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Abstract. Community detection can be considered as a variant of cluster 

analysis applied to complex networks. For this reason, all existing studies have 

been using tools derived from this field when evaluating community detection 

algorithms. However, those are not completely relevant in the context of 

network analysis, because they ignore an essential part of the available 

information: the network structure. Therefore, they can lead to incorrect 

interpretations. In this article, we review these measures, and illustrate this 

limitation. We propose a modification to solve this problem, and apply it to the 

three most widespread measures: purity, Rand index and normalized mutual 

information (NMI). We then perform an experimental evaluation on artificially 

generated networks with realistic community structure. We assess the relevance 

of the modified measures by comparison with their traditional counterparts, and 

also relatively to the topological properties of the community structures. On 

these data, the modified NMI turns out to provide the most relevant results. 

Keywords: Complex Networks, Community Detection, Evaluation Measure, 

Cluster Analysis, Purity, Adjusted Rand Index, Normalized Mutual 

Information. 

1 Introduction 

Community detection is a part of the complex networks analysis field. It consists in 

characterizing the structure of such a network at the mesoscopic level, i.e. when 

considering neither the node (microscopic level) nor the whole network (macroscopic 

level), but rather an intermediary structure, called community. More concretely, one 

wants to break the network down to a set of loosely interconnected subgraphs, each 

one corresponding to a community. The problem is difficult to formalize, in the sense 

this task can be defined in many different ways. However, most authors agree on an 

intuitive description, which is to obtain communities whose nodes are more densely 

interconnected, compared to the rest of the network [1]. 

A document presenting a new community detection method generally has the 

following structure. First, the authors describe their algorithm in details. Second, they 

select some test data, which can be real-world and/or artificially generated networks, 
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and apply both their algorithm and other existing tools to these data. Third, they 

process some measure to quantify the performances of the considered community 

detection tools. The resulting values are then used to compare these algorithms. The 

newly presented method generally happens to overcome the existing ones on one or 

several aspects (precision, speed, robustness, etc.).  

This procedure raises several important methodological issues. When the test is 

performed on real-world data, according to which criteria should the networks be 

selected? Those networks display heterogeneous topological properties [2], some of 

which can introduce bias when comparing community detection methods. For 

example, a network with a low transitivity (a.k.a. clustering coefficient) will penalize 

clique-percolation methods looking for triangles. Moreover, in most case the actual 

community structure of real-world networks is not known with certainty: how reliable 

are the performance results obtained on such data? If the test is performed on some 

artificial data, then the selection of an appropriate generative model is a cause for 

concern. The results of the evaluation are supposed to be general enough to hold when 

the algorithms are applied to some real-world data. But for this to be true, the 

generative model must produce realistic networks, which is difficult to guarantee [3].  

Despite the importance of these issues, in this article we put them apart to focus on 

another important methodological point: the tool used to measure the performance of 

the algorithms. In the literature, it always takes the form of a metric associating a 

numerical score to the community structure estimated by an algorithm for a given 

network. It is processed by comparing this estimated structure to the actual one, which 

is supposedly known for the considered network (either because it was identified, for 

a real-world network, or by construction for an artificial one). In the case of mutually 

exclusive communities, which interests us in this article, each community structure 

can be considered as a partition of the node set. Therefore, the standard approach to 

compare two community structures consists in quantifying the similarity between the 

two corresponding partitions. For this purpose, the most popular measures in the 

context of community detection are the Purity [4], the Adjusted Rand Index [5] and 

the Normalized Mutual Information [6]. 

However, as shown in a recent study [7], this approach has some limitations. 

Indeed, it is possible for two distinct community structures to be very close in terms 

of partition, therefore obtaining roughly the same score, and at the same time to have 

sensibly different topological properties (embeddedness, average distance, etc.). This, 

of course, is not desirable, since these properties should be considered to discriminate 

the community structures. One can trace back this problem to the cluster analysis 

origin of the measures. They completely ignore what makes the specificity of 

community detection: the structure of the network. In other words, the performance 

assessment is realized while ignoring a part of the available relevant information (the 

topological information).  

In this article, we propose to modify certain existing measures in order to take the 

topological information into account. Our goal is to design a tool allowing a more 

relevant discrimination of the community structures. In the next section, we review 

the main measures used in the community detection literature to evaluate the 

performances of this type of algorithms. In section 3, we describe in details their 
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limitation when applied to the comparison of community structures. We then propose 

our modifications in section 4, and evaluate them in section 5. We conclude with a 

discussion of our work and its possible extensions. 

2 Traditional Approach 

Cluster analysis, or unsupervised classification, is a part of the data mining field. It 

consists in partitioning a set of objects, in order to identify homogeneous groups. 

Each object is described individually through a vector of attributes, and the procedure 

is conducted by comparing objects thanks to these attributes. Community detection is 

obviously a very similar task, with one difference though. When considering complex 

networks, the objects of interest are nodes, and the information used to perform the 

partition is the network structure. In other words, instead of considering some 

individual information (attributes) like for cluster analysis, we take advantage of a 

relational one (links). However, the result is the same in both cases: a partition of the 

set of objects, which is called community structure in the context of complex network 

analysis. 

