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ENS, CNRS; 4 place Jussieu, 75252 Paris, France and

State Key Laboratory for Precision Spectroscopy,

East China Normal University, Shanghai 200062, China

Pablo L. Saldanha

Departamento de F́ısica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil and

Departamento de F́ısica, Universidade Federal de Minas Gerais,

Caixa Postal 702, 30161-970, Belo Horizonte, MG, Brazil
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We study in this paper the efficiency of different two-photon states of light to

induce the simultaneous excitation of two atoms of different kinds when the sum of

the energies of the two photons matches the sum of the energies of the two atomic

transitions, while no photons are resonant with each individual transition. We find

that entangled two-photon states produced by an atomic cascade are indeed capable

of enhancing by a large factor the simultaneous excitation probability as compared to

uncorrelated photons, as predicted some years ago by Muthukrishnan et al, but that

several non-entangled, separable, correlated states, produced either by an atomic

cascade or parametric down conversion, or even appropriate combinations of coher-

ent states, have comparable efficiencies. We show that the key ingredient for the

increase of simultaneous excitation probability is the presence of strong frequency

anti-correlation and not time correlation nor time-frequency entanglement.
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I. INTRODUCTION

Quantum entanglement, and its inherent non local properties, are among the most fas-

cinating and challenging features of the quantum world. In addition, entanglement plays a

central role in quantum information [1–5]. Since its first description in the decade of 1930

([6]), and in spite of the decisive contribution of J. Bell[7] and the subsequent experimental

studies[8], entanglement stays even now as a rather mysterious and puzzling property of

bipartite quantum objects. In particular distinguishing between effects related to genuine

entanglement and those related to the quantum correlations measured on a single quantum

observable is a difficult task[9], as can be seen for example by the great number of papers

about quantum discord [10, 11]. Some time ago, a paper was published [12] which discusses

how entangled states would be able to induce transitions in quantum systems that factorized

states could not excite. The physical problem studied in that paper is therefore a good test

bench to examine in detail in a simple situation the role of entanglement and of correlations

not related to entanglement. This is the purpose of the present paper.

The problem under consideration is the probability of two-photon two-atom (2P2A) ex-

citation, in the situation where the two atoms are of different species and have different

transition frequencies and the light to which the atoms are submitted is in general non-

resonant for each one, but resonant for the system of two atoms. Two photon absorption by

single atoms or molecules have been studied since 1931 [13] and remains a current subject of

theoretical and experimental research [14–18]. When the atoms have more than one interme-

diate state many important features, including cross section cancellation and enhancement,

are observed [15]. These features have recently been shown to be applicable in characterizing

the quantum states of the absorbed two photon [18].

It has also been known for a long time, that the two photons resonant excitation of

two different atoms is indeed possible when the two atoms are interacting [19]. A nearly

monochromatic light beam will have a resonant two photon absorption peak when tuned

across the average frequency of the two atoms. Different experiments have since then con-

firmed this theoretical prediction [20–22]. In addition to a direct potential interaction be-

tween the atoms, like the dipole-dipole, cooperative 2P2A has also been predicted for pairs

of atoms inside an optical cavity [23]. In this case the physical interaction is mediated by

the radiation background surrounding the atoms. Ref [12] addresses the case of two photon

absorption in absence of interaction between the two atoms, with the excitation made using

some particular entangled state of light. The conclusion of the authors of [12] is that in

some situations entanglement can replace a real physical interaction, which is a far reaching

statement and an important physical property related to entanglement. Surprisingly, this

question did not attract much attention during several years. The same subject was also

considered, but in the context of spin entanglement in Electron Paramagnetic Resonance

by K. Salikhov[24]. More recently, [25, 26] the related problem of interaction with pairs of

broadband spectrum photons has been discussed.
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In this paper, we will determine the probability of 2P2A excitation by different multi-

modal states of light. From these results we draw conclusions on the respective role of

entanglement and of correlations not related to entanglement in such a process. Section

II gives the general framework in which the problem is treated. Section III derives from

a second order perturbation theory the relevant transition probability. Results for various

different two photon states, introduced in section IV, are given in section V and VI. Finally,

in section VII we discuss different hypotheses for the physical origin of the enhancement of

the 2P2A process.

II. THE MODEL

Let us first precise the model we are using and the notations. We consider two different

two-level atoms labeled (1) and (2), having ground and excited states |gi〉 and |ei〉 (i = 1, 2),

corresponding Bohr frequencies ωi and spontaneous emission rates γi , interacting with a

quantized field. We assume that that the transitions occur in times must shorter than the

two atom lifetimes so that we can consider that the two excited states have infinite lifetimes

(γ1,2 ' 0 ) and keep for ever their excitation. For the sake of simplicity we will assume that

the light source is far from the atoms, so that the only non-empty modes are plane-wave

modes having a single propagation direction Oz and a single polarization. In this situation

one can use annihilation operators depending only on the frequency a(ω`) = a`. At the

rotating wave approximation the hamiltonian of the system is then given by :

H = H0
atom +H0

f + V

H0
atom = ~ω1b

†
1b1 + ~ω2b

†
2b2, bi = |gi〉〈ei|

H0
f =

∑
`

~ωa†`a`, [a`, a
†
`′ ] = δ`,`′

V = ~b†1
∑
`

f1(ω`)a` + ~b†2
∑
`

f2(ω`)a` + h.c., (1)

where fi(ω`) = −idi
√
ω`/2~ε0SL e

iω`zi/c = fi`e
iω`zi/c, fi` being a slowly varying function of

the photon frequency, can be treated as a constant fi ≡ fi(ωi) ≈ fi(ω`). di is the electric

dipole matrix element of atom i, S the transverse section of the beam which is focused on

the atoms, zi the position of atom i and L the length of the quantization box, the mode

density in terms of frequencies ω` being 2πc/L. For simplicity, we will set z1 ' z2 ' 0 and

hence will not consider propagation effects.

