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Virtual-Sensor-Based Maximum-Likelithood Voting
Approach for Fault-Tolerant Control of
Electric Vehicle Powertrains

Bekheira Tabbache, Mohamed El Hachemi Benbouzid, Senior Member, IEEE,
Abdelaziz Kheloui, and Jean-Matthieu Bourgeot

Abstract—This paper describes a sensor fault-tolerant control
(FTC) for electric-vehicle (EV) powertrains. The proposed strat-
egy deals with speed sensor failure detection and isolation within
a reconfigurable induction-motor direct torque control (DTC)
scheme. To increase the vehicle powertrain reliability regarding
speed sensor failures, a maximume-likelihood voting (MLYV) algo-
rithm is adopted. It uses two virtual sensors [extended Kalman
filter (EKF) and a Luenberger observer (LO)] and a speed sensor.
Experiments on an induction-motor drive and simulations on an
EV are carried out using a European urban and extraurban
driving cycle to show that the proposed sensor FTC approach is ef-
fective and provides a simple configuration with high performance
in terms of speed and torque responses.

Index Terms—Electric vehicle (EV), extended Kalman filter
(EKF), fault-tolerant control (FTC), induction motor, Luenberger
observer (LO), maximume-likelihood voting (MLV), speed sensor
failure.

NOMENCLATURE
EV Electric vehicle.
FTC Fault-tolerant control.
EKF Extended Kalman filter.
LO Luenberger observer.
MLV Maximum-likelihood voting.
v Vehicle speed.
F, Road load.
FLo Rolling resistance force.
F¢ Stokes or viscous friction force.
Faa Aerodynamic drag force.
I, Climbing and downgrade resistance force.
P, Vehicle driving power.
J Total inertia (rotor and load).
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W Electric motor mechanical speed.

T Load torque accounting for friction and windage.
Tr Load torque.

T Electric motor torque.

i Transmission ratio.

i Transmission efficiency.

R Wheel radius.

s, (r)  Stator (rotor) index.

a, B Synchronous reference frame index.
est(")  Estimated quantity.

* Reference quantity.

V(I)  Voltage (current).

A Flux.

Wy Rotor electric speed.

Tem Motor torque.

R Resistance.

L(L,,) Inductance (Magnetizing inductance).
o Leakage coefficient, where 0 = 1 — L2, /L L,.
T, Rotor time constant (7}, = L,./R,;.).
T, Stator time constant (75 = Ls/Ry).
T Sampling time.

D pole-pair number.

I. INTRODUCTION

O increase the reliability and the continuous operation

of electromechanical systems [1]-[3], interest in fault
tolerance has grown. Indeed, extensive research has been con-
ducted toward fault-tolerant alternating-current motor drives in
industrial applications [4]-[10].

In the automotive context, the dependence of electric and
hybrid vehicles on electronic devices is heightening concerns
over fault tolerance due to availability issues [11]-[14]. In the
EV case, the propulsion control depends on the availability
and the quality of sensor measurements. The required sensors
are current, voltage, and speed sensors. These components are
usually subjected to errors such as noise, offset, drift, and
disconnections [3]. These failures obviously lead to overall
EV performance deterioration. To improve the reliability of
the electric drive, it is therefore compulsory to have a sensor
fault detection and isolation system. Thereafter, reconfiguration
should be achieved with equivalent observed signals. This will
allow EV propulsion fault-tolerant operation [15]-[17].

0018-9545/$31.00 © 2012 IEEE
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Motor torque = 77,
Tyre radius =R

Gear ratio =i

Tractive effort = F,,
s

Fig. 1. Elementary forces acting on a vehicle.

In this context, this paper proposes a fault-tolerant direct
torque control (DTC) strategy in case of speed sensor failure
intended for EVs using an induction-motor-based powertrain
[18]. For that purpose, a specific speed sensor failure detection
is achieved, and an MLV algorithm is adopted and implemented
for speed information acquisition [6], [19]. This algorithm uses
two virtual sensors (the EKF and the LO) and a speed sensor.
Experiments on an induction-motor drive and simulations on
an EV are carried out using a European urban and extraurban
driving cycle to show that the proposed sensor FTC approach
is effective and provides a simple configuration with high
performance in term of speed and torque responses.

