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Abstract. In this paper, we investigate the estimation of the tail index and extreme
quantiles of a heavy-tailed distribution when some covariate information is avail-
able and the data are randomly right-censored. We construct several estimators
by combining a moving-window technique (for tackling the covariate information)
and the inverse probability-of-censoring weighting method, and we establish their
asymptotic normality. A comprehensive simulation study is conducted to evalu-
ate the finite-sample performance of the proposed estimators and to identify their
application scope.
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1. Introduction

Let Y1, . . . , Yn be a sequence of independent and identically distributed replicates
of a random variable Y . One question of great practical interest in many do-
mains (reliability, hydrology, insurance, meteorology. . . ) is to estimate extreme
quantiles of the distribution of Y that is, quantities of the form

F←(1− α) = inf{y : F (y) ≥ 1− α}

where α is so small that this quantile falls beyond the range of the observed
data Y1, . . . , Yn. This problem has been widely investigated so far. It involves the
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estimation of the so-called extreme value index (or tail index) γ. This parameter
drives the tail heaviness of the distribution of Y and thus plays a central role in
the analysis of extremes, making its estimation a crucial issue. Detailed accounts
on extreme value theory (and in particular on the estimation of the extreme value
index and extreme quantiles) can be found, for example, in [2, 9, 14]. Here, we
consider the situation where some covariate information X is available to the
investigator, and the distribution of Y depends on X. Then for every X = x,
we consider the problem of estimating the conditional extreme value index γ(x)
and conditional extreme quantiles F←(1−α|x) = inf{y : F (y|x) ≥ 1−α} of the
distribution F (·|x) of Y given x. Several papers already address the estimation
of the conditional extreme value index and conditional extreme quantiles (see for
example [10, 11, 13] and the references therein). In the present paper, we consider
these issues in the more complicated situation where the observations Y1, . . . , Yn
are randomly right-censored. Censoring occurs for example in the statistical
analysis of event time data, where Y represents the time elapsed from some time
origin until the occurrence of some event of interest (death of a patient, ruin of a
company. . . ) and X represents some available covariate information (biological
markers recorded on a patient, economic characteristics of a company. . . ). If
censoring is present, the observations consist of triplets (Zi, δi, Xi), i = 1, . . . , n,
where Zi = min(Yi, Ci), δi = 1{Yi≤Ci}, 1{·} is the indicator function, and Ci is a
random censoring time for the i-th individual, that provides a lower bound on Yi
if δi = 0. The estimation of the extreme value index and extreme quantiles from
censored data has been considered, among others, by [3, 5, 8, 12] when there is
no covariate information X. Here, we consider the estimation of these quantities
when both censoring and covariate information are present.

We first construct several estimators of the conditional tail index γ(x) of the
distribution of Y given x, and we establish their asymptotic normality. Our
construction combines a moving-window approach (such as developped in [10] in
the uncensored case) with the inverse probability-of-censoring weighting (IPCW)
principle (such as used in [8] for estimating the unconditional extreme value
index with censoring). Then, we construct Weissman-type estimators of the
conditional extreme quantile F←(1 − α|x) under censoring. We establish the
asymptotic normality of the proposed estimators. Finally, we conduct a simu-
lation study to evaluate the finite-sample performance of all these estimators.
The rest of the paper is organized as follows. In Section 2, we set the model and
some useful notations. The proposed estimators are constructed in Section 3. In
Section 4, we investigate their asymptotic properties. The proofs are postponed
to the appendix. The results of a comprehensive simulation study are reported
in Section 5. A discussion and some perspectives conclude the paper.

2. Model and notations

Let (Y1, . . . , Yn) be n independent copies of a non-negative random variable Y
and (x1, . . . , xn) be the corresponding values of some p-dimensional controlled
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covariate X ∈ X , where X denotes a compact set in Rp. We assume that
each Yi can be right-censored by a non-negative random variable Ci (the Ci’s
are defined on the same probability space (Ω, C,P) as the Yi’s, and are assumed
independent of each other), such that we really observe the n independent triplets
(Zi, δi, xi), i = 1, . . . , n, where Zi = min(Yi, Ci) and δi = 1{Yi≤Ci}. Yi and Ci are
assumed to be independent. In the sequel, d will denote the Euclidean distance

on Rp, and
D→ will denote the convergence in distribution.

For every x ∈ X , we denote by F (·|x) and G(·|x) respectively the conditional
cumulative distribution functions of Y and C given X = x. We assume that for
every x ∈ X , F (·|x) and G(·|x) belong to the domain of attraction of Fréchet
distributions with shapes γ1(x) and γ2(x) respectively. This implies that F (·|x)
and G(·|x) can be written as

F (u|x) = 1− u−1/γ1(x)L1(u, x) and G(u|x) = 1− u−1/γ2(x)L2(u, x),

where γ1(·) and γ2(·) are unknown positive functions of the covariate x (referred
to as conditional tail index functions), and for every x ∈ X , L1(·, x) and L2(·, x)
are slowly varying at infinity that is, for every λ > 0,

Li(λu, x)/Li(u, x) −→ 1 as u −→∞, i = 1, 2.