The evolution of whole system is described by a unitary operator U , ρ(t) = U(|g1g2〉〈g1g2|⊗
ρ0)U †, where ρ0 is the input light state, which can be either a pure two-photon state |Ψµ〉 =∑

kq c
µ
kq|1k, 1q〉 or a mixed state in its spectral decomposition form ρ0 =

∑
µ pµ|Ψµ〉〈Ψµ|.

The probability of 2P2A excitation is given by :

P (t) =
∑
µ

pµ〈Ψµ|〈g1g2|U †(t)|e1e2〉〈e1e2|U(t)|g1g2〉|Ψµ〉 (2)
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so that the transition probability is known when the field variable operator 〈g1g2|U(t)|e1e2〉
is determined and the incident light state ρ0 is known. The exact expression of the evolution

operator is unfortunately not easy to obtain. To simplify our discussion, we will use lowest

order perturbation theory, which is a good approximation for bi-photon states which do not

carry much energy.

III. SECOND ORDER PERTURBATION THEORY

If we assume that the coupling between the light field and the two atoms is weak, the

leading term in the evolution is U (2) = −~−2e−it(H
0
atom+H0

f )/~ ∫ t
0
dτ
∫ τ

0
dsṼ (τ)Ṽ (s), where Ṽ

is the coupling term in the interaction picture. One has

〈e1e2|U (2)|g1g2〉 = e−it(ω1+ω2+H0
f/~)

∑
mn

amanAmn (3)

Amn = f1(ωm)f2(ωn)
1− ei(ω1−ωm)t

ωm − ω1

1− ei(ω2−ωn)t

ωn − ω2

(4)

so that the leading term of the co-excitation probability (2) reads

P (t) ≈
∑
jkmn

A∗jkAmnTr(a†ja
†
kamanρ0) (5)

In the case of a continuous frequency distribution of photons, one must replace the sum by

an integral :

〈e1e2|U (2)|g1g2〉 = e−it(ω1+ω2+H0
f/~) L2

4π2c2

∫∫
dωmdωna(ωm)a(ωn)Amn (6)

where a(ω) in the annihilation operator of a monochromatic photon of frequency ω.

Note that the coefficient Amn is the product of two factors which represent the response

of each atom to the field. When time t goes to infinity these two factors behave roughly like

Dirac delta functions centered on individual atom resonances (we will precise this argument

in section VI). The 2P2A excitation probability is indeed induced by the wings of the incident

light spectrum which are resonant with the atoms. Consequently, if one photon is absorbed

by one atom, there is no reason why the second photon should be absorbed by the second

atom in a way correlated to the absorption of the first photon. In other words, the 2P2A

excitation phenomenon has no reason a priori to have a resonant behavior when the 2P2A

resonance condition ω1 + ω2 = ωm + ωn is fulfilled.

However, as the process is non-linear and involves two atoms, it can be enhanced by

taking advantage of correlation effects between the atoms or between the photons :

• A first possibility consists in introducing an interaction between the two atoms. Let

ωu ' ω1 + ω2 be the maximal Bohr frequency of the two-atom system : if one photon
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with frequency ωk is absorbed, then the two atoms will be more likely to absorb another

photon with frequency ωu − ωk in a resonant two-photon process [19, 27]. This was

experimentally demonstrated in [20–22] using nearly degenerate photon pairs.

• A second possibility is to use correlated photons to interact with the two atoms. Let

us consider a source that emits correlated photons : if a photon is absorbed by one

atom, then the remaining atom will interact with its correlated photon with a higher

probability, leading to enhanced 2P2A resonance (we will precise this argument and

the kind of correlation needed in section VII).

We will now precise these latter ideas by having a closer look at different possible light

states likely to induce such a 2P2A transition.

IV. ENTANGLED, CORRELATED-SEPARABLE AND FACTORIZED

TWO-PHOTON STATES

Before we go further, let us precise the different kinds of two-photon states that we will

consider in the following. Starting from entangled pure quantum state |Ψ〉, having a density

matrix ρ0= |Ψ〉〈Ψ| of matrix elements ρkk′qq′ = 〈1k, 1q|ρ0|1k′ , 1q′〉, one can construct others

that have the same mean energy and the same single photon spectrum, and hence that would

give the same transition probabilities for a single photon resonance. We choose two special

cases that will allow a quantitative evaluation of the role of correlations :

• The first one is defined as

ρ1 =
∑
k,q

Tr[Πk ⊗ Πqρ0]Πk ⊗ Πq =
∑
k,q

ρkkqq|1k, 1q〉〈1k, 1q| (7)

where Πk is the frequency projection operator Πk = |1k〉〈1k|. ρ1 is the diagonal part of

ρ0. It has lost any temporal field coherence and is time independent. It is actually a

correlated-separable state[28], which results from the ”disentanglement” of the previous

one. It gives rise however to correlations between its two parties.

• The second one is defined as

ρ2 =
∑
k

Tr[Πkρ0]Πk⊗
∑
q

Tr[Πqρ0]Πq =
∑
k,q

∑
q′

ρkkq′q′ |1k〉〈1k|⊗
∑
k′

ρk′k′qq|1q〉〈1q| (8)

This is a fully factorized state, which does not give rise to any correlation whatsoever.

These states will induce 2P2A excitation with respective probabilities P1(t) and P2(t).

The two diagonal density matrices (ρ1, ρ2) describe two c.w. fields whilst the entangled

pure state ρ0 describes a pulse, as a result, at a time t, the flow of energy having interacted
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with atoms in each state is different. However, as shown in appendix B, this quantity is

quite the same in each state when t = L/c. For comparison, we will take t = L/c through

the whole paper.