The major contribution of this paper is as follows. It proposes
a specific speed sensor FTC scheme for EV powertrains. This
scheme uses a DTC for the induction-motor drive and handles
the EV dynamics. The FTC scheme is based on the MLV
algorithm that uses the speed sensor information and analytical
redundancy (virtual sensors that are based on the EKF and the
LOs). These observers have been specifically adopted due to
their ability to fit the EV entire speed range.

The remaining parts of this paper are organized as follows.

— Section II briefly describes the elementary forces acting
on a vehicle and how they will be handled (in the load
torque).

— Section III briefly describes the global configuration of
a DTC scheme and shows how the EV aerodynamics is
taken into account to generate the induction-motor load
torque.

— Section IV presents and justifies the adopted speed ob-
servers that will be used by the voting algorithm.

— Section V deals with the adopted speed sensor FTC
strategy. It particularly describes and justifies the use of
the MLV algorithm.

— Sections VI and VII, respectively, describe the carried-
out simulations and experiments to assess the proposed
speed sensor FTC strategy performances.

II. ELECTRIC VEHICLE MODELING AND
DYNAMICS BRIEFLY

The proposed sensor FTC strategy takes into account the EV
aerodynamics and is not applied to the sole induction motor.
The vehicle model is based on mechanics and aerodynamics
principles (see Fig. 1) [20].

The road load is then given by

Fy = Fo+ Fsg + Faqg + For (1)

The power required to drive the EV at a speed v has to
compensate the road load F,, i.e.,

P, =vF, 2)
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Fig. 2.

DTC block diagram.

The mechanical equation (in the motor referential) used to
describe each wheel drive is expressed by
dw,,
J——+Tp+ T =T 3)
dt
The following equation is derived due to the use of a reduc-
tion gear:

Wm

{ WWheel = 7 (4)

TWheel = Tmlnt '

The load torque in the motor referential is then given by

Tiwn
T, — LV\;} cel _ ng' )

III. DIRECT TORQUE CONTROL BRIEFLY

The DTC basic idea is to calculate flux and torque instan-
taneous values only from the stator variables. In the proposed
strategy, flux, torque, and speed are estimated by the EKF and
the LO. The motor controller input is the reference speed,
which is directly applied by the driver on the EV pedal. The
control is carried out by hysteresis comparators and a switching
logic table selecting the appropriate voltage inverter switching
configurations [21].

Fig. 2 gives the global configuration of a DTC scheme and
also shows how the EV dynamics is taken into account to gener-
ate the induction-motor load torque. The proposed global DTC
approach uses a speed sensor. This may be confusing as DTC is
a sensorless control approach. In our case, as clearly shown in
Fig. 2, the speed sensor is used for speed control allowing the
generation of the necessary torque reference for the DTC. This
approach is adopted to improve the DTC performances [22].

IV. SPEED OBSERVERS

Sensorless control of induction-motor drives is still receiving
wide attention. The main reason is that the speed sensor spoils
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the ruggedness and simplicity of induction motors. In a hostile
environment, as is the case of automotive applications, speed
sensors cannot even be mounted [23]. For that purpose, several
works in term of eliminating the speed sensor at the motor shaft
without deteriorating the drive dynamic performance have been
carried out [24], [25].

For the proposed speed sensor FTC approach, the EKF and
the LO (adaptive one) are adopted as speed observers [26].
Indeed, they will be used to determine the induction-motor
speed and generate the residuals used by the MLV algorithm.

A. EKF

The Kalman filter is a special class of a linear observer
(deterministic type) derived to meet a particular optimality
stochastic condition. The Kalman filter has two forms: basic
and extended. The EKF can be used for nonlinear systems
where the plant model is extended by extra variables, in our
case, by the mechanical speed [27].