Note that by independence of Y and C, the conditional cumulative distribution
function H(·|x) of Z given X = x is also heavy-tailed, with conditional extreme
value index γ(x) = γ1(x)γ2(x)/(γ1(x) + γ2(x)). To see this, note that for every
u and x,

1−H(u|x) = (1− F (u|x))(1−G(u|x))

= u−1/γ1(x)L1(u, x)u−1/γ2(x)L2(u, x)

= u−1/γ(x)L(u, x)

where γ(x) is as above and L(u, x) = L1(u, x)L2(u, x). Moreover,

lim
u→∞

L(λu, x)

L(u, x)
= lim
u→∞

L1(λu, x)

L1(u, x)

L2(λu, x)

L2(u, x)
= 1.

Finally, let q(α, x) be the conditional quantile of order 1 − α (α ∈ (0, 1))
of F (·|x), defined by F (q(α, x)|x) = 1 − α. Given a sample of observations
(Z1, δ1, x1), . . . , (Zn, δn, xn), our aims are to build and evaluate pointwise es-
timators of the conditional tail index function γ1(x) and conditional extreme
quantiles q(α, x).

3. The proposed estimators

Several estimators have been proposed for the extreme value index and extreme
quantiles when either some covariate information is available or the Yi’s are cen-
sored. When both censoring and covariates are present, we propose to estimate
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these quantities by combining a moving-window approach (proposed in [10] for
estimating the conditional tail index function without censoring) with the IPCW
principle (used for example in [8] for estimating the extreme value index in a
model without covariate, see also [5]). We first construct a pointwise estimator
of the conditional tail index function γ1(x).

3.1. Estimation of the conditional tail index function
If x ∈ X and r > 0, let B(x, r) denote the ball in Rp with center x and radius r
that is, B(x, r) = {t ∈ Rp, d(x, t) ≤ r}. Let hn,x be a positive sequence tending
to 0 as n tends to infinity, and define mn,x :=

∑n
i=1 1{xi∈B(x,hn,x)} (respectively

φ(hn,x) := n−1mn,x) as the number (respectively the proportion) of the obser-
vations (Zi, xi) lying in [0,∞) × B(x, hn,x). Let Zx(1) ≤ . . . ≤ Zx(mn,x)

be the

ordered values of Z for these observations, and let δx(1), . . . , δ
x
(mn,x)

be the cor-

responding δ’s (that is, δx(i) = δj if Zx(i) = Zj). Note that since X is controlled,

mn,x and φ(hn,x) are nonrandom numbers. If the Zx(i) were not censored, Gardes

and Girard (see [10]) propose to estimate γ1(x) by a Hill-type estimator of the
form

γ̂
(H)
kx,mn,x

(x) := M
(1)
kx,mn,x

:=
1

kx

kx∑
i=1

i log

(
Zx(mn,x−i+1)

Zx(mn,x−i)

)
(3.1)

where kx is a sequence of integers such that 1 ≤ kx ≤ mn,x. Several other
estimators of the extreme value index can be adapted to the situation where γ1
is a function of a covariate. For example, one may consider the following adapted
version of the moment estimator:

γ̂
(M)
kx,mn,x

(x) := M
(1)
kx,mn,x

+ 1− 1

2

1−
(M

(1)
kx,mn,x

)2

M
(2)
kx,mn,x

−1 (3.2)

where

M
(2)
kx,mn,x

:=
1

kx

kx∑
i=1

(
i log

(
Zx(mn,x−i+1)

Zx(mn,x−i)

))2

,

or the following adapted version of the UH estimator:

γ̂
(UH)
kx,mn,x

(x) :=
1

kx

kx∑
i=1

log

 Zx(mn,x−i)γ̂
(H)
i,mn,x

(x)

Zx(mn,x−kx)γ̂
(H)
kx,mn,x

(x)

 . (3.3)

The estimators (3.2) and (3.3) extend the estimators proposed in [7] and [4]
respectively when there is no covariate information. In what follows, we adapt
the estimators (3.1), (3.2), and (3.3) to the case where censoring occurs (note
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that these estimators are not consistent for γ1(x) if they are directly applied to
the sample (Zi, δi, xi), i = 1, . . . , n. Indeed, they will converge to the extreme
value index γ(x) of the conditional distribution of Z).