We are of course interested in cases where one observes an increase in the excitation

probability, i.e. when P (L/c)� P2(L/c); if P (L/c)� P1(L/c), then entanglement is indeed

the key to efficient 2P2A transition, whereas if P (L/c) ' P1(L/c)� P2(L/c), correlations,

of quantum or classical origin, are more important than entanglement in the present problem.

V. 2 PHOTON 2 ATOM EXCITATION INDUCED BY DIFFERENT PHOTON

QUANTUM FIELD STATES

We will now examine the efficiency of various multimode light states for the simultaneous

excitation of the two atoms.

A. two quasi-monochromatic uncorrelated photons

Let us begin by the simplest case : two uncorrelated photon wavepackets of mean frequen-

cies ωα and ωβ, and respective spectral widths γα and γβ much bigger than the detecting

atom spectral widths γ1 and γ2 , emitted by two uncorrelated atoms excited at the same

time in the past and arriving at the detecting atoms position at t = 0, described therefore

by the bi-photon state |ψ11(t)〉 with

|ψ11(t)〉 =
∑
kq

c11
kqe

i(ωk+ωq)t|1k, 1q〉 ; c11
kq =

gα(ωk)gβ(ωq)

(ωk − ωα + iγα)(ωq − ωβ + iγβ)
(9)

It is the tensor product of two single-photon wave packets[29] of duration γ−1
α and γ−1

β . In

the calculation of the probability amplitude in (5), we will replace the sum over modes by

the double integral (L2/4π2c2)
∫∫∞

0
dωkdωq, extend each integration domain to the whole

real axis and use the residue theorem [30]. For the transition probability amplitude, one

finds, when γαt� 1 and γβt� 1 while keeping γ1t� 1 and γ2t� 1 :

A11 ' L2f1(ω1)f2(ω2)gα(ω1)gβ(ω2)

c2(ω1 − ωα + iγα)(ω2 − ωβ + iγβ)
(10)

If we assume that the coefficients g do not vary with frequency the normalization of the

two-photon state imposes that :

gαgβ =
2c
√
γαγβ

L
(11)

so that the transition probability P 11 is

P 11 =
P0γαγβ

[(ω1 − ωα)2 + γ2
α][(ω2 − ωβ)2 + γ2

β]
(12)

where P0 = d2
1d

2
2ω1ω2/~2ε2

0c
2S2 = 36π2γ1γ2c

4/ω2
1ω

2
2S

2.
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1. double resonance

Let us first assume that we are in the best possible situation, where the photons are

separately resonant with the two atoms : ωα = ω1 and ωβ = ω2. The transition probability

is then equal to

P 11
DR =

P0

γαγβ
(13)

which can be written in a more general way

P 11
DR =

P0

Sfr
(14)

where Sfr is the effective area of frequency distribution |ckq|2 in the (ωk, ωq) plane (see

figures (2)). This result turns out to be general and implies that all pure states having the

same effective areas Sfr, entangled or not, will produce the same doubly resonant transition

probability. Thus we regard (13) as a universal result under the double resonance condition,

and its value will serve as a reference for all subsequent transition probabilities.

In an actual experimental situation, one may take : γ1,2 ∼ 1kHz, γα,β ∼ 1MHz, S '
4π2c2/ω1ω2, thus P 11

DR ' 9γ1γ2/4π
2γαγβ ∼ 10−7.

2. two-photon two-atom resonance

Let us now turn to the 2P2A resonant case, where none of the two photons are resonant

with the two atoms, but where the sum of their two energies almost matches the sum of the

two atomic energies : ωα +ωβ ' ω1 +ω2. The transition probability (12) has in this case no

resonant variation as a function of the 2P2A detuning δ = ωα + ωβ − ω1 − ω2. When δ = 0

the transition probability is :

P 11
2P2A =

P0γαγβ
∆4

= P 11
DR

γ2
αγ

2
β

∆4
(15)

where ∆ is the smallest frequency mismatch between the emitting atoms frequencies and the

detecting atoms frequencies, supposed to be much larger than the atomic widths. Without

loss of generality, we have taken ∆ = |ωα − ω1| = |ω2 − ωβ|.
We then conclude that the special case of 2P2A excitation probability by uncorrelated

photons is also non zero for any couple of frequencies ωα, ωβ, thus such a two-photon

transition turns out not to be disallowed but simply induced by the wings of the two single

photon frequency resonances. It is therefore very weak, as witnessed by the ∆−4 variation

of probability.

B. two photons produced by an atomic cascade

Let us now envision the case considered in [12] of a two-photon light state produced by

a three-level atom excited at a given time t = 0 in the upper state that cascades down to
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the ground state on two successive transitions of Bohr frequencies successively equal to ωα
and ωβ. The corresponding spontaneous emission rates are γα and γβ. We assume that the

emitted light is wholly directed in the Oz direction of atoms (1) and (2) (by means of a

parabolic mirror for example). It is described by a bi-photon wave-packet with a coefficient

ccaskq equal, at a time t long compared to the lifetimes of the two transitions, to[12, 30] :

ccaskq =
gα(ωk)gβ(ωq)

[ωk + ωq − ωα − ωβ + iγα][ωq − ωβ + iγβ]
(16)

Here this entangled non stationary state is produced by a cascade, so that the photon of

frequency ωq always arrives just after the photon of frequency ωk. In addition, the probability

to have photons of frequency sum ωk + ωq close to ωα + ωβ is high. We have therefore an

entangled state which is not only correlated in time but also anti-correlated in frequency. It

is the time-energy analog of the position-momentum entangled state introduced by EPR, or

of the field quadrature entangled state[3, 30, 31].