In the induction-motor drive, the Kalman filter is used to
obtain unmeasured state variables (rotor speed w,., rotor flux
vector components \,., and \,.3) using the measured state vari-
ables (stator current I and voltage components Vs in Concordia
frame o« — 3). Moreover, it takes into account the model and the
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Fig. 3. Kalman filter recursive algorithm.

its extended version. Therefore, a nonlinear stochastic system
discrete state equation is given by

{xk+1 = f(zw, ug) + wy

yr = h(xg) + vk ®)

where f and h are vector functions

(1T dyo+ Tl M+ T o A, g+ T Vi

(1-T48) isp-T

L, Ry
I2K,

>\ra +T

Lonw, 1
e A+ Vg

measurement noise.

The induction-motor state model used by the EKF is devel-
oped in the stationary reference frame and summarized by [28]

_Kp 0 LypRr  Lmw:
Isa Ky L%Kl L.Kp, Isa
K Lywy Ly, R,
PR 0 -% i E O |l
— = Ly, 1
dt iro‘ - T, 0 _Tr —Wy 0 ira
rB 0 Ii_’:n Wy _% 0 rB
wr 0 0 0 0 1| twr
1 0
0 1
1 V. .. K Ry 1—0
— 10 O s th — = . (6
K o o {Vsﬁ}m Kr <oLs+ aTT»> ©
0 0

The implementation of the Kalman filter is based on a
recursive algorithm minimizing the error variance between the
real variable and its estimate.

Let us consider a linear stochastic system whose discrete
state model is given by

{ xz(k+ 1) = Az(k) + Bu(k) + w(k) 7
y(k+1) = Cx(k) + v(k)
where w(k) represents the disturbances vector applied to the
system inputs. It also represents modeling uncertainties; v (k)
corresponds to system output measurement noise. It is supposed
that the random signals v(k) and w(k) are Gaussian noise that
is not correlated and with a null average value. They are charac-
terized by covariance matrices () and R, respectively, which are
symmetrical and positive definite. The initial state vector xg is
also a random variable with covariance matrix Py and average
value Z.

The Kalman filter recursive algorithm is shown in Fig. 3.

For an induction motor, the Kalman filter must be used in

= TLTT . (1 —TT%) Ara—Twr A
Theigg+Twda+ (1-T4) Mg

T

L, J

I
h=Cazyp = {Iég] .

The notation k + 1 is related to predicted values at the (k +
1)th instant and is based on measurements up to the kth instant.
T is the sampling period.

The EKF equations are similar to those of the linear Kalman
filter with the difference that A and C' matrices should replace
by the Jacobians of the vector functions f and h at every
sampling time as follows:

. of;
{Ak[%ﬂ = ﬁfj | o=s (k) ©

Cili, j] = g3+

=2 (k|k-1)-

The covariance matrices Ry and (Qy, are also defined at every
sampling time.

For the induction-motor control, the EKF is used for the
speed real-time estimation. It can also be used to estimate states
and parameters using the measurements of the motor voltages
and currents.

B. LO

The adopted flux and speed observer uses the observed
system model. It calculates the stator flux and rotational speed
estimated values using the motor drive measurements (stator
currents and dc voltage) [29].

The induction-motor state model developed in the stationary
reference frame is given as follows:

{%:Ax—i—Bu

& (10)
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where = [Io Is5 Ao Arg]” is the state vector, u=[Vsq Vig] T
is the input vector, and y = [, Is5]7 is the output vector:

__l 1-o L an Lvn
o (TT + T) 0 oL, L, T,  oL.L,r
_l 1-o L _ Lm, LTn
A= 0 o (TT + T5> oL.L,“r GL.L,T,
Ly -1
.0 T, “r T,
oL 0
1
B= 0 oLs|, C= 1000 .
0 O 0100
0 0

The estimated speed w,. is considered to be a variable param-
eter. Using (10), a global observer structure can be written as

di -
Y _ A2+ Bu+Gy—79)

7 an

where G is the observer gain matrix, which is selected to insure
the error stability. The global adaptive flux and speed observer
structure is shown in Fig. 4.

The stability analysis (Lyapunov stability theorem) in terms
of observation error allows having an asymptotic observer. The
speed adaptive mechanism is then given by

d}r = er <eso¢5\r,8 —€s3 x7"04)4’I(ie/(esoz ;\rﬁ - esﬁj\ra) dt (12)

where K. and K. are positive gains, €sq = Iso — 54, and
€spg = Isg - Is,g.