It is therefore not surprising to see authors developing community detection tools 

use cluster analysis methods to assess the performance of their method. For some of 

them, the borrowing is explicit [8], whereas others developed their own tools, which 

happen to be similar to already existing ones [9, 10]. In cluster analysis, this 

assessment is performed thanks to a measure allowing to obtain a score representing 

the classifier performance. When a reference partition is available, this score 

represents the similarity between this actual partition and the one estimated by the 

considered classifier; and one refers to this measure as an external evaluation 

criterion [4]. A number of such measures exist, and in the domain of classification, 

the debate regarding which one is the most appropriate has been started a long time 

ago, and is still going on [11]: this shows how important this methodological point is. 

Indeed, what is the interest in evaluating a tool if the evaluation method is not valid? 

A lot of the measures used in cluster analysis have been applied to community 

detection. However, three of them stand out in terms of popularity: Purity [4], 

Adjusted Rand Index [5] and Normalized Mutual Information [6]. Incidentally, each 

of them represents one of the three main families of measures designed as external 

evaluation criteria. In the first, each object is considered individually, whereas in the 

second the assessment is performed on pairs of objects. The third family relies on an 

information theory approach. For these two reasons, in this section we focus on these 

three measures. 

In the rest of this article, we will note   {         } and   {         } two 

partitions of the same set  , where    and    are the parts (      and      ). 

To denote the cardinalities, we use   for the total number of elements in the 

partitioned set, and     |     | for the intersection of two parts. We also note 

    |  | and     |  | the part sizes. When needed, elements will be represented 

by the variables   and  .  
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2.1 Purity 

The Purity measure [4] is historically the first one used in the context of community 

detection, since it was used by Girvan and Newman in their seminal article [9], under 

the name fraction of correctly classified vertices. More generally, the Purity appears 

in the literature under so many different names that it would be difficult to list them 

exhaustively. 

The purity of a part    relatively to the other partition   is expressed in the 

following way: 

   (    )     
 

   

   
 (1) 

In other words, we first identify the part of   whose intersection with    is the 

largest, and then calculate the proportion of elements in    this intersection amounts 

to. The larger the intersection and the larger the purity, i.e. the larger the 

correspondence between the two considered parts. The total purity of partition   

relatively to partition   is obtained by summing the purity of each   , weighted by its 

prevalence in the considered set: 

   (   )  ∑
   
 
    (    )

 

 
(2) 

The upper bound is  , it corresponds to a perfect match between the partitions. The 

lower bound is   and indicates the opposite. It is important to notice the purity is not a 

symmetric measure: processing the purity of   relatively to   amounts to considering 

the parts of   majority in each part of  . Therefore, in general, there is no reason to 

suppose    (   ) and    (   )are equal. 

From the community detection point of view, we can therefore use two distinct 

measures, depending on whether we calculate the purity of the estimated communities 

relatively to the actual ones, or the opposite. In cluster analysis, the first version is 

generally used, and called simply Purity, whereas the second version is the Inverse 

Purity [12]. In this document, we will use these terms to distinguish both versions.  

It is difficult to determine which one of them was actually used in existing 

community detection works. Indeed, in their article, Girvan and Newman give a very 

succinct description of the measure they process [9]. A subsequent article seems to 

indicate it was the inverse purity [13] (note 19), which Newman directly confirmed to 

us. Many later works conducted by other authors used measures bearing the same 

name and/or directly referring to this article. However, due to the initial imprecision, 

it is very likely they used the purity in place of the inverse purity. For example, in [8] 

(p.4), Danon et al. make a comment on Girvan and Newman’s measure, explaining 

how it can be biased by the number and sizes of communities. However, their remark 

is actually valid only for the purity, and not for the inverse version they are supposed 

to discuss. 

This bias is an important limitation of both measures, and was also identified by 

the cluster analysis community. Purity tends to favor algorithms identifying numerous 

small communities. In the most extreme case, if the algorithm identifies   
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communities containing a single node each, one gets a maximal purity, since each 

estimated community is perfectly pure. On the contrary, the inverse purity favors 

algorithms detecting few large communities. This time, the most extreme case occurs 

when the algorithm puts all the nodes in the same community. There again, one gets a 

maximal purity, because each actual community is perfectly pure: all the nodes it 

contains belong to the same (unique) estimated community. To solve this problem, 

Newman introduced an additional constraint [13]: when an estimated community is 

majority in several actual communities, all the concerned nodes are considered as 

misclassified. 

The solution generally adopted in cluster analysis rather consists in processing the 

F-Measure, which is the harmonic mean of both versions of the purity [12]: 

 (   )  
     (   )     (   )

   (   )     (   )
 (3) 

The obtained measure is symmetric, and this combination is supposed to solve the 

previously mentioned bias. This approach penalizes in a similar way the under- and 

over-estimation of the number of communities. For this reason, we will later work 

with this adjustment, and not the one proposed by Newman. 