To accomodate censoring, we divide the estimators (3.1), (3.2), and (3.3) by
the proportion

p̂x =
1

kx

kx∑
i=1

δx(mn,x−i+1)

of uncensored observations among the kx largest Z’s in a neighbourhood of x
(a similar idea was used, for example, in [5] and [8] for estimating the extreme
value index without covariate). For all x ∈ X , our proposal is thus to estimate
γ1(x) by

γ̂
(c,.)
kx,mn,x

(x) :=
γ̂
(.)
kx,mn,x

(x)

p̂x
(3.4)

where the · in γ̂
(c,.)
kx,mn,x

(x) and γ̂
(.)
kx,mn,x

(x) stands for any of the Hill, moment,
and UH estimator.

3.2. Estimation of conditional extreme quantiles
In this section, we further address the estimation of conditional extreme quantiles
q(αmn,x

, x) ∈ R of order 1 − αmn,x
of the distribution of Y given X = x. Such

quantiles verify 1− F (q(αmn,x
, x)|x) = αmn,x

where αmn,x
→ 0 as mn,x → +∞.

For every x ∈ X , we first consider the following conditional Kaplan-Meier-type
estimator, based on the moving-window approach described in the section 3.1:

1− F̂mn,x
(y|x) =

mn,x∏
i=1

(
mn,x − i

mn,x − i+ 1

)δx(i)1{Zx
(i)
≤y}

.

Based on this, we propose to estimate q(αmn,x , x) by the following Weissman-
type estimator ([15]):

q̂(c,.)(αmn,x , x) = Zx(mn,x−kx)

(
1− F̂mn,x

(Zx(mn,x−kx)|x)

αmn,x

)γ̂(c,.)
kx,mn,x

(x)

(3.5)

where γ̂
(c,.)
kx,mn,x

(x) is any of the estimators (3.4). Note that (3.5) extends the

conditional extreme quantile estimator proposed in [13] in the situation where
there is no censoring.

In the next section, we establish the asymptotic properties of our estimators
(3.4) and (3.5).

5



4. Asymptotic results

We first state some regularity conditions that will be needed for proving our
asymptotic results (these conditions are used in [10] to prove the asymptotic
normality of the conditional tail index estimator without censoring, see also [5]
for the case with censoring but no covariate information). We assume that:

C1 for every x ∈ X , the conditional distribution functions F (·|x) and G(·|x) are
absolutely continuous,

C2 for every x ∈ X , there exists a function ρ(x) < 0 and a regularly varying
function b(·, x) with index ρ(x) such that for any u > 0,

lim
t→∞

H←
(
1− 1

tu |x
)
/H←

(
1− 1

t |x
)
− uγ(x)

b(t, x)
= uγ(x)

uρ(x) − 1

ρ(x)
,

The following assumptions are also required (they are similar to the conditions
given in [5] for estimating the unconditional extreme value index with censoring).
For any x ∈ X , let px = γ2(x)/(γ1(x) + γ2(x)). Assume that as n −→ ∞,
kx −→∞, kx

mn,x
−→ 0, and:

C3
√
kxb

(
mn,x

kx
, x
)
−→ λ(x) <∞,

C4 1√
kx

∑kx
i=1

[
px

(
H←

(
1− i

mn,x
|x
))
− px

]
−→ ε(x) <∞,

C5 letting A(s, t) := {1 − kx
mn,x

≤ t < 1, |t − s| ≤ C
√
kx

mn,x
, s < 1}, we assume

√
kx sup
A(s,t)

|px(H←(t|x))− px(H←(s|x))| −→ 0, for all C > 0.

We are now in position to state our first main result. Its proof is given in the
appendix.

Theorem 4.1. Let x ∈ X . Assume that the conditions C1-C5 hold and that
there exist some functions m(·) and σ(·) such that

√
kx

(
γ̂
(.)
kx,mn,x

(x)− γ(x)
)
D−→

N
(
m(x)λ(x), σ2(x)

)
. Then the following holds:√

kx

(
γ̂
(c,.)
kx,mn,x

(x)− γ1(x)
)

D−→ N
(

1

px
(λ(x)m(x)− γ1(x)ε(x)),

σ2(x) + γ1(x)2px(1− px)

p2x

)
.

Considering successively each of the Hill, moment, and UH estimator, we obtain
the following corollary:
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Corollary 4.2. Under the assumptions of Theorem 4.1, the following holds
for every x ∈ X :√

kx

(
γ̂
(c,H)
kx,mn,x

(x)− γ1(x)
)

D−→ N
(
−γ1(x)ε(x)

px
+

λ(x)

px(1− ρ(x))
,
γ31(x)

γ(x)

)
,√

kx

(
γ̂
(c,UH)
kx,mn,x

(x)− γ1(x)
)

D−→ N
(
−γ1(x)ε(x)

px
+

λ(x)

px(1− ρ(x))
,
γ21(x)

γ2(x)
(1 + γ1(x)γ(x))

)
,√

kx

(
γ̂
(c,M)
kx,mn,x

(x)− γ1(x)
)

D−→ N
(
−γ1(x)ε(x)

px
+

λ(x)

px(1− ρ(x))
,
γ21(x)

γ2(x)
(1 + γ1(x)γ(x))

)
.

