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Abstract 

Angle-resolved photoelectron spectra, resulting from the strong field ionization of atoms or 

molecules, carry a rich amount of information on ionization pathways, electron dynamics and the 

target structure. We have investigated angle-resolved photoelectron spectra arising from the non-

resonant ionization of xenon Rydberg atoms in the multi-photon regime, using intense mid-infrared 

radiation from a Free Electron Laser. The experimental data reveal a rich oscillatory structure in the 

low-order above threshold ionization (ATI) region. By performing quantum mechanical and semi-

classical calculations, the observed oscillations could be well reproduced and explained by both a 

multi-photon absorption picture as by a model invoking electron wave-packet interferences. 

Furthermore, we demonstrate that the shape and orientation of the initial Rydberg state leaves its 

own fingerprint on the final angular distribution. 

 

Introduction 

Strong field ionization of atoms or molecules can be well characterized by measuring the 

ejected photoelectrons. In conventional photoelectron spectra, information on the ionization 

dynamics and the target structure is encoded in the form of the electron yield versus the kinetic 

energy. This has revealed many features of the ionization process, like its non-linear character 1, the 

maximum energy transfer to the electron of two times the ponderomotive energy (2Up) 2, the 



existence of Freeman resonances 3 and many other processes. The angular dependence of the 

ejected photoelectrons is known to carry additional details about the ionization dynamics and the 

target system. Examples are the signature of the molecular orbital in electron diffraction 4, the 

encoding of temporal and spatial information of both ion and electron by means of photoelectron 

holography 5 and the influence of the Coulomb force on low energy electrons  6-8. 

Depending on the ionization regime, angular structures are commonly explained in two 

different ways. The tunnel-ionization regime is quantified by the Keldysh parameter γ = √(IP/2Up) < 

1, with ionization potential IP and ponderomotive energy (i.e. the electrons’ average quiver energy) 

Up = Flaser
2/4ωlaser

2, with the laser field strength Flaser and the laser frequency ωlaser. In this regime, the 

field strength is strong enough to sufficiently suppress the Coulomb barrier so to provide a tunnel for 

the electron to escape. Simultaneously, the laser frequency is low enough to provide a quasi-static 

barrier during tunneling. As a consequence, ionization happens mainly at the field maxima and the 

dominant structures observed in the photoelectron spectra are explained as interferences between 

electron wave-packets emitted at different times within the laser cycle  5, 9-11. In the multi-photon 

ionization regime (MPI, γ > 1), either the field strength is too low to sufficiently suppress the barrier 

or the frequency is too high, meaning that the electron does not experience a static barrier. In this 

case the ionization is viewed as going ‘vertically’, i.e. the electron absorbs a number of photons in 

order to exceed the ionization threshold. Structures in the photoelectron spectra are consequently 

described as being due to multi-photon transitions 12, 13, in which the observed dominant angular 

momentum is interpreted in terms of the addition of the angular momentum of the initial state and 

the angular momentum of each absorbed photon, according to the dipole selection rules. 

An example in which the same structure is explained using these two complementary 

pictures is the above threshold ionization (ATI) photoelectron spectrum, which is characterized by 

maxima in the electron yield separated by the energy of one photon. In the multi-photon ionization 

domain, this structure is explained as the absorption of multiple photons above the ionization 

threshold. In the tunnel-ionization domain it is explained as the interference of photoelectron wave-

packets that are ionized at field maxima separated by one laser cycle from each other. This is an 

example of two coexisting explanations for the same pattern and shows that the distinction between 

these two regimes is not as strict as outlined above 14. It is therefore interesting to study 

photoelectron angular distributions from both perspectives. 

In this paper, we have investigated the multi-photon ionization of selected Rydberg states of 

the xenon atom using mid-infrared radiation between 24 and 31 µm, obtained from the Free 

Electron Laser for IntraCavity Experiments (FELICE) 15. The observed rich angular distributions in the 

photoelectron momentum spectra are analyzed using various theoretical models. First, the Time 



Dependent Schrödinger Equation (TDSE) was solved, allowing to identify the imprint that different 

atomic orbitals and their orientations leave on the final angular distribution. Second, the oscillatory 

structure in the low-order ATI rings was analyzed using a biased random walk model 16, 17 and by 

performing strong field approximation (SFA) calculations. In the random walk model, each photon 

absorption leads to an altering of the angular quantum number by 1Δ = ± , biased towards 

1Δ = +  18, consistent with a multi-photon absorption picture. By performing SFA calculations we 

show that the same structures can be explained by photoelectron wave-packet interferences and we 

identify the origin of the nodes in the ATI rings 19. We note that in a very recent paper by Korneev et 

al.20, a similar explanation has been given for the observed two photon energy spaced structure at 

90 degrees with respect to the laser polarization. Upon combining experimental results with a 

number of theoretical models we provide an explanation of the measured angular distributions 

using each of the two complementary pictures. Furthermore, our analysis allows identifying the 

specific imprint that an atomic orbital and its orientation leave on the final photoelectron angular 

momentum spectra. 

 

Experimental setup & theoretical models 

In the experimental setup (Figure 1) high-lying xenon Rydberg states were prepared by a 

combination of electron impact 21 and a tunable dye laser. Ionization proceeded by the mid-infrared 

radiation from the FELICE laser 15. The resulting photoelectrons were detected with a velocity map 

imaging spectrometer (VMI) 22, in which photoelectrons were accelerated by a static electric field 

towards a two-dimensional (2D) positive sensitive detector consisting of a dual stack of micro-

channel plates (MCPs) and a phosphor screen followed by a CCD camera. By using an inversion 

procedure, the three-dimensional (3D) velocity distributions were retrieved. The presented data are 

slices through this 3D distribution and are referred to as momentum maps. The extraction of the 3D 

velocity distribution from the measured 2D projection is only possible when the 3D distribution 

contains an axis of symmetry in the plane of the position-sensitive detector (see also caption of 

Figure 1). This is only the case when the initial state populated by the dye laser has mℓ=0. Upon 

populating states with |mℓ| = 1, or higher, the cylindrical symmetry is lost. Therefore, such data are 

only presented in this paper by their 2D projection, as indicated in the corresponding figure 

captions. 