Using the Residue Theorem, the transition probability amplitude reads exactly

Acas =
L2

c2

gα(ω1)gβ(ω2)f1(ω1)f2(ω2)

ωβ2 − δ − i(γβ − γα)

[
1− e−(γβ+iωβ2)t

ωβ2 − iγβ
− 1− e−(γα+iδ)t

δ − iγα

]
+ (1↔ 2) (17)

When γ−1
1,2 � t � γ−1

α,β, the four decaying terms in Eq.(17) are negligible, leading to a

compact expression

Acas = −L
2

c2

f1(ω1)f2(ω2)

δ − iγα

[
gα(ω1)gβ(ω2)

ωβ2 − iγβ
+
gα(ω2)gβ(ω1)

ωβ1 − iγβ

]
(18)

where ωµν = ωµ − ων is the frequency difference between frequency ωµ and frequency

ων ;µ, ν = α, β, 1, 2, k, q.

1. double resonance

Let us first consider here also the most favorable case, which is the double resonance

(DR) situation. Keeping only the largest term, one obtains in this case for the probability

amplitude when γαt� 1 and γβt� 1 :

AcasDR '
L2f1(ω1)f2(ω2)gα(ω1)gβ(ω2)

c2γαγβ
(19)

Using the same assumption as in the previous calculation, one finds for the probability

P cas
DR =

P0

γαγβ
= P 11

DR (20)

It is time independent because we are considering times much longer than the two-photon

pulse of duration γ−1
α + γ−1

β . As it is equal to the probability obtained with uncorrelated

photons, we conclude that entanglement does not help in the fully resonant case, but does

not harm either.
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2. two-photon two-atom resonance

Let us now turn to the 2P2A resonance case. One obtains in this case for the probability

:

P cas
2P2A '

L2

4c2

P0

δ2 + γ2
α

[
gα(ω1)gβ(ω2)

ω2 − ωβ
+
gα(ω2)gβ(ω1)

ω1 − ωβ

]2

(21)

This expression, already obtained in [30], shows that for this state the probability has in-

deed a resonant character around the two-atom two-photon resonance δ = 0. The transition

probability P cas
2P2A at the exact two-atom two-photon resonance is then :

P cas
2P2A '

P0

γαγβ

γ2
β

∆2
= P 11

DR

γ2
β

∆2
; (22)

One therefore finds that the transition probability is in the present case smaller than P 11
DR

by a factor (γβ/∆)2 at exact 2P2A resonance, as expected because one is now less resonant

than in the double resonance case. One finds more importantly that P casc
2P2A is larger than

P 11
2P2A, i.e. than in the two uncorrelated photon case, by a factor (∆/γα)2, which can be

very large. This enhancement of the 2P2A transition probability is the main result of [12]

: entanglement may indeed significantly enhance the two-photon two-atom process. To the

best of our knowledge no experiment has been undertaken to show such a striking effect.

It must be emphasized that the present considerations do not imply that the atom cascade

entangled state is the only one likely to produce such a significant increase in the transition

probability. This is the reason why we will now consider other light quantum states which

may also be of interest in the present problem.

C. Correlated and factorized states analogous to the atomic cascade

Let us now consider the two states that have the same energy and the same spectrum

that we have introduced in section (IV) , namely the correlated-separable state :

ρ1 =

(
2c

L

)2∑
kq

γβ
(ω2

qβ + γ2
β)

γα
[(ωqβ + ωkα)2 + γ2

α]
|1k, 1q〉〈1k, 1q| (23)

and the factorized state :

ρ2 =

(
2c

L

)2
(∑

k

γα + γβ
ω2
kα + (γα + γβ)2

|1k〉〈1k|

)
⊗

(∑
q

γβ
ω2
qβ + γ2

β

|1q〉〈1q|

)
(24)

The first one corresponds to an atomic cascade for which the starting time is random, thereby

averaging to zero all the off-diagonal time dependent terms in the density matrix, the second

one characterizes a mixed state with two uncorrelated photons having the same spectrum

than the initial cascade state. They give rise to the following transition probabilities :
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P1 ' P0
γαγβ
δ2 + γ2

α

(
1

(ω1 − ωβ)2
+

1

(ω2 − ωβ)2

)
t2

(L/c)2
(25)

P2 ' P0γβ(γα + γβ)

(
1

(ω1 − ωβ)4
+

1

(ω2 − ωβ)4

)
t2

(L/c)2
(26)

At exact 2P2A resonance, we have P1 ' P 11
DRγ

2
βc

2t2/(∆2L2) and P2 ' P 11
DRγαγ

2
β(γα +

γβ)c2t2/(∆4L2). At any time t, one finds P1 � P2, since the spectral widths are much

smaller than the 2P2A detuning. This fact shows that correlations play indeed an impor-

tant role in the efficiency of the excitation.

Note that P1 and P2 depend on time, as can be expected in a situation where the detecting

atoms, which have an infinite lifetime, are submitted to a stationary quantum state, and

therefore to c.w. light. In order to compare P1 and P2 to P cas
2P2A (equation (21)), which is

induced by a pulse of light, we need to fix an interaction time t. It is shown in appendix

B that the two atoms are submitted to the same energy flow at time t = L/c. One then

obtains at this time and at exact resonance :

P1 ' P 11
DR

γ2
β

∆2
' P cas

2P2A; (27)

We thus find the result that a correlated-separable state like ρ1 can induce the 2P2A transition

as efficiently as the entangled cascade state. This statement constitutes the main result of

the present paper.

Let us stress that ρ1, though not entangled, has indeed genuine quantum properties,

being a mixture of single photon states which are highly non-classical. It displays strong

correlations that we will study in more detail in section VI.

D. two-photon state produced by parametric down conversion

Let us now examine the two-photon state |Ψpdc〉 produced by non-degenerate parametric

down conversion which has been under wide and in-depth investigation for many years.