This corollary is easily proved by noting that m(x) = (1 − ρ(x))−1 (for all

γ
(H)
kx,mn,x

(x), γMkx,mn,x
(x), and γ

(UH)
kx,mn,x

(x)), and that (see [1] and [7]):

σ2(x) =


γ2(x) for γ

(H)
kx,mn,x

(x)

1 + γ2(x) for γ
(M)
kx,mn,x

(x)

1 + γ2(x) for γ
(UH)
kx,mn,x

(x).

We now turn to the asymptotic properties of the estimator (3.5) of the con-
ditional extreme quantiles. The following additional notations and regularity
condition are needed (see [13]):

C6 for every x ∈ X , the conditional quantile function α ∈ (0, 1) 7→ q(α, x) ∈
(0,+∞) is differentiable and the function α ∈ (0, 1) 7→ ∆(α, x) = γ1(x) +
α(∂ log q(α, x)/∂α is continuous and tends to 0 as α tends to 0.

Let ∆(a, x) = supα∈(0,a) |∆(α, x)| and for any a ∈ (0, 1/2), let

ωn(a) = sup

{∣∣∣∣log
q(α, t)

q(α, t′)

∣∣∣∣ ;α ∈ (a, 1− a), (t, t′) ∈ (B(x, hn,x))2
}
.

We now state our second main result, which gives the asymptotic properties of
the estimator (3.5) (its proof is given in the appendix).

Theorem 4.3. Assume that the conditions C1-C6 hold. Let (βmn,x)n≥1 :=

(1 − F̂mn,x(Zx(mn,x−kx)|x))n≥1 and (αmn,x)n≥1 be a sequence such that αmn,x <

βmn,x . Let also ξmn,x = (mn,xβmn,x)1/2 log
(
βmn,x/αmn,x

)
. Assume that as

n → ∞, there exists δ > 0 such that (mn,xβmn,x
)2ωn(m

−(1+δ)
n,x ) → 0, and
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k
1/2
x max{ξ−1mn,x

,∆(βmn,x
, x)} → 0. Then

√
kx

log(βmn,x
/αmn,x

)
log

(
q̂(c,.)(αmn,x

, x)

q(αmn,x
, x)

)
D−→ N

(
1

px
(λ(x)m(x)− γ1(x)ε(x)),

σ2(x) + γ1(x)2px(1− px)

p2x

)
.

From this, one can easily derive the asymptotic distribution of q̂(c,.)(αmn,x
, x)

for each particular case (Hill, moment, UH). This proceeds along the same lines
as the Corollary 4.2, and is omitted for conciseness.

5. Simulation study

In this section, we conduct a comprehensive simulation study to evaluate the
performance of the proposed estimators (3.4) and (3.5) of the conditional extreme
value index and conditional quantiles. We investigate both the accuracy of these
estimators and the quality of the Gaussian approximation of their asymptotic
distributions. We identify the application scope of each of these estimators (in
terms of the sample size and censoring proportion).

5.1. The study design
The simulation design (inspired by [13]) is as follows. We simulate R = 1000
samples of size n (n = 500, 1000, 1500, 2000) of independent replicates (Zi, δi, xi),
where Zi = min(Yi, Ci) and xi ∈ [0, 1]. The conditional distribution of Yi given
X = xi is Pareto with parameter

γ1(x) = .5 (.1 + sin(πx))
(

1.1− .5 exp
(
−64 (x− .5)

2
))

and the distribution of Ci is Pareto with a parameter γ2 chosen to yield the
desired censoring percentage c (c is successively chosen equal to 10%, 25%, 40%).
The pattern of γ1(·) is given on Figure 1.

FIGURE 1 HERE

For each of the R samples, we estimate γ1(·) at x = 0.5 (γ1(0.5) = 0.35) by each
of the Hill, moment, and UH estimators (3.4). The moving window approach
described in Section 3 is used with the ball B(0.5, 0.1). Choosing the most
appropriate value for kx is a difficult issue, and we refer the reader to [6] and
[13] for a detailed discussion. A more detailed investigation of this issue in our
setting falls out of the scope of the present paper. For illustrative purpose,

let γ̂
(c,.),j
i,mn,x

(x) denote the estimate of γ1(x) obtained in the j-th sample (j =

1, . . . , R) with kx = i (i = 1, . . . ,mn,x). Then we retain the following value for
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kx: koptx := argmin
1≤i≤mn,x

MSE(γ̂
(c,.)
i,mn,x

(x)) = argmin
1≤i≤mn,x

R−1
∑R
j=1(γ̂

(c,.),j
i,mn,x

(x)−γ1(x))2

(where MSE stands for mean square error), keeping in mind that this method
should be modified in practice since γ1(x) is unknown. Using this value of kx, we
calculate, for each of the Hill, moment, and UH estimators and each censoring
percentage, the averaged estimates of γ1(x), along with their empirical root
mean square and mean absolute errors. Finally, for each configuration of the
simulation design parameters, we compute confidence intervals of asymptotic
level 95% for γ1(x), and we obtain the empirical coverage probabilities over the
R intervals (plug-in estimates are obtained for the asymptotic variance). The
results are given in Table 1.