2.2 Adjusted Rand Index 

The Rand Index [14] is based on a different approach. Instead of directly considering 

how parts overlap, like the purity and other related measures, it focuses on pairwise 

agreement.  For each possible pair of elements in the considered set, the Rand Index 

evaluates how similarly the two partitions treat them. One can distinguish 4 different 

cases. Let   (resp.  ) be the number of pairs in which nodes belong to the same part 

(resp. to different parts) in both partitions. Let   (resp.  ) be the number of pairs in 

which nodes belong to the same part in the first (resp. second) partition, whereas  they 

belong to different parts in the second (resp. first) one. Formally,   can be obtained by 

counting the number of pairs belonging to part intersections      : 

  ∑(
   
 
)

  

 (4) 

On the contrary,   and   correspond to pairs whose elements are located in 

different part intersections. For  , this amounts to counting the number of pairs 

belonging to part    which were not already counted in  ; and   is defined 

symmetrically: 

  ∑(
   
 
)

 

 ∑(
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Finally,   can be obtained by subtracting  ,   and   to the total number of pairs. 

After simplification, we get: 

  (
 
 
)  ∑(

   
 
)

  

 ∑(
   
 
)

 

 ∑(
   
 
)

 

 (7) 

Values   and   represent pairs for which both partitions agree, in the sense they 

both consider the nodes should be put together, or should be separated. On the 

contrary,   and   correspond to the two possible disagreements: in one partition the 

nodes are put together, whereas they belong to distinct parts in the other. The index is 

obtained by processing the proportion of pairs on which both partitions agree: 

  (   )  
   

       
 (8) 

Like for the purity, the upper bound is  , which corresponds to a perfect match 

between the partitions, and the lower bound is  , which indicates the opposite. But 

unlike the purity, the Rand Index is symmetric: its value does not change if one 

switches the partitions. 

In the domain of community detection, the chance-corrected version of this 

measure, called Adjusted Rand Index (ARI) [5], seems to be preferred. It is known to 

be less sensitive to the number of parts [15]. The chance correction is based on the 

general formula defined for any measure   [16]:  

    
   ( )

      ( )
 (9) 

Where     is the chance-corrected measure,      is the maximal value   can reach, 

and  ( ) is the value expected for some null model. Hubert & Arabie chose a model 

in which the partitions are generated randomly with the constraint of having fixed 

number of parts (  and  ) and part sizes (    and    ). Under this assumption, the 

expected value for the number of pairs in a part intersection       is [5]: 

 ((
   
 
))  (

   
 
) (
   
 
) (

 
 
)⁄  (10) 

Equation (10) can be used to process the expected values of   and  , which in turn 

allows processing  (  ). By replacing in equation (9) and after some simplifications, 

we get the final adjusted Rand index [5]: 
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 (11) 

Like the Rand index, this measure is symmetric. Its upper bound is  , meaning 

both partitions are exactly similar. Because it is chance-corrected, a value equal or 

below   represents the fact the similarity between   and   is equal or less than what 

is expected from two random partitions.  
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2.3 Normalized Mutual Information 

In cluster analysis, the use of the Normalized Mutual Information (NMI) is much 

more recent than for the previous measures [6]. It was introduced in the community 

detection domain by Danon et al. [8], and since then it has been used in many works. 

In this measures, both partitions   and   are considered as discrete random variables, 

whose definition domains are {       } and {       }, respectively. Their joint 

probability distribution is obtained by considering the frequencies measured on the 

available data: 

    
   

 
 (12) 

The value     represents the probability, for a randomly drawn element, to belong 

simultaneously to parts    and   . The marginal distributions are obtained by 

summing over the joint frequencies: 

    ∑   
 

 (13) 

    ∑   
 

 (14) 

The value     (resp.    ) represents the probability, for a randomly drawn element, 

to belong to part    (resp.   ). From there, one can process the mutual information 

 (   ) of these variables, which measures the probabilistic dependence between 

them [17]: 

 (   )  ∑      
   

      
   

 (15) 

The mutual information corresponds to the quantity of information shared by the 

variables. Unlike the purity, but like the Rand Index, it is symmetric. Its lower bound 

is  , representing the independence of the variables (they share no information). The 

upper bound corresponds to a complete redundancy, however this value is not fixed. 

Several normalizations exist to solve this problem. The approach used in [18], and 

later by Danon et al. and the rest of the community detection field, consists in 

dividing the mutual information by the arithmetic mean of the entropies: 

   (   )    (   ) ( ( )   ( ))⁄ , where  ( )   ∑       (   )  and 

 ( )   ∑       (   ) . The final expression of this measure is therefore: 

   (   )  
  ∑       (         ⁄ )  

∑       (   )  ∑       (   ) 

 (16) 

This normalization retains the lower bound and symmetry of the measure, and its 

upper bound becomes  . 
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3 Limitations of the Existing Measures 

By definition, all the measures coming from cluster analysis, including the three 

presented in the previous section, consider a community structure only as a partition 

of the node set. In the context of community detection, this can be viewed as a 

limitation, because all classification errors do not necessarily have the same 

importance.  

Let us consider the example presented in Fig. 1, which displays a network 

containing two communities, each one represented by a different color. This 

community structure is noted  , and the red (i.e. left) and blue (i.e. right) 

communities are noted    and   , respectively. We propose two different estimations 

  and   of this reference community structure. For both of them, the left and right 

communities are numbered   and  , respectively. Each one of these estimated 

community structures includes a classification error: one node from the left 

community is incorrectly placed in the right one. For  , this misclassification 

concerns node  , whereas for   it is node  .  