Because of its χ(2) nonlinearity, a non-linear crystal submitted to a pulsed pump field of

central frequency ωα+ωβ and narrow bandwidth σα emits a signal field (central frequency ωα)

and an idler field (central frequency ωβ). Let σβ be the frequency width of the phase matching

curve. For the sake of computational simplicity we will use a Gaussian approximation for

both the laser lineshape and the phase matching curve. The crystal generates in such a case

an entangled state which is described by a wavepacket with a coefficient cpdckq [32] given by

cpdckq = N e−
(ωkα+ωqβ)2

2σ2α
+i(ωkα+ωqβ)t0

e−ω2kα+ω2qβ

2σ2
β + ie

−
ω2kβ+ω2qα

2σ2
β

 (28)
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where N is normalized coefficient, satisfying(
L

2πc

)2

N 2
2πσασ

2
β√

σ2
α + 2σ2

β

= 1

In the expression of (28), we have assumed that the pump laser pulse had a Gaussian

temporal shape centered at time t0 � σ−1
α + σ−1

β to provide most of the photons a chance

to interact with the two detecting atoms. The factor i in the second component originates

from a relative phase (depends on the birefringence) which is set to be π/2 for the sake of

simplicity in our case.

Here we will also extend the double integral to the whole plane and find, when t is

sufficient large[33], the transition probability

P pdc = πP0

√
σ2
α + 2σ2

β

σασ2
β

e
− δ2

σ2α

e−ω21α+ω22β

2σ2
β + e

−
ω22α+ω21β

2σ2
β

2

(29)

Let us also take into account the two mixed biphoton states (ρpdc1 , ρpdc2 ) pertaining to the

pure SPDC type II biphoton state (28),

ρpdc1 = N 2
∑
kq

e
−

(ωkα+ωqβ)2

σ2α

e−ω2kα+ω2qβ

σ2
β + e

−
ω2kβ+ω2qα

σ2
β

 |1k, 1q〉〈1k, 1q|, (30)

ρpdc2 = π
c2

L2

ζ

σ2
β

∑
k

e−ζ ω2kασ2β + e
−ζ

ω2kβ

σ2
β

 |1k〉〈1k|
⊗
∑

q

e−ζ ω2qασ2β + e
−ζ

ω2qβ

σ2
β

 |1q〉〈1q|
 , (31)

where ζ = 1 + σ2
β/(σ

2
α + σ2

β). The first one corresponds to a SPDC process in which all the

off-diagonal time dependent terms in the density matrix are averaging to zero by random

processes, while the second one characterizes a mixed state with two uncorrelated photons

having the same spectrum than the initial SPDC state. When t is sufficient large, their

corresponding transition probabilities read

P pdc
1 = πP0

√
σ2
α + 2σ2

β

σασ2
β

e
− δ2

σ2α

e−ω21α+ω22β

σ2
β + e

−
ω21β+ω22α

σ2
β

( t

L/c

)2

(32)

P pdc
2 = π

P0

2

ζ

σ2
β

e−ζ ω21ασ2β + e
−ζ

ω21β

σ2
β

e−ζ ω22ασ2β + e
−ζ

ω22β

σ2
β

( t

L/c

)2

(33)

We will once again take t = L/c to be able to compare in a fair way the pulsed and c.w.

excitations through the whole following discussions.
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1. double resonance

Let us first consider the DR situation with ωα = ω1 and ωβ = ω2. Keeping the largest

term, one finds the probability

P pdc
DR = P pdc

1,DR ' πP0

√
σ2
α + 2σ2

β

σασ2
β

; (34)

Once again, we conclude that entanglement is not active in enhancing the transition prob-

ability in the double resonance case.

One also finds P pdc
DR ' P 11

DR when σα = γα, σβ = γβ. In the following we will take

this correspondences of spectral widths for comparisons. Henceforth, P pdc
DR or P 11

DR will be

regarded as a reference in the discussions related to SPDC biphoton state.

2. two-photon two-atom resonance

Now we will turn to the 2P2A case. The transition probability P pdc
2P2A has indeed a

resonant character around δ = 0. At the exact 2P2A resonance, it is equal to

P pdc
2P2A ' P 11

DRe
−2∆2/σ2

β (35)

which is much smaller than for the atom cascade state because the factor ∆2/σ2
β enters now

as exponent in a Gaussian function and the detuning ∆ is much greater than the spectral

widths.

For the factorized, uncorrelated state ρpdc2 , the transition probability in this case reads

P pdc
2,2P2A ' P 11

DR(1 + 2σ2
β/σ

2
α)−1/2e−2ζ∆2/σ2

β . e−2∆2/(σ2
α+σ2

β)P pdc
2P2A (36)

Thus, P pdc
2P2A is much greater than the probability given by the factorized state because of the

scale factor e2∆2/(σ2
α+σ2

β). So we obtain in the Parametric Down Conversion configuration the

same conclusion as the one drawn in [12] for the atomic cascade : the entangled state |Ψpdc〉
is much more efficient for inducing a 2P2A resonance than the factorized, uncorrelated state.

For the correlated-separable state ρpdc1 , the transition probability reads

P pdc
1,2P2A ' P 11

DRe
−2∆2/σ2

β ' P pdc
2P2A (37)

Thus, one has P pdc
1,2P2A � P pdc

2,2P2A. The same conclusion is found as in the cascade case : the

correlated-separable state is as efficient as the entangled state to boost the 2P2A resonance.

The fact that P pdc
1,2P2A is much larger than P pdc

2,2P2A and P pdc
1,2P2A ' P pdc

2P2A once again shows

that correlations, which are not necessarily related to entanglement, play indeed a crucial

role in the efficiency of the excitation.
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VI. ENHANCEMENT OF 2P2A RESONANCE FOR MORE GENERAL

CLASSES OF LIGHT STATES

We have so far studied interesting but specific states of light and showed an enhancement

effect for some of them, entangled or correlated-separable. It would be interesting to consider

now more general classes of light states.