The LO is based on the system equations, without taking
into account the measurement noise and the disturbances. This
observer is then sensitive to parameter variations, particularly at
low speeds. This drawback will be therefore taken into account
for the speed range application of the LO. This observer, how-
ever, has the important advantage of being less time-consuming.

V. SPEED SENSOR FAULT-TOLERANT CONTROL

The overall performance of the induction-motor-based EV
propulsion with a feedback structure depends on the perfor-
mance of the driving circuits and sensors: speed, voltage, and cur-
rent sensors [30]. The loss of a sensor leads to unsatisfactory or
dangerous behaviors if no remedial actions have been forecast.
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Fig. 6. Proposed sensor FTC scheme.

A. Proposed FTC Philosophy

Reconfiguration is the most comprehensive remedial action
against a given failure. It generally exploits redundancy inher-
ent in the process. The use of an analytical redundancy (called
virtual sensor in our case) allows the reconstruction of the faulty
sensor measurement using an analytical model of the system
and measurements from other still-healthy sensors [2].

The simplest approach to achieve redundancy is the static ap-
proach. Typically, three or more sensors are used in parallel and
in case of failure; a voter is used to consolidate the information.
In practice, to withstand n sensor failures, a total of 2n + 1
real and virtual sensors are needed for voting (see Fig. 5). In
other words, 2n + 1 modules are required to tolerate n sensor
failures [2].

Fig. 6 describes the proposed sensor FTC approach. In the
event of speed sensor failures, the proposed strategy reorganizes
itself by using the estimated speed given by the MLV algorithm
in the entire speed range. In this paper, the focus is on speed
sensor failures, but the proposed FTC approach is also able to
handle current and voltage sensor failures [15].

The EKF and LOs have also been adopted to optimize the
FTC performances in the entire speed range. Indeed, the EKF
is well adapted for low and medium speeds, whereas the LO
will be adopted for high speeds.
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B. On Speed Sensor Failures

In general, a 12-bit absolute encoder can exhibit the fol-
lowing failure conditions: 1) intermittent sensor connection;
2) complete sensor outage; 3) DC bias in sensor measurement;
and 4) sensor gain drop.

The most severe failures are the two first failures as they
lead to momentary or complete lack of information. This will
obviously lead to instabilities in closed-loop control if no
remedial actions are undertaken [3], [6].

C. MLV Algorithm

To increase the drive reliability, the proposed speed sensor
FTC strategy uses a voting algorithm in the control deci-
sion block that computes the most accurate speed information
for DTC.

The static redundancy approach requires a voter to determine
the final output speed of the EV propulsion. In this context, an
in-depth overview on voting algorithms is provided in [31]. It
appears then that the inexact majority and the weighted average
voters are widely used in control and safety-critical applica-
tions [32]. These two voters, however, suffer from two main
drawbacks: An inexact majority voter requires an appropriate
threshold value, which directly affects the voter performance.
A weighted average voter suffers from a lack of accuracy in
healthy (normal) conditions. Indeed, the real measure is mixed
with the observed measures, leading to less-accurate values [6].

The main task of the voting algorithm is to detect and
reconfigure the induction-motor control in the event of a speed
sensor failure using two virtual speeds, i.e., the EKF and the
LOs, and the speed sensor. This voting algorithm is also used
to improve the EV powertrain control in the entire speed range,
using the appropriate estimator (EKF or LO). Based on [31], it
appears that the MLV algorithm is the best candidate [19]. The
MLV main idea is to choose, based on how reliable each input
is and how faithful its output is, the output that is most likely
correct.

In the MLV algorithm, probability ; for each input j is com-
puted based on reliability coefficients f; for each inputas follows:

N N N
Xj:HAj @) /> T]AkG)

k=1 1=1

13)

where NN is the number of inputs.

In fact, the MLV algorithm uses reliability coefficients and
inputs to estimate the correct output. It is based on a decreasing
sequence computation and arrangement of the probability x; of
each input.