 

Fig. 1. Example illustrating the limitation of purely partition-based measures. Colors 

correspond to the actual communities, whereas lines labeled   and   represent two different 

(incorrect) estimations of this community structure. 

Let us apply the measures presented in the previous section, in order to compare   

to  . We obtain the score     for both the purity and inverse purity. Consequently, the 

F-Measure, which is their mean, reaches the same value. For the adjusted Rand index, 

we get    , and      for the NMI. Now, if we process the same measures for the other 

partition  , we get exactly the same values. Indeed, from a partition perspective, 

nothing allows to distinguish nodes   from node  , so misclassifying the former or the 

latter leads to the same evaluation. In other words, those measures consider the errors 

present in   and   to be exactly similar. 
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Yet, intuitively, those errors do not seem equivalent at all. Indeed, node   is much 

more integrated in its actual community than node  . Its misclassification in partition 

  is therefore a more serious error than that of node   in partition  . In consequence, 

the score associated to   should be higher.  

To check more objectively this intuition, we can consider the modularity [19] of 

these partitions. This measure quantifies the quality of a community structure in a 

blind way, i.e. without the use of a reference. In cluster analysis terms, it would be 

called an internal evaluation criterion (cf. the introduction of section 2). For this 

matter, it compares the proportion of links located inside the communities with the 

expectation of the same value for a random model generating similar networks (same 

size and degree distribution). The modularity has been used as an objective function 

by numerous community detection algorithms [1]. In our case, the reference   

reaches a modularity of     , whereas   and   obtain the scores      and     , 

respectively. More than their magnitude, what is relevant here is the relative 

differences between those values:   clearly leads to a lower score than  , which 

confirms our intuition. 

This observation, performed on our very simple example, is corroborated on more 

realistic networks by the recent study by Orman et al. [7]. Its authors compare 

community structures by considering traditional measures (such as those presented in 

the previous section), but also the distribution of several measures allowing to 

characterize them topologically (community size, transitivity, density, etc.). One of 

their conclusions is that two community structures can at the same time reach very 

similar scores, and be topologically very different. There are two important 

consequences to this result. First, an estimated community structure can reach a high 

score, without necessarily being topologically similar to the actual community 

structure. Second, two estimated partitions can reach approximately the same score 

without having automatically the same topological properties. Because of these 

limitations, we can state traditional measures are not perfectly adapted neither to the 

evaluation of a community detection algorithm in absolute terms, nor to the 

comparison of several such algorithms. 

4 Proposed Modifications 

Of course, the problem highlighted in the previous section comes from the fact the 

traditional measures consider a community structure is simply a partition, and 

therefore ignore a part of the available information: the network topology. In order to 

make a more reliable evaluation, Orman et al. propose to jointly use traditional 

measures and various topological properties [7]. However, they also acknowledge this 

makes the evaluation process more complicated, due to the multiplicity of values to 

take into account.  

The solution we propose here, on the contrary, consists in retaining a single value, 

by modifying traditional measures so that they take the network topology into 

account. This approach allows benefiting from the concision of a unique score to 

measure and compare community detection algorithms.  
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In this section, each one of the first three subsections presents the proposed 

modifications for one of the three measures described in section 2. All of those 

modifications are based on the definition of an individual weight, reflecting the 

relative importance of each node. We chose to discuss it separately, in the last 

subsection, because the nature of this weight constitutes a separate point, independent 

from the general form of the modified measures. 

4.1 Modified Purity 

Compared to the measures of the two other families, the purity has the advantage that 

it can be expressed in order to make appear the individual contribution of each node 

to the total score. For this purpose, we first define the notion of purity of a node   for 

a partition   relatively to another partition  : 

   (     )   (       
 

     ) (17) 

Where      and      ; and   is the Kronecker delta, i.e.  (   )    if    , 

and   otherwise. The function is therefore binary:   if the part of   containing   is 

majority in that of   also containing  , and   otherwise. As an example, consider 

   (     ) in the case of Fig. 1. In  , node   belongs to the red (left) part   , so the 

second argument of the   is  . In  , it belongs to the right part, whose intersection is 

larger with    than with   , so the first argument of the   is  . Consequently, 

   (     )   (   )   . On the contrary, if we focus on node   instead, we obtain 

   (     )   (   )   . 

The purity of a part    relatively to a partition   can then be calculated by 

averaging the purity of its nodes: 

   (    )  
 

   
∑    (     )

    

 (18) 

The above expression is equivalent to that of equation (1), thus it allows deriving 

the total purity of partition   relatively to  , as in equation (2). By developing the 

resulting expression, we get: 

   (   )  ∑∑
 

 
   (     )

     

 (19) 

One can notice the purity of each node is weighted by a value   ⁄ . In order to take 

into account the topological information, we propose to replace this uniform weight 

by a value   , which can be different for any node  . Its role is to penalize more 

strongly misclassifications concerning topologically important nodes. We then get the 

modified purity     , defined as follows: 

    (   )  ∑∑
  
  
   (     )

     

 (20) 

Where    ∑    , i.e. the sum of all weights. This normalization allows keeping the 

measure between   et  . Finally, by applying to      the same principle we described 
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in equation (3) (i.e. taking the harmonic mean of the purity and inverse purity), we 

obtain a modified F-Measure, which takes the network topology into account, and that 

we note   . 