A. Light pulses starting at a given time

Let us go back to the initial equations (4) and (5). They contain functions like [1 −
exp(iω1mt)]/ω1m. As explained in the appendix A, even though this function does not act

as a Dirac function when it is applied to integrations with any function, it indeed tends to

2iπδ(ω1 − ωm) when t→∞ when applied to functions of ωm that have a Fourier transform

which is strictly zero for t < 0. Such will be the case here.

The initial two-photon light state |Ψ〉 is the pure state :

|Ψ〉 =
∑
kq

ckq|1k, 1q〉, (38)

Let us assume that this state describes a ”switched-on” light which is not vacuum only after

time t = 0. One can then use the delta function approximation. The probability that the

two atoms are found in the excited state at times long compared to the pulse duration is

now

P ' P0

4

L2

c2
|c12 + c21|2. (39)

Mathematically, if |c12| ∼ |c21| this interference, which has been studied in the literature [16],

may lead to strong variations according to the relative phase. According to the Cauchy-

Schwatz inequality, one has

0 ≤ P ≤ 2

(
P0

4

L2

c2
(|c12|2 + |c21|2)

)
. (40)

However, physically speaking, only one component between c12 and c21 dominates in the

expression (39). This is because we have assumed that the quantities ω1, ω2, ωα, ωβ are

sufficiently separated from each other but with a small 2P2A detuning δ ' 0, as a result, ω1

should be closer to one of the central frequencies of the fields than to the rest one. Under

this condition, one has

P ' P0

4

L2

c2
(|c12|2 + |c21|2). (41)

The correlated and factorized states ρ1, ρ2 analogous to the initial state |Ψ〉〈Ψ|, give rise to
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the following 2P2A transition probabilities :

P1 =
P0

4
t2
(
|c12|2 + |c21|2

)
(42)

P2 =
P0

4
t2
∑
mn

(
|c1ncm2|2 + |c2ncm1|2

)
(43)

A discriminability index in the role of enhancing 2P2A transition probability is defined

by the quotient Gp between P and P1 at t = L/c,

Gp =
P

P1

∣∣∣∣
t=L/c

=
|c12 + c21|2

|c12|2 + |c21|2
(44)

Thus, one finds 0 ≤ Gp ≤ 2. The maximum value 2 is achieved when c12 = c21.

One has Gp ' 1 under the physical conditions we stated before. That is, the entangled

and the correlated-separable state yield almost equal transition probabilities. This implies

that the conclusion that we had drawn in the special previous cases is valid for a large

class of two-photon states : correlated states are as efficient as entangled states in 2P2A

co-excitation when they have delivered the same amount of energy to the two atoms.

Another important discriminability index is the ratio between the two transition rates P1

and P2 :

G12 =
|c12|2 + |c21|2∑

mn (|c1ncm2|2 + |c2ncm1|2)
(45)

The value of the enhancement factor G12 can be used as a witness for the correlation needed

in such a problem.

Note in addition that, while P is sensitive to possible destructive interference effects

between c12 and c21, P1 is not. Therefore, the enhancement effect as indicated by G, and

due to correlations not related to entanglement, turns out to be more ”robust” than the one

related to it.

B. Coherent states

So far we have only considered biphoton states of different shapes, which are all strongly

non-classical objects, as they are produced by spontaneous emission or parametric fluores-

cence which are specifically quantum processes with no classical equivalent. But one can

also envision superpositions of two-mode coherent states of the form :

|Ψcoh〉 =
∑
kq

ckq|α(ωk)〉 ⊗ |α(ωq)〉, (46)

where |α(ωk)〉 is the coherent state |α〉 in the mode of frequency ωk, α being the same

complex number for all modes.
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The calculation of the transition probability must be redone from the beginning. By

using the approximation 〈α|0〉 ≈ 0 valid for |α| � 1, one finally finds :

Pcoh(t) = |α|4P (t) (47)

where P (t) is the probability (5) obtained for two-photon states. Apart from the energy

scaling factor |α|4, the conclusions of the previous paragraphs hold in the present case, which

looks much more classical than the previously studied ones, as such states can be produced

by classical means.

VII. WHAT KIND OF CORRELATION IS REQUIRED TO ENHANCE THE

2P2A TRANSITION PROBABILITY ?

We have found in the previous sections that the 2P2A transition probability depends

crucially on the specific state of light used for the excitation, even when all the considered

states have the same energy spectrum. The question we address now is the physical origin

of an enhanced transition probability. We have seen that entangled and not entangled states

may give comparable results, so a first answer to the question is obviously that entanglement

is not at the origin of the effect, but rather some kind of correlation effect which is shared

by entangled and not entangled states.

Candidates likely to play a role in the present problem is time correlation and frequency

correlation. We will now examine them successively

A. Temporal correlation effect

It is well characterized by the cross second order correlation function g2
×(t, τ)

g
(2)
× (t, τ) =

Tr[ρ0Ê
(−)
α (τ)Ê

(−)
β (t)Ê

(+)
β (t)Ê

(+)
α (τ)]

Tr[ρ0Ê
(−)
α (t)Ê

(+)
α, (t)]Tr[ρ0Ê

(−)
β (t)Ê

(+)
β (t)]

(48)

Assuming that the amplitude of the single-photon electric field is a smooth function of ωk,

one gets for the pure state |Ψ〉 =
∑

kq ck,q|1k, 1q〉,

g
(2)
× (t, τ) =

∣∣∣∣∣∑
kq

ck,qe
−iωkτ−iωqt

∣∣∣∣∣
2

(49)

It is the two-time Fourier transform of the two-photon state.