In (13), where x; denominators are the same, the voter needs
only to find and to compare the numerators and, thus, reduces
the computation time [19]. In practice, the MLV algorithm
computes ; for all the inputs (j = 1,2,3) and arranges them
in a decreasing sequence. For a healthy speed sensor, ; has the
maximum value. In this case, it is higher than those of the EKF
and the LO. In the event of a speed sensor failure and if the EKF
X is higher than the LO x;, the EKF-based speed estimation is
selected; otherwise, the LO-based speed estimation is selected.
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An input gives a particular incorrect output with probability
((1 = fx)/(N —1)). Probability coefficient computations are
slightly modified to introduce a threshold Dy, .. Indeed, under
healthy conditions, the speed sensor is chosen as the emerging
output [19] as follows:

Ax(i) = {Jf’“ flr = P gy

fr
~or, else.

In practice, where x is the induction-motor speed and x; —
the speed residuals, Ay () and speed errors are evaluated (for
kand i = 1 to 3) to select the probability coefficient maximum
values and, therefore, to choose the correct output.

In (14), each input (in our case, the three speeds: sensor,
EKF, and LO) is associated with a probability level presented by
reliability coefficients. At each sample time, the MLV algorithm
calculates the reliability degree of each input and affects, to the
output, the input having the probability highest rate. However,
a difficult task is to compute the threshold Dy, ,x. This should
be done using extensive simulations.

In (14), Dpax represents the admissible threshold for the
error between the speeds obtained by the absolute encoder,
EKF, and LO. In [19], Dy, ax is set to zero, i.e.,

) i T =@
Ay (i) = {{vflfv else. ' (15)

In practice, the equality x; = xj is quasi-impossible to sat-

isfy. The MLV algorithm has, therefore, been modified by

the introduction of an admissible threshold D,,.. ;. between
measurements. This threshold is afterward adjusted due to the
used speed observers’ knowledge.

To obtain the reliability coefficients and the admissible thresh-
old of the information on the three speeds under both healthy
and faulty conditions (in the particular case of an EV using
normalized driving cycles), a robustness study has been carried
out. Indeed, in practice, the induction-motor rotor resistance
increases due to temperature increase. In this context, the
robustness study is performed versus a variation of the rotor re-
sistance. From extensive simulations, the following conclusions
are achieved.

— In faulty conditions, it is found that LO has better perfor-
mance for high speeds and is also less sensitive to rotor
resistance variations. However, for low speeds, LO becomes
more sensitive to rotor resistance variation. For high speeds
and in event of fault, the adaptive observer will be adopted
and will have a higher reliability coefficient.

— The EKF presents promising results for low speeds. For this
reason, its reliability coefficient is higher than the LO one.
The EKF will be adopted in faulty condition is this speed
operating range.

— Inhealthy conditions, it is assumed that the speed sensor has
the higher reliability coefficient in the entire speed range.

VI. SIMULATION TESTS

To evaluate the proposed fault-tolerant DTC strategy perfor-
mance, simulations have been carried out on an EV using a
37-kW induction-motor-based powertrain. The EV and the used
cage induction-motor rated data and parameters are given in the
Appendix.
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In this case, a speed sensor failure (power failure) and
recovery is introduced between 5 — 8.5, 17 — 23, and 26.5 —
38 s (see Fig. 7).

A. MLV Algorithm Parameterization

For parameterization purposes, extensive simulations have
been carried out to compute the threshold Dy, ,x and the EKF
and LO reliability coefficients. Therefore, we have the following.

— Dy ax has been set to 0.2 rad at low speed and to 0.25 rad
at high speed.

— The EKEF reliability coefficients have been set to 0.98 at
low speed and to 0.93 at high speed.

— The LO reliability coefficients have been set to 0.93 at
low speed and to 0.96 at high speed.

— The speed sensor has a constant reliability of 0.99.

Fig. 7 shows the adopted speed sensor failures and recovery
scheme. This scheme will allow testing the MLV algorithm in
all the speed range (from low to high speed). Adopting this
scheme, Fig. 8 shows how the given parameterized MLV al-
gorithm selects the appropriate speed. In this context, the MLV
output is set to 1 in the case of a healthy speed sensor. If the out-
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put is set to 2, the adaptive observer is selected for control pur-
poses. Otherwise, if the output is set to 3, the EKF is preferred.