4.2 Modified ARI 

Because the Rand index is based on pairwise comparisons, it is not possible to isolate 

the individual effect of each node, like we did for the purity. However, we can 

proceed similarly for pairs of nodes. In the original measure, each pair contributes 

similarly to the total score. Instead, we propose to distinguish them in terms of 

topological importance. 

The most direct approach consists in associating a specific weight to each pair of 

nodes. For instance, one could consider the geodesic distance between the nodes. The 

consequence would be to penalize more disagreements on pairs of distant nodes. 

However, there is no reason to think misclassifications on distant nodes are more 

important than on close ones (or the opposite). 

Using nodal weights like for the purity seems to be a more appropriate solution. 

Since we handle pairs of nodes (   ) here, we propose to use the product of the two 

corresponding nodal weights:     . Of course, any other combination could be used, 

but our goal was to clearly advantage couples of important nodes. Then for any subset 

  of  , we define the following quantity:  

 ( )  ∑     
     

 (21) 

The binomial coefficients used in the formulas of the original and adjusted Rand 

indices aim at counting the number of pairs present in various subsets of the 

partitions. This amounts to processing   in the specific case where all   are equal to 

 . In order to obtain the modified versions of these measures, we simply replace all 

binomial coefficients by our generalized coefficient  , in their respective formulas. 

Therefore, from equation (11) we get the modified version of the ARI, noted     : 

    (   )  
∑  (     )   ∑  (  ) ∑  (  )  ( )⁄

 
 
(∑  (  )  ∑  (  ) )  ∑  (  ) ∑  (  )  ( )⁄

 (22) 

4.3 Modified NMI 

In the traditional definition of the NMI, one implicitly considers all nodes have the 

same probability   ⁄  to be randomly drawn. This becomes explicit if we rewrite the 

expression of     given in equation (12) in the following way: 

    ∑
 

 
       

 (23) 

We propose to replace this uniform value by the node-specific weight   already 

introduced for the previous measures. As before, it must be normalized using   , in 
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order to sum to  . We can consequently define a modified joint probability 

distribution     : 

     ∑
  
  

       

 (24) 

By replacing     by      in equations (13) and (14), we obtain      and     , 
respectively. We then use these modified probability distributions in the definition 

given in equation (16), in order to get the modified normalized mutual information, 

noted     : 

    (   )  
  ∑        (            ⁄ )  

∑        (    )  ∑        (    ) 

 (25) 

4.4 Nodal Weights 

All the modified measures we proposed in this section depend on the definition of an 

individual weight    representing the relative importance of each node   in the 

considered network. The question is therefore now to determine how to characterize 

and quantify this importance. Our general idea is that a misclassification concerning a 

node strongly integrated into its community should count more than for a node 

located on the community fringe. For this purpose, we can consider the node degree. 

This way, we give more weight to community hubs such as node   from Fig. 1, and 

less weight to peripheral nodes such as node  . In order to get a normalized value, we 

divide by the maximal degree observed in the network, leading to the normalized 

degree   : 

  ( )  
 ( )

   
 
 ( )

 (26) 

Where  ( ) denotes the degree of node  . This value ranges from   (no connection at 

all) to   (most connected node in the whole network).  

However, this approach can be criticized on two points. First, it is possible for a 

high degree node to have its connections distributed over numerous communities, 

therefore preventing any strong integration into any particular community. Since the 

community membership of this node seems rather uncertain, giving it a large weight 

appears inappropriate. Second, using only the degree leads to downplaying the 

importance of nodes whose connections are few, but entirely located inside their 

community. The embeddedness measure   [2] allows solving both problems: 

 ( )  
    ( )

 ( )
 (27) 

Where     ( ) is the internal degree of node  , i.e. the number of connections it has 

in its own community. Thus, the embeddedness is the proportion of neighbors located 

in the same community than the node of interest. It ranges from   (no neighbor in the 

same community) to   (all neighbors in the same community). 



Generalized Measures for the Evaluation of Community Detection Methods  13 

In order to combine the normalized degree and embeddedness, we propose to 

multiply them. This way, the more a node possesses both properties and the more it is 

important for us. The weight is therefore      ( ) ( ), which after simplification 

leads to the following expression: 

   
    ( )

   
 
 ( )

 (28) 

Note we treated the question of the nodal weight independently from the measure 

modifications for two reasons. First, this point is common to all three modifications 

we proposed, in the sense each of them needs this weight. Second, the specific weight 

described above is only a proposal: it can be adapted depending on the user’s needs. 

For instance, if the links of the considered network are weighted, one can consider the 

strength of the nodes instead of their degree. 

By using a uniform    for every node, we obtain the traditional version of the 

considered measure. Thus, the modifications we propose can be considered as 

generalization of the traditional measures. 

Table 1.  Values obtained for the community structures displayed in Fig. 1. 

Measure Traditional Modified 

Partition   and       

F-Measure (Purity)                

Adjusted Rand Index                

Normalized Mutual Information                

 

Let us now consider again the example from Fig. 1, and process the modified 

measures for both estimated partitions. Table 1 recapitulates the previous and newly 

calculated values. For all three measures, the scores obtained for partition   are lower 

than those of partition  , which is the behavior we were expecting, as explained in 

section 3. 

