|f(x)− f(y)|pdxdy ≤ 2

(∮

|f(x)|pdx+

∮

|f(y)|pdy
)

≤ 4

∮

C2
p |∇f |p.

We just proved the third definition with C3
p ≤ 4C2

p .
3 ⇒ 1 Now consider ||f − c̃f ||Lp

||f − c̃f ||Lp =
(∫

X

∣
∣
∣
∣
f(x)−

∫

X f(y)dy∫

X dy

∣
∣
∣
∣

p

dx

)1/p

=

(∮

X

∣
∣
∣
∣

∫

X
(f(x)− f(y))dy

∣
∣
∣
∣

p

dx

)1/p

≤
(

V ol(x)

∮

|f(x)− f(y)|pdxdy
)1/p

≤
(

V ol(X)C3
p

∮

|∇f |pdx
)1/p

= C3
p ||∇f ||Lp .

Hence, C1
p ≤ C3

p .
�
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