1. In the case of the cascade state (16)

g
(2)
× (t, τ) =

(
L

2πc

)2
γαγβ
π2

θ(τ)θ(t− τ)e−2γατ−2γβ(t−τ) (50)
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FIG. 1. Plots of the cross temporal correlation function g
(2)
× (t, τ). The left one is for the atom cascade

biphoton state, with γα = 0.05MHz and γβ = 0.5MHz; the right plot is for the SPDC biphoton state,

in which the pulse takes place around t0 = 30µs, and with σα = 0.05MHz, σβ = 0.5MHz, ωβα = 2MHz.

Note the (t, τ) asymmetry in the first figure, and fringes in the second one due to interferences from two

temporal processes. In both plots, one finds significant temporal correlations along the diagonal line. In

a real condition, the value of ωβα should be much greater, leading to a poorer graphic representation for

interference patterns

θ(t) being the step function. We notice here a time asymmetry between t and τ ,

expected in the case of a cascade in which the ωα photon is always emitted before the

ωβ photon.

2. For the SPDC state (28) :

g
(2)
× (t, τ) =

2

N 2
[1 + sinωαβ(t− τ)] exp

[
−
σ2
β(t− τ)2

2
−

2σ2
ασ

2
β

σ2
α + 2σ2

β

(
t0 −

t+ τ

2

)2
]

(51)

As can be seen on the figure (1), g2
×(t, τ) is in both cases significant only very close to the

diagonal, which implies that both states exhibit strong temporal correlations, as expected.

The width of the diagonal, which gives the characteristic time of this correlation, is equal

to γ−1
β (σ−1

β ) in both the cascade and SPDC cases.

It is easy to see that for the correlated-separable states (23) and (30), there is no time

dependence for g
(2)
× (t, τ), and hence no temporal correlation, as expected from a c.w. time

averaged state in which the photons arrive at any time. It is also the case for the coherent

states (46). As these states give 2P2A transition probabilities comparable to the entangled

state, we must conclude that the temporal correlation is not the physical origin of the
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enhancement effect, nor the time ordering of the photons present in the cascade state. The

physical reason is that, as we have neglected their spontaneous emission, the two detecting

atoms have an infinite memory time, and hence they can be excited separately at any time.

B. Frequency correlation effect

It is well characterized by the cross second order frequency correlation function g2
×(ω, ω′)

g
(2)
× (ω, ω′) =

Tr[ρ0Ê
(−)
α (ω′)Ê

(−)
β (ω)Ê

(+)
β (ω)Ê

(+)
α (ω′)]

Tr[ρ0Ê
(−)
α (ω′)Ê

(+)
α (ω′)]Tr[ρ0Ê

(−)
β (ω)Ê

(+)
β (ω)]

(52)

equal in the pure state case to |c(ω, ω′)|2 and to ρ(ω, ω′) in the mixed state case.

This quantity is plotted in figure (2) for the cascade and SPDC states, either entangled,

correlated-separable or factorized. One observes that the frequency correlation functions

take significant values only on the anti-diagonal for the left side plots, which implies that

the corresponding states exhibit strong frequency anticorrelations. This is not the case for

the right side plots. The width of the anti-diagonal, which gives the characteristic width of

the frequency anticorrelation, is equal to γα(σα) in both the cascade and SPDC entangled

and correlated-separable cases.

Let us note that the entangled cascade and SPDC states are the only ones in our list

exhibiting simultaneously time correlations and frequency anti-correlations : one has in

these states EPR-like correlations, revealed by a violation of the time-energy Heisenberg

inequality[31, 34] when γα/γβ(or σα/σβ)� 1.

The important point to notice is that such a frequency anti-correlation exists for all the

states which exhibit 2P2A resonance enhancement, and is not present for the states which

do not give rise to this effect. We are therefore led to the conclusion they the property needed

to enhance the 2P2A excitation is precisely the presence of strong frequency anticorrelations

in the quantum state.

This conclusion, that we have demonstrated for the two specific examples that we have

considered in the first sections of this paper, is far more general, as can be seen on the

expression of the probability written for any switched on two-photon state.

Equations (37), (38) and (39) show indeed that the probability of 2P2A excitation is

proportional to the component of the density matrix of the two-photon state corresponding

to the existence of one photon with frequency ω1 and one photon with frequency ω2. This

gives a simple interpretation of the problem : there is 2P2A excitation only when each photon

of the two-photon state is resonant with the atomic transition of the atom it excites. This is

expected, since we are considering that the atomic excited states have a very long lifetime,

and therefore very narrow linewidths. Since the spectrum of each photon of the source

has a much larger bandwidth, the probability of excitation is small. If the photons are not

correlated in frequency, the probability of double excitation is proportional to the product of
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FIG. 2. Plots of the cross frequency correlation function g
(2)
× (ωk, ωq). a : entangled, correlated-

separable and coherent cascade states ; b : factorized cascade state; c : entangled, correlated-

separable and coherent SPDC states ; d : factorized SPDC state. In all plots γα = σα =

0.05MHz, γβ = σβ = 0.5MHz, ωα = 1.5MHz, ωβ = 3.5MHz. The color codes, in the unit of

c2/L2, on the top left (right) are shared by a and c (b and d). The left side plots exhibit strong

frequency anticorrelations along the line ωk +ωq = ωα+ωβ, whilst in the right side plots, one finds

no such a correlation. The type II SPDC biphoton source is non-degenerate and each photon has

two distribution peaks, thus one sees two bright spots in the left side bottom plot and 4 bright

spots in the factorized case in the right side bottom plot. In a real condition, the distances of the

peaks in the bottom side plots are much greater, and the sizes of spots are much smaller.

the probabilities that each photon has the corresponding transition frequency, and this yields

a very small transition probability. But when the photons are anti-correlated in frequency

such that the sum of their frequencies is equal to the sum of the transition frequencies of the

atoms, when one photon is resonant with one atomic transition, the correlated photon will

be automatically resonant with the other transition, and the probability of 2P2A transition

will in general be much higher than in the non-correlated case.
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We can say that the 2P2A transition occurs with a higher probability when the sum of the

photon frequencies is found inside a small interval around the sum of the atomic transition

frequencies, so that the enhancement is associated with the inverse of the variance of the

|ckq|2 distribution in the direction of the diagonal.