5 Experimental Evaluation 

The results obtained on the example from Fig. 1 are obviously not sufficient to assess 

the relevance of the modified measures. We therefore applied them on a larger 

dataset. In this section, we first present the experimental setup we used. Then, we 

describe how the proposed modification affected the individual performance scores. 

Finally, we study its effect on algorithm ranking. 

5.1 Setup 

We decided to use the same data, and to apply the same community algorithms than 

in [7] for our experimental validation, for several reasons. First, this study by Orman 

et al. contains observations regarding the topological properties of both real and 
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estimated community structures. They used them to illustrate how community 

structures obtaining similar traditional scores can in fact be sensibly different, 

topologically. Thanks to them, we will be able to verify if our modified measures 

behave as expected, i.e. are sensitive to these differences. Moreover, they used 

artificially generated networks, which means the real community structures are known 

with certainty. Finally, the generative model they selected reaches the highest possible 

level of realism, at least according to current knowledge on real-world systems. This 

point is important, in order to be able to generalize our results.  

The dataset is constituted of   networks of       nodes each, whose main 

topological properties are consistent with real-world networks studied in the 

literature: degree distribution, transitivity (clustering coefficient), community sizes, 

embeddedness, etc. Eight different community detection algorithms are applied to 

these networks, in order to estimate the community structures. They are recent and 

representative enough of the main methods designed to perform community detection: 

Copra [20], FastGreedy [13], InfoMap [21], InfoMod [22], Louvain [23], 

MarkovCluster [24], Oslom [25] and WalkTrap [26]. Since those topics are not the 

main point of this article, we refer the reader to [7] for any further details regarding 

the generative process and community detection algorithms. We also insist on the fact 

our goal with this work is not to identify the best algorithm (which, as mentioned in 

the introduction, necessitates tackling a number of methodological problems), but 

rather to check the relevance of the evaluation tool we propose (i.e. the modified 

measures). 

In their work, Orman et al. use a representative set of traditional measures to 

compare the partitions estimated by the considered algorithms: the fraction of 

correctly classified nodes (i.e. Newman’s purity, as explained in section 2), the Rand 

index and its adjusted version, and the NMI. For the adjusted Rand index and NMU, 

we can directly use their results and compare them with those obtained for the 

corresponding modified versions described in section 4. However, it is not possible to 

do so for the purity, since we need to compare our modified measure to the F-

Measure in order to make a relevant evaluation. Therefore, we had to compute the F-

Measure ourselves. 

5.2 Effect on the Scores 

Fig. 2 displays the results obtained for all the considered measures. The values for the 

traditional versions are on the left side of the plot, whereas those for the modified 

ones are on the right. For each measure, the algorithms are ordered by decreasing 

value of the traditional version. In order to ease visual comparison, the same order is 

kept for the modified version. This allows highlighting disagreements between both 

versions.  

Globally, the performances increase for all measures when comparing the 

traditional and modified versions. We used Student’s   test (      ) to assess the 

significance of this evolution. InfoMod is the only algorithm to undergo a decrease 

with all three measures, and moreover those are significant. WalkTrap increases or 

decreases depending on the measure, but never significantly. 
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The algorithm with the largest improvement is by far Louvain: highest for the F-

Measure (    ) and ARI (     ), second highest for the NMI (     ). The typical 

improvement is rather under     for the other algorithms. At a lesser extent, 

FastGreedy also experiences a significant performance improvement for all three 

measures. Oslom and MarkovCluster see their performance significantly increase, but 

only for the F-Measure and ARI. For the NMI, we observe a decrease and an increase, 

respectively, but those are not significant. 

 

 

 

Fig. 2. Comparison of the results obtained with the traditional (left) and modified (right) 

versions of the measures. 

InfoMap undergoes a slight improvement with the F-Measure, whereas for the ARI 

and NMI it decreases slightly, but not significantly. This might be due to the fact its 

performance is already so high with the traditional versions that there is not much 

room for increase. 

Finally, the measures do not agree for Copra, which undergoes a clear increase 

with the F-Measure (     ), a small decrease (     ) with the NMI and a non-

significant change with the ARI. 

By construction of the modified measures, an increase in the score of a given 

algorithm can be interpreted as the fact its performance relies mainly on nodes with 

high weights, i.e. of larger topological importance. Therefore, according to the three 

considered measures, this is the case of most of the algorithms, except Copra and 

InfoMod (the latter of which they all agree upon). Interestingly, these are also ranked 

last by all measures, be it the traditional of modified versions. This means that, 

amongst the considered algorithms, those obtaining the lowest performance from a 
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purely partition-based perspective are also those who do not seem to be good on 

topologically important nodes.  

5.3 Effect on the Rankings 

Table 2, Table 3 and Table 4 display the algorithms ranked by performance according 

to both versions of the ARI, F-Measure and NMI, respectively. To order them, we 

performed an ANOVA and applied Tukey’s test with a significance level of   
    . Algorithms whose scores are not considered significantly different were placed 

on the same row. In our analysis, we focus on the correspondences and discrepancies 

identified by Orman et al. between the traditional measures and the topological 

properties. We discuss if the modified versions of the measures allow consistently 

taking this aspect of the performance into account. 