B. EV Dynamic Performances Under Speed Sensor Failure

To evaluate the EV dynamic performances under speed sen-
sor failure and recovery, a series of tests under different load
conditions was performed to emulate different types of traction
behavior.

For that purpose, a European urban and extraurban driving
cycle (ECE + URL) is used as the speed reference (see Fig. 9).
Fig. 9 shows the induction-motor speed. The EV vehicle speed
can be obtained through gear ration and wheel radius. In the
entire speed range, the MLV algorithm provides the appro-
priate speed to the DTC to maintain the EV best achievable
performances.

The EV speed and torque performances are shown in Figs. 10
and 11. Fig. 10 shows that the EKF output is selected in the case
of a speed sensor failure at low and medium speeds. Indeed,
in this speed range, the LO exhibits degraded performances
(red). At high speed, an error is observed between the estimated
speeds. In this context, the LO output is selected in the case of a
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Fig. 12.  View and schematic description of the experimental setup.

speed sensor failure to maintain the EV dynamic performances
in the entire speed range. Fig. 11 shows that the EV induction
motor torque is as large as that of the variations of the acceler-
ator pedal and that of the road profile: It is not affected by the
speed sensor failures and recovery.

VII. EXPERIMENTAL TESTS

Experimental tests have been first carried out to check the
sensor FTC performances on a 1-kW induction-motor drive. A
modified European urban driving cycle (ECE) has been also
adopted.

EV induction-motor torque under speed sensor failures and recovery.
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Fig. 13.  Induction-motor-drive MLV_based FTC performances under speed
sensor failures and recovery. (a) (Orange) Motor speed, (blue) speed sensor,
and (purple) reference speed. (b) Speed residual.

A. Experimental Setup

The experimental setup picture is shown in Fig. 12. The used
cage induction-motor rated data are given in the Appendix. This
motor is supplied by a two-level voltage inverter. The setup
main components are a digital signal processing (DSP) system
(single fixed-point TMS320LF2407), a speed sensor attached
to the motor shaft, and current and voltage sensors. The DSP
system is interfaced to a standard PC.

B. Experimental Results

Adopting a normal European urban driving cycle, Fig. 13
shows the MLV-based FTC dynamic performances.

In this case, the MLV algorithm adopts the speed sensor
output; at low speed, it adopts the EKF estimates (in case of
failure), and at high speed, it adopts the LO estimates (in case
of failure).

The obtained experimental results clearly confirm the effec-
tiveness of the proposed FTC strategy using a specific voting
algorithm.

VIII. CONCLUSION

This paper has proposed a fault-tolerant DTC strategy in case
of speed sensor failure intended for EVs using an induction-
motor-based powertrain. For that purpose, the MLV algorithm
in the control decision block that computes the most accurate
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TABLE 1

EV MECHANICAL AND AERODYNAMIC PARAMETERS

m = 1540 kg (two 70 kg passengers), 4 = 1.8 m% r=0.3 m
Hrr1 = 0.0055, ppyo=0.056, Cog=0.19, G=3.29,1,= 0.95
vo=4.155 m/sec, g = 9.81 m/sec? p = 0.23 kg/m>

RATED DATA OF THE SIMULATED INDUCTION MOTOR

37 kW, 1480 rpm, p =2
Rs=0.0851 Q, R, =0.0658 Q
Ly=0.0314 H, L,=0.0291 H, L,,=0.0291 H,
J=0.37kg.m?, kr=0.02791Nmsec

RATED DATA OF THE TESTED INDUCTION MOTOR

1 kW, 2.5 Nm, 2830 tpm, p = 1
Ry=4.750 Q, R,=8.000 Q, L;=0375H, L,=0.375H, L,,= 0.364 H
J=10.003 kg.m?, kz=0.0024 Nmsec

speed information from the speed sensor and two virtual sensors
(an EKF and a LO) has been used. The carried-out simulations
and experiments on a European urban and extraurban driving
cycle have shown that the proposed speed sensor FTC strategy
is effective and provides a simple configuration with high
dynamic performances.

APPENDIX

See Table I, which shows the electric vehicle mechanical/
aerodynamic parameters and the simulated/tested induction
motors rated data.
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