VIII. CONCLUSION

We have now elements of answer to the question raised in the title and in the introduction

about the role of entanglement in the two-photon excitation process considered in this paper :

We have shown that what is necessary for the enhancement of the transition probability is not

precisely quantum entanglement nor temporal correlations, but frequency anticorrelation,

which can be due to the presence of entanglement in the state, but also to correlations that

are not related to entanglement.

As any nonlinear process, like two-photon absorption in a single atom [35], 2P2A transi-

tion probability can be modified by changing the quantum state of light, and therefore the

enhancement effect that we have studied in this paper is due to the partial optimization of

the quantum state.

We have not treated in this paper the important question of characterizing in a quanti-

tative way the frequency correlation relevant to the present enhancement and relating it to

its classical or quantum character though various quantum correlation witnesses such as the

quantum discord. It will be addressed in a subsequent paper, together with the important

question of the full optimization of the quantum state with respect to the 2P2A probability

maximization, given a constant spectral energy distribution.
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APPENDIX A :

IS (exp(−iωt)− 1)/(2iπω)

A GOOD APPROXIMATION OF THE DELTA FUNCTION?

Let us note st(ω) the function (exp(−iωt)− 1)/(2iπω). One can also write it as st(ω) =

− sinωt/(2πω)+ i(1−cosωt)/(2πω). Whereas the real part of st(ω) is a sinc function which

tends indeed to a delta function when t → ∞, the imaginary part, being not a peaked

function whose area is constant, is not an approximation of the delta function. So in general

st(ω) does not tend to the delta distribution when it acts on the general set of integrable
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functions. However, it can be so on a smaller set of functions. This set includes for example

all the odd functions in ω, a subset which is not relevant for the present paper. We show in

this appendix that st(ω) behaves also as a delta function when it acts on functions which

have a Fourier transform which is strictly zero before t = 0.

Let us consider a function F (t) that is zero for t < 0 and admits a well-behaved Fourier

transform f(ω). Then

f(ω) =
1

2π

∫ ∞
−∞

dtF (t)eiωt =
1

2π

∫ ∞
0

dtF (t)eiωt (53)

F (t) =

∫ ∞
−∞

dωf(ω)e−iωt (54)

where f(ω) is absolutely integrable, which excludes functions like 1/(ω+iγ) from the present

discussion. Let us now calculate the integral

I =

∫ ∞
−∞

dω
exp(−iωt)− 1

ω
f(ω) = i

∫ t

0

dτ

∫ ∞
−∞

dωf(ω) exp(−iωτ) = i

∫ t

0

dτθ(τ)F (τ) (55)

Then I → i
∫∞

0
dτF (τ) = 2πif(0) when t → ∞. This proves that st(ω) acts as a delta

function for the set of functions that have a Fourier transform strictly null for t < 0.

APPENDIX B :

WHY DO WE TAKE t = L/c IN THE COMPARISON OF TRANSITION

PROBABILITIES ?

In order to compare the probabilities of transitions induced by pulsed and c.w. light in a

fair way, we must be careful to take the same amount of energy flow F(t) on the detecting

atoms in both cases. This quantity is nothing else than the integral over time and transverse

section S of the Poynting vector. It is equal to, at a given time t and for a state ρ :

F(t) = 2ε0cS

∫ t

0

Tr[ρÊ+†(τ)Ê+(τ)]dτ ' ~ω
c

L

∫ t

0

Tr[ρb̂†(τ)b̂(τ)]dτ (56)

where b̂(τ) =
∑

m âm exp(−iωmτ) and ω is the mean frequency of the state under consider-

ation.

For any diagonal density matrix(DDM), since Tr[ρDDM b̂
†(τ)b̂(τ)] = 2 is time-independent,

one finds a linear relationship between the energy flow and time t

FDDM(t) = 2~ω
ct

L
(57)

For any entangled pure state |Ψ〉 =
∑

kq ckq|1k, 1q〉 :

Tr[|Ψ〉〈Ψ|b̂†(τ)b̂(τ)] =
∑
k

|
∑
q

ckqe
−iωqτ |2 +

∑
q

|
∑
k

ckqe
−iωkτ |2 (58)
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The energy flow at time t is

FΨ(t) =

∫ t

0

dτTr[|Ψ〉〈Ψ|b̂†(τ)b̂(τ)] ≈
∫ t

−∞
dτTr[|Ψ〉〈Ψ|b̂†(τ)b̂(τ)] (59)

when most photons arrive at the detecting atoms after t = 0. One assumes that at sufficient

large time t (much greater than the temporal coherence length of the field), the photons in

state |Ψ〉 have fully interacted with the detecting atoms, therefore, one extends t to +∞
without introducing notable error. By using the Parseval identity, one has

FΨ(t) ≈ ~ω
c

L

∫ ∞
−∞

dτTr[|Ψ〉〈Ψ|b̂†(τ)b̂(τ)]

= ~ω
c

L

∫ ∞
−∞

dτ

[∑
k

|
∑
q

ck,qe
−iωqτ |2 +

∑
q

|
∑
k

ck,qe
−iωkτ |2

]

= ~ω

[∑
kq

|ckq|2 +
∑
kq

|ckq|2
]

= 2~ω (60)

as expected. By comparison with Eq.(57), one finds that at time t = L/c, the energies

supplied by the c.w. field and by the pulse are equal. Under this situation, one can make

reasonable comparisons between the corresponding transition probabilities.
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[21] Hettich, C. Schmitt, J. Zitzmann, S. Kühn, I. Gerhardt, V. Sandoghdar, Science 11, 385

(2002)
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