Table 2. Algorithm rankings obtained with both traditional and modified versions of the ARI. 

Algorithms experiencing a change in their relative position are represented in bold. 

Traditional Adjusted Rand Index Modified Adjusted Rand Index 

Rank Algorithm Rank Algorithm 

1 InfoMap, MarkovCluster 1 Louvain, InfoMap, MarkovCluster 

3 Louvain, WalkTrap 4 WalkTrap, Oslom 

5 Oslom, FastGreedy, InfoMod 6 FastGreedy 

8 Copra 7 InfoMod 

- - 8 Copra 

 

It is worth noticing the traditional versions of the F-Measure and NMI give exactly 

the same rankings. For this reason, we will discuss them jointly. But first, we start 

with the ARI. According to its traditional version, there is no significant difference 

between InfoMap and MarkovCluster. However, the topology-based observations 

show the former is much closer to the reference structure. For this reason, we would 

expect the modified version to make a distinction between them. However, this is not 

the case: no significant difference is detected.  

The traditional version does not make any significant distinction between Louvain 

and WalkTrap. But topologically speaking, WalkTrap is supposed to be the closest to 

the reference just after InfoMap, so we would expect this difference to appear in the 

ranking based on the modified version. Nevertheless, we observe the opposite: 

Louvain is inconsistently raised to the level of InfoMap and MarkovCluster. 

Oslom, FastGreedy and InfoMod are considered to have equivalent performance 

by the traditional version. From a topological point of view, Oslom and FastGreedy 

are very close to Louvain, this one being slightly better. As mentioned before, 

Louvain has indeed a better rank according to the modified version. However, our 

measure also introduces a distinction between FastGreedy and Oslom. Concerning 

InfoMod, it is supposed to be much topologically different from the reference than 

Oslom and FastGreedy. This is consistently reflected with the modified measure. 
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Table 3.  Algorithm rankings obtained with both traditional and modified versions of the F-

Measure. Algorithms experiencing a change in their relative position are represented in bold. 

Traditional F-Measure Modified F-Measure 

Rank Algorithm Rank Algorithm 

1 InfoMap 1 InfoMap 

2 MarkovCluster, WalkTrap 2 Louvain, MarkovCluster 

4 Louvain, Oslom 4 WalkTrap, Oslom 

6 InfoMod, FastGreedy 6 FastGreedy 

8 Copra 7 InfoMod, Copra 

 

We now turn to the F-Measure and NMI. For both of their traditional versions, 

InfoMap is ranked first, and alone. This is also the case with the modified versions, 

which is consistent with the topology.  

According to the traditional versions, WalkTrap and MarkovCluster perform 

equivalently. Both modified measures manage to make a distinction between them, 

but they disagree. For the F-Measure, MarkovCluster is better, which is inconsistent 

with our topological knowledge, whereas on the contrary the NMI consistently puts 

WalkTrap at a higher rank. 

Louvain and Oslom obtain the same rank with the traditional versions. From a 

topological point of view, we know they are indeed very close, the former being 

slightly closer to the reference. The modified F-Measure makes the correct distinction 

between them, but tends to overestimate their ranking, putting Louvain at the level of 

MarkovCluster and Oslom at that of WalkTrap. The modified NMI keeps on 

considering the algorithms are not significantly different, which seems more relevant. 

The traditional versions consider InfoMod and FastGreedy have similar 

performance. For both modified versions, InfoMod is ranked lower, which is 

consistent with the topology-based observations. The NMI additionally raises 

FastGreedy to the level of Louvain and Oslom, which is consistent. 

Table 4. Algorithm rankings obtained with both traditional and modified versions of the NMI. 

Algorithms experiencing a change in their relative position are represented in bold. 

Traditional NMI Modified NMI 

Rank Algorithm Rank Algorithm 

1 InfoMap 1 InfoMap 

2 MarkovCluster, WalkTrap 2 WalkTrap 

4 Louvain, Oslom 3 MarkovCluster 

6 InfoMod, FastGreedy 4 Louvain, Oslom, FastGreedy 

8 Copra 7 InfoMod 

  8 Copra 

 

Amongst the three measures we modified, the NMI appears to be the one leading 

to the results the most consistent with the observations previously made in [7]. 

Indeed, it seems to roughly preserve the order established by the traditional version, 

while distinguishing between otherwise not significantly different results, in a way 
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compatible with our knowledge of the community structures topology. However, 

there is still room for improvement, since it is not able to separate Louvain, Oslom 

and FastGreedy. The two other measures are less satisfying, and display some 

anomalies. For instance, we cannot find an explanation for the very strong increase 

observed for Louvain, considering the topology of the communities it identified is 

relatively different from the reference. 