TABLE 1 HERE

In order to evaluate the quality of the Gaussian approximation of the asymptotic
distribution of the proposed estimator (3.4) of the conditional tail index (at
x = 0.5), we plot the histograms of the R Hill, moment, and UH estimates. The
histograms are given in the Figures 2 (for n = 500) and 3 (for n = 1500). For
each of Hill, moment and UH, we also represent the averaged estimate of γ1(x)
and the corresponding empirical MSE, as functions of kx (see Figure 4). The
plots are given for c = 10%, 25%, 40% and n = 1000 (the graphs for the other
values of n yield similar observations and are therefore omitted).

FIGURES 2, 3, and 4 HERE

Next, we turn to the estimation of the extreme quantile q(1/5000, 0.5) of
order 1 − 1/5000 of the conditional distribution of Y given x = 0.5 (q(1/
5000, 0.5) ≈ 19.70786). For each configuration of the simulation design parame-
ters, we calculate the conditional estimate (3.5), based on the Hill, moment, and
UH estimators of the conditional tail index. Then, for each sample size n and
censoring percentage c, we obtain the averaged value of the q̂(c,.),j(1/5000, 0.5)
(j = 1, . . . , R), along with their empirical root mean square and mean absolute
errors. Finally, we compute confidence intervals (with asymptotic level 95%)
for q(1/5000, 0.5) and we obtain the empirical coverage probabilities over the R
resulting intervals. Table 2 reports the results.

TABLE 2 HERE

Similarly as above, we evaluate the quality of the Gaussian approximation of
the asymptotic distribution of the estimator (3.5) of the extreme quantile q(1/
5000, 0.5). We plot the histograms of the R = 1000 estimates of q(1/5000, 0.5)
(based on the Hill, moment, and UH estimates of the conditional tail index).
The histograms are given in the Figures 5 (n = 500) and 6 (n = 1500). We
also represent the averaged estimate of q(1/5000, 0.5) and the corresponding
empirical MSE as functions of kx (see Figure 7), when the conditional tail index
is estimated by the Hill, moment, and UH estimators respectively. The plots are
given for c = 10%, 25%, 40% and n = 1000 (the graphs for n = 500, 1500, 2000
yield similar observations and are therefore omitted).
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FIGURES 5, 6, and 7 HERE

5.2. Results
From the Table 1, the quality of the various considered estimators of γ1(x) degra-
dates as the censoring percentage increases and the sample size decreases. Note
that the empirical coverage probabilities increase as the censoring proportion in-
creases, which comes from the fact that the variance estimate increases (this in
turn implies that the confidence intervals become wider, and not more precise).
The Hill estimator performs much better than the moment and UH for every
configuration of the simulation parameters. In particular, the Hill estimator is
much less biased than the two others (this is particularly noticeable when the
sample size is moderate) and is more robust to censoring. The Figures 2 and
3 reveal that the Gaussian approximation of the asymptotic distribution of the
Hill estimator is reasonably satisfied even for a moderate sample size (n = 500).
When n = 500 and the censoring percentage is moderate (25%) to large (40%),
the distributions of the moment and UH estimators are slightly skewed. The
superiority of the Hill estimator is also noticeable on the Figure 4.

From the Table 2, the moment and UH estimators of the conditional extreme
quantile appear to be biased, even when the sample size is large, and much less
robust to censoring than the Hill-based estimator. From this table also, the Hill
estimator provides a satisfactory approximation of the true extreme quantile,
even when the censoring is heavy and the sample size is small. Moreover, the
moment and UH estimators of the conditional extreme quantile suffer numerical
instability, as can be noticed from the upper bounds of the confidence inter-
vals, which can be meaningless when the sample size is moderate (n = 500)
or the censoring fraction is moderate to large. From the Figures 5 and 6, the
moment and UH estimators are strongly skewed in almost all configurations of
the simulation design. They appear to be moderately skewed when the sample
size is large and the censoring proportion is small (10%). The Hill estimator
is moderately skewed when the sample size is small. Its distribution is close
to the Gaussian when the sample size is large. Finally, from the Figure 7, we
observe that the quantile estimate is rather sensitive to the choice of kx unless
the censoring fraction is small. From this figure, we also observe the superiority
of the Hill estimator over the moment and UH in terms of MSE.

6. Discussion and perspectives

In this paper, we have considered the estimation of the tail index and extreme
quantiles of a heavy-tailed distribution when some covariate information is avail-
able and the data are randomly right-censored. We have constructed several
estimators for these quantities, by combining a moving-window approach and
the inverse probability-of-censoring weighting method. We have established the
asymptotic normality of these estimators. A comprehensive simulation study
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was conducted to evaluate and compare their finite-sample performance. The
Hill estimators of the conditional tail index and extreme quantiles appear to
outperform the moment and UH estimators: the Hill estimators are less biased,
more robust to censoring and more stable with respect to the choice of kx.

Several issues still deserve attention. In particular, the proposed estimators
rely on the smoothing parameter hn,x and the number kx of upper order statis-
tics. A detailed investigation of how one may choose these values in practice is
needed, and is the topic for future research. In this work, we considered the case
where the covariate X is controlled. The case where X is random is the topic
for our current investigations.

Appendix: proofs of theorems

Proof of Theorem 4.1. The proof proceeds along the same lines as the proof
of Theorem 1 in [8], thus we mention the main steps only. We consider first the
following decomposition (for any of the Hill, moment, and UH estimator):√

kx

(
γ̂
(c,.)
kx,mn,x

(x)− γ1(x)
)

=
1

p̂x

√
kx

(
γ̂
(.)
kx,mn,x

(x)− γ(x)
)

+
1

p̂x

√
kx (γ(x)− γ1(x)p̂x)

=
1

p̂x

√
kx

(
γ̂
(.)
kx,mn,x

(x)− γ(x)
)

(6.6)

−γ1(x)

p̂x

√
kx

(
p̂x −

γ2(x)

γ1(x) + γ2(x)

)
.

Consider first the first term in the right-hand side of (6.6). Under the conditions
stated in Section 4, it follows from [10] that as n→∞,√

kx

(
γ̂
(.)
kx,mn,x

(x)− γ(x)
)
D−→ N

(
m(x)λ(x), σ2(x)

)
.

Moreover, for every x ∈ X ,
√
kx (p̂x − px)

D−→ N (ε(x), px(1− px)) (the proof is
similar to the proof of Theorem 1 in [8] and is therefore omitted) and thus

√
kx
p̂x

(
γ̂
(.)
kx,mn,x

(x)− γ(x)
)
D−→ N

(
m(x)λ(x)

px
,
σ2(x)

p2x

)
.

Consider now the second term in the right-hand side of (6.6). As mentioned

above,
√
kx(p̂x − px)

D−→ N (ε(x), px(1− px)), and thus by independence,√
kx

(
γ̂
(c,.)
kx,mn,x

(x)− γ1(x)
)

D−→ N
(

1

px
(λ(x)m(x)− γ1(x)ε(x)),

σ2(x) + γ1(x)2px(1− px)

p2x

)
.
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Proof of theorem 4.3. The proof follows the same steps as the proof of
Theorem 4.3.3 in [13], hence we only outline the main steps. Letting βmn,x

:=

1− F̂mn,x
(Zx(mn,x−kx)|x), we get that

βmn,x
=

mn,x−kx∏
i=1

(
mn,x − i

mn,x − i+ 1

)δx(i)
≤ 1.

Moreover,

kx
mn,x

=

mn,x−kx∏
i=1

(
mn,x − i

mn,x − i+ 1

)
≤ βmn,x

.

It follows that kx ≤ mn,xβmn,x
≤ mn,x and thus, mn,xβmn,x

→ ∞ as n → ∞.
The Theorem 4.3.1 of [13] therefore applies, and together with the delta-method,
it implies that

(
mn,xβmn,x

)1/2
log

(
Zx(mn,x−kx)

q(βmn,x , x)

)
= Op(1). (6.7)

Now, it follows from (3.5) that

log q̂(c,.)(αmn,x
, x) = logZx(mn,x−kx) + γ̂

(c,.)
kx,mn,x

(x) log

(
βmn,x

αmn,x

)

and thus

√
kx

log(βmn,x
/αmn,x

)
log

(
q̂(c,.)(αmn,x

, x)

q(αmnx
, x)

)

=

√
kx

log(βmn,x/αmn,x)
log

(
Zx(mn,x−kx)

q(βmn,x , x)

)
+
√
kx

(
γ̂
(c,.)
kx,mn,x

(x)− γ1(x)
)

−
√
kx

log(βmn,x
/αmn,x

)

(
log

(
q
(
αmn,x , x

)
q(βmn,x

, x)

)
+ γ1(x) log

(
βmn,x

αmn,x

))
:= ξ1,mn,x

+ ξ2,mn,x
− ξ3,mn,x
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where

ξ1,mn,x
=

√
kx

log(βmn,x
/αmn,x

)
log

(
Zx(mn,x−kx)

q(βmn,x
, x)

)
ξ2,mn,x

=
√
kx

(
γ̂
(c,.)
kx,mn,x

(x)− γ1(x)
)

ξ3,mn,x =

√
kx

log(βmn,x/αmn,x)

(
log

(
q
(
αmn,x

, x
)

q(βmn,x , x)

)
+ γ1(x) log

(
βmn,x

αmn,x

))
.