6 Conclusion 

In this article, we focused on the measures used to assess community detection 

algorithms. All those mentioned in the literature are similar to those used in data 

mining, more precisely in cluster analysis. Our first contribution is to have shown 

none of them is fully appropriate for this task, because they completely ignore 

network topology. This decreases their relevance, and can lead the user to incorrectly 

interpret the obtained scores. Our second contribution is to have defined variants of 

the three most widespread measures (F-Measure, Adjusted Rand index, Normalized 

mutual information), in order to solve this problem. For this matter, we modified them 

by introducing nodal weights: a different value can be associated to each node, 

allowing to penalize classification errors in an individual way. Adapting those 

modified measures to community detection is then straightforward: we need the 

weight to represent the topological importance of the node. We propose to use a 

combination of the degree and community embeddedness of the node. Our third 

contribution is the experimental evaluation of the proposed modifications. We used 

data obtained by applying a selection of community detection algorithms to a set of 

artificially generated networks with realistic topological properties. We compared the 

obtained rankings with those of the traditional versions of the measures, and assessed 

their consistency with observations from a previously conducted study regarding the 

topological properties of the estimated community structures [7]. On these data, the 

results obtained with the F-Measure and ARI present some inconsistencies. On the 

contrary, the modified version of the NMI is generally able to appropriately combine 

both aspects, i.e. assess how good the correspondence with the reference is in terms of 

both community membership and topological properties.  

One of the limitations of this work concerns the size of the dataset used to evaluate 

our measures. To draw more definitive conclusions, it is necessary to test them on a 

larger corpus. Defining the weights used to introduce the topological aspect in the 

measures constitutes another sensitive point. Indeed, each weight is supposed to 

represent the importance of the associated node in the network, and this notion is 

difficult to define objectively. In this article, we penalized algorithms unable to treat 

correctly the nodes supposedly easy to qualify: those located at the core of the 

communities. But it would be possible to use the opposite approach, if we suppose all 

algorithms are able to correctly classify these nodes: one should then give more 

importance to those located on the border of the communities. We would then 

probably obtain rather different results. 
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Besides those points, our work can be extended in several ways. First, our modified 

measures can be used, as is, for different purposes. They were designed to compare an 

estimated and a reference partitions, but they could also be applied to two estimated 

partitions. One would then take the topological aspect into account when performing 

the comparison. The modified measures could also be used in the context of classic 

cluster analysis, i.e. on non-relational data, when one wants to distinguish the 

classified objects in terms of importance. Second, in this article we focused on plain 

networks, but the weights (and therefore the measures) could be adapted to various 

types of networks such as directed or weighted ones. Third, the principle of our 

modification could be applied to any other measure coming from cluster analysis. We 

only treated the most widespread in the community detection field, but many other 

exist: precision, recall, Jaccard index, etc.  

Acknowledgments. This article is a translated and extended version of a previous 

work presented at the MARAMI 2012 conference [27]. 
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Appendix 

This section contains material which was cut in the submitted version of this article. 

This mainly concerns the traditional and modified versions of the Rand index. 

Traditional and Modified (Non-Adjusted) Rand Indices 

Both the traditional and modified (non-adjusted) Rand indices were not presented in 

the experimental part, because they result in a lack of discrimination between the 

algorithms (as already observed in [7]). For this reason, they were cut from sections 2 

and 4. For matters of completeness, here is the traditional version [5]: 
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And here is the modified version, derived by replacing   in (29) as explained in 

section 4.2: 
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The values obtained for the example of section 3 (as presented in Table 1 for the 

other measures) are respectively:      for the traditional version,      for the 

modified version applied to partition   and      for the modified version applied to 

partition  . 

 

Fig. 3. Comparison of the results obtained with the traditional (left) and modified (right) 

versions of the (non-adjusted) Rand index. 

The above figure represents the experimental results obtained for the traditional 

and modified versions of the (non-adjusted) Rand index, with the data presented in 

section 5. On the considered data, the measure does not seem to have a strong 

discriminant power. This is confirmed by Student’s   test, as displayed in Table 5: 

more than half the algorithms performances are not significantly different. The 

modified version of the measure distinguishes more groups, but we nevertheless 

decided not to include the (non-adjusted) Rand index in our study, and to focus only 

on its adjusted version instead. 
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Table 5. Algorithm rankings obtained with both traditional and modified versions of the (non-

adjusted) Rand index. Algorithms experiencing a change in their relative position are 

represented in bold. 

Traditional Rand Index Modified Rand Index 

Rank Algorithm Rank Algorithm 

1 InfoMap, MarkovCluster, 

Louvain, WalkTrap, InfoMod 

1 InfoMap, MarkovCluster, 

Louvain 

6 Oslom, FastGreedy 4 WalkTrap, Oslom, InfoMod 

8 Copra 7 FastGreedy 

  8 Copra 

  

Comparison of Experimental Results  

The below table displays the rankings obtained with the four original and modified 

measures. It is a synthesis of the tables presented in section 5, plus the results 

obtained for the (non-adjusted) Rand index. 

Table 6.  Algorithm ranking obtained with the considered and proposed measures: F-Measure, 

Rand Index, Adjusted Rand Index, and Normalized Mutual Information. 

Algorithm Traditional Versions Modified Versions 

 FM RI ARI NMI FM RI ARI NMI 

Copra 8 8 8 8 7 8 8 8 

FastGreedy 6 6 5 6 6 7 6 4 

InfoMap 1 1 1 1 1 1 1 1 

InfoMod 6 1 5 6 7 4 7 7 

Louvain 4 1 3 4 2 1 1 4 

MarkovCluster 2 1 1 2 2 1 1 3 

Oslom 4 6 5 4 4 4 4 4 

WalkTrap 2 1 3 2 4 4 4 2 
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