Note first that with the notations of Theorem 4.3,

ξ1,mn,x
=
√
kxξ
−1
mn,x

(mn,xβmn,x
)1/2 log

(
Zx(mn,x−kx)

q(βmn,x
, x)

)
.

It follows from (6.7) and the assumptions of Theorem 4.3 that ξ1,mn,x
→ 0

in probability as n → ∞. Next, from the Theorem (4.1), ξ2,mn,x
converges

in distribution to N
(

1
px

(λ(x)m(x)− γ1(x)ε(x)) ,
σ2(x)+γ2

1(x)px(1−px)
p2x

)
. Finally,

some calculations yield

ξ3,mn,x
= −

√
kx

log(βmn,x
/αmn,x

)

∫ βmn,x

αmn,x

∆(u, x)

u
du.

By bounding ∆(u, x) above, we obtain that |ξ3,mn,x
| ≤ k1/2x ∆(βmn,x

, x) and thus,
ξ3,mn,x → 0 in probability as n → ∞ under the assumptions of Theorem 4.3.
Finally,

√
kx

log(βmn,x
/αmn,x

)
log

(
q̂(c,.)(αmn,x

, x)

q(αmnx
, x)

)
:= ξ1,mn,x

+ ξ2,mn,x
− ξ3,mn,x

converges in distribution to N
(

1
px

(λ(x)m(x)− γ1(x)ε(x)) ,
σ2(x)+γ2

1(x)px(1−px)
p2x

)
as n→∞.
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Hill estimator Moment estimator UH estimator

n 10% 25% 40% 10% 25% 40% 10% 25% 40%

500 .349 .350 .345 .323 .315 .317 .322 .304 .323
(.037) (.043) (.045) (.116) (.134) (.172) (.114) (.137) (.171)
[.030] [.034] [.035] [.090] [.107] [.136] [.090] [.109] [.135]

[.273,.425 ] [.270,.428] [.256,.434] [.081,.566] [.040,.591] [0∗,.652] [.084,.561] [.029,.580] [0∗,.652]

.758† .961† .963† .900† .908† .950† .945† .960† .964†

1000 .346 .349 .346 .337 .330 .334 .339 .336 .326
(.027) (.029) (.032) (.081) (.097) (.119) (.081) (.099) (.119)
[.022] [.023] [.026] [.065] [.076] [.093] [ .065] [.079] [.093]

[.293,.400] [.290,.408] [.283,.409] [.166,.509] [.124,.535] [.095,.572] [.171,.508] [.135,.536] [.088,.561]

.969† .986† .990† .959† .964† .970† .965† .968† .970†

1500 .347 .348 .345 .344 .339 .335 .342 .340 .339
(.021) (.025) (.030) (.067) (.071) (.101) (.067) (.072) (.101)
[.017] [.020] [.024] [.053] [.057] [.080] [.053] [.058] [.081]

[.304,.389] [.300, .396] [.289,.401] [.208,.480] [.171,.506] [.122,.549] [.206,.477] [.183,.511] [.129,.551]

.973† .993† .995† .971† .977† .981† .975† .980† .984†

2000 .349 .349 .348 .337 .340 .335 .342 .345 .337
(.019) (.020) (.022) (.058) (.067) (.087) (.058) (.068) (.087)
[.015] [ .016] [ .017] [.045] [.052] [.068] [.046] [.053] [.068]

[.311,.387] [.310,.389] [.303,.394] [.212,.463] [.202,.477] [.160,.509] [.219,.466] [.209,.480] [.164,.512]

.987† .995† .998† .980† .984† .986† .981† .984† .987†

Table 1 (simulation results for γ1(x)). For each configuration of the simulation parameters (n, c, tail index estimator),
the first line gives the averaged value of the R = 1000 estimates of γ1(x). (·): empirical root MSE of the estimates. [·]:
empirical mean absolute error. [·, ·]: 95%-level asymptotic confidence interval for γ1(x) (a ∗ indicates that the lower bound
was negative and thus truncated to 0). †: empirical coverage probability.
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Hill estimator Moment estimator UH estimator

n 10% 25% 40% 10% 25% 40% 10% 25% 40%

500 19.777 20.225 20.072 27.490 27.343 27.279 25.313 29.046 37.537
(.258) (.265) (.310) (.807) (.877) (1.164) (.806) (.892) (1.213)
[.326] [.333] [.383] [1.008] [1.122] [1.431] [1.007] [1.154] [1.508]

[16.00,25.88] [15.90,27.77] [15.56,28.25] [15.81,105.03] [14.76,184.95] [14.25,317.34] [14.56,96.71] [15.82,176.50] [20.05,292.11]
0.594† 0.936† 0.970† 0.680† 0.880† 0.882† 0.230† 0.921† 0.926†

1000 19.381 19.960 20.086 24.065 22.762 27.813 23.189 23.465 27.695
(.182) (.206) (.222) (.565) (.671) (.820) (.562) (.676) (.826)
[.226] [.259] [.280] [.712] [.843] [1.022] [.709] [.841] [1.025]

[16.54,23.39] [16.71,24.77] [16.55,25.53] [15.60,52.60] [14.00,60.69] [16.81,80.31] [15.03,50.68] [14.53,60.91] [16.82,78.30]
0.708† 0.971† 0.989† 0.863† 0.942† 0.948† 0.262† 0.958† 0.961†

1500 19.841 19.981 19.905 22.506 21.621 22.762 22.584 23.106 26.684
(.142) (.161) (.179) (.468) (.534) (.639) (.473) (.544) (.638)
[0.177] [0.199] [0.223] [0.597] [0.666] [0.818] [0.600] [0.674] [0.684]

[17.75,22.47] [17.21,23.59] [17.26,23.70] [16.32,36.19] [14.39,43.37] [15.15,45.72] [16.38,36.32] [15.49,45.42] [17.97,51.72]
0.910† 0.990† 0.992† 0.904† 0.957† 0.974† 0.972† 0.978† 0.981†

2000 19.887 19.841 20.048 21.889 22.506 22.132 21.159 22.584 24.696
(.131) (.142) (.160) (.400) (.468) (.616) (.397) (.473) (.624)
[.164] [.177] [.202] [.503] [.597] [.766] [.500] [.600] [.771]

[17.79,21.53] [17.42,23.04] [17.60,23.28] [15.85,35.36] [15.61,40.28] [15.28,40.07] [15.32,34.18] [15.71,40.13] [17.20,43.72]
0.922† 0.992† 0.994† 0.953† 0.963† 0.978† 0.277† 0.981† 0.983†

Table 2 (simulation results for q(1/5000, .5)). For each configuration of the simulation parameters (n, c, tail index
estimator), the first line gives the averaged value of the R = 1000 estimates of q(1/5000, .5). (·): empirical root MSE.
[·]: empirical mean absolute error. [·, ·]: 95%-level asymptotic confidence interval for q(1/5000, .5)). †: empirical coverage
probability.
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Figure 1. Pattern of the function γ1(·) on [0, 1].
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Figure 2. Histograms of the R = 1000 Hill (1st line), moment (2nd line), and UH (3rd
line) estimates of the tail index at x = .5 (γ1(.5) = .35), for c = 10% (left column),
c = 25% (middle), c = 40% (right). The sample size is 500.
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Figure 3. Histograms of the R = 1000 Hill (1st line), moment (2nd line), and UH (3rd
line) estimates of the tail index at x = .5 (γ1(.5) = .35), for c = 10% (left column),
c = 25% (middle), c = 40% (right). The sample size is 1500.

19



0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

 

k

G
am

m
a

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

 

k

G
am

m
a

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

 

k

G
am

m
a

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

 

k

M
SE

 o
f e

st
im

at
or

s

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

 

k

M
SE

 o
f e

st
im

at
or

s

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

 

k

M
SE

 o
f e

st
im

at
or

s

Figure 4. Averaged value (upper-panel) and empirical mean square error (lower panel)
of the R estimates of γ1(.5) = .35, for the Hill (dashed line), moment (dotted line), and
UH (dash-dotted line) estimators, for c = 10% (left column), c = 25% (middle), c = 40%
(right). n = 1000. The true value γ1(.5) = .35 is represented as the black constant line
(upper panel).
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Figure 5. Histograms of the R = 1000 estimates of q(1/5000, .5) ≈ 19.70786, based on
the Hill (1st line), moment (2nd line), and UH (3rd line) estimates of the conditional tail
index, for c = 10% (left column), c = 25% (middle), c = 40% (right). The sample size is
500.
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Figure 6. Histograms of the R = 1000 estimates of q(1/5000, .5) ≈ 19.70786, based on
the Hill (1st line), moment (2nd line), and UH (3rd line) estimates of the conditional tail
index, for c = 10% (left column), c = 25% (middle), c = 40% (right). The sample size is
1500.
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Figure 7. Averaged value (upper-panel) and empirical mean square error (lower panel)
of the R estimates of q(1/5000, .5) ≈ 19.70786, based on the Hill (dashed line), moment
(dotted line), and UH (dash-dotted line) estimators of the tail index, for c = 10% (left
column), c = 25% (middle), c = 40% (right). n = 1000. The true q(1/5000, .5) is
represented as the black constant line (upper panel).

23


	Introduction
	Model and notations
	The proposed estimators
	Estimation of the conditional tail index function
	Estimation of conditional extreme quantiles

	Asymptotic results
	Simulation study
	The study design
	Results

	Discussion and perspectives