As described above, two theoretical models were used in the analysis. In the quantum 

mechanical TDSE-model, the time-dependent Schrödinger equation was solved on a 3D grid using 

the single active electron (SAE) approximation. A mixed gauge approach was used, with the length 

gauge close to the core and the velocity gauge far away from the core. The switching of gauges 



happened outside the initial Rydberg orbital. The laser pulse envelope was chosen to be a sine-

squared shape. A more detailed description of this method can be found in23-26. To analyze electron 

wave-packet interferences a standard SFA model 27 was used. In the SFA, an expression for the 

ionization amplitude is obtained by solving the time-dependent Schrödinger equation with the 

approximation that in the continuum the photoelectron only experiences the laser field and 

therefore the Coulomb force can be neglected. SFA calculations were performed using a saddle-

point method in order to determine the most relevant ionization times 27. 

 

Analysis of xenon 10s ionization 

Figure 2 shows the evolution of the photoelectron angular distribution as a function of the 

laser wavelength, recorded after ionization of xenon atoms that were prepared in the 10s[3/2]2 

state. The top figure of each panel shows the experimental momentum maps. As expected, the 

dominant ionization is along the laser polarization axis of the ionizing laser, i.e. the z-axis. Also, all of 

the electron momentum distributions show a clear ring structure that corresponds to ATI and which 

is highly structured. Upon increasing the wavelength (i.e. decreasing the photon-energy) the ATI 

rings move inward. In order to decipher the observed angular distribution of the ejected 

photoelectrons, the experimental data are compared to focal volume averaged 28 TDSE calculations 

solved for a maximum value of the vector potential Amax = 0.12 a.u. and a total pulse duration of 16 

cycles i.e., about 6 cycles full-width-at-half-maximum (FWHM). These values of the vector potential 

and the pulse duration provided the best agreement between the calculations and the experiment, 

as shown in Figure 2, where the TDSE calculations are displayed below each experimental result. This 

judgment was based on a comparison between the experimental and calculated angle-integrated 

photoelectron spectra, where the slope and the high-energy cut-off of the spectra, as well as the 

modulation depth in the ATI structures could be compared, and by comparison of the angular 

distributions of the first ATI rings. The pulse duration of 6 cycles FWHM does not really agree with 

the values estimated from the experiment: from the acquired wavelength spectra of the FELICE 

pulses, a rough estimation of a 1-2 ps pulse duration (i.e. approximately 20 cycles FWHM) was 

obtained. This discrepancy is most likely due to the fact that the FELICE micro-pulses have a pulse 

envelope that differs substantially from the sine-squared shape that was used in the TDSE 

calculation. More importantly, as measured with a power meter, the micro-pulse energies varied 

between 0.5 and 1.3 mJ, leading to values for the maximum vector potential ranging between Amax = 

0.4 and 1 a.u., for a beam waist at the focal spot of about 0.7 mm. This is much higher than the 

maximum value used in the calculations, suggesting that the ionization is strongly saturated. This 

was experimentally confirmed by the fact that the spectra did not show any changes upon lowering 



the intensity. Saturation was also confirmed by our TDSE calculations, however, according to these 

calculations saturation is expected to set in only for higher values of Amax. The latter discrepancy 

could be a result of the different time structures used in the experiment and in the calculations. 

Despite these uncertainties, the TDSE calculations do show reasonable agreement with the 

experimental results: a dominant contribution along the laser polarization is observed, together with 

highly-structured ATI rings, where the number of nodes usually agrees with the experimental data. 

The positions of the ATI peaks differ slightly in the experiments and in the calculations (ΔE ≈ 0.01 

eV), due to the static electric field produced by the VMI extraction region in the experiment.  

Previous work on ionization of Xenon atoms with mid-infrared radiation revealed 

holographic structures in the photoelectron angular distribution 5, 10, 29, 30. As investigated, the 

condition for observing the holographic structures is Up/ω >> 1 (in atomic units) 5, 29. In present work 

the value is Up/ω ~ 2 for peak values of the vector potential (A = 0.12 a.u.) and lower in the outer 

ranges of the laser spot. Consequently the calculations and experimental data are in the transition 

regime in which holographic structures may or may not be observed. In the TDSE calculations some 

holographic structures are visible, in the experimental data no pronounced holographic structures 

are observed. These and other differences, like the higher contrast in the TDSE calculation for the 

ATI rings and their substructures, are mainly attributed to the time structure of the FELICE micro-

pulses, as argued before. 

A more detailed comparison of the angular distributions of the first and second ATI rings is 

given in Figure 3, where the experimental data, the TDSE calculations and SFA calculations are 

compared. An attractive feature of the SFA calculation is that it allows turning on/off specific 

ionization events, and therefore allows establishing the origin of interference structures that are 

observed in the experimental and TDSE results, as will be discussed later (see also Figure 4).  

As Figure 3 shows, the oscillatory structure in the low-order ATI rings changes parity for each 

subsequent ATI ring as observed for example at 26 µm, where at 90 degrees there is a minimum in 

ring 1, and a maximum in ring 2. Though the TDSE calculations in general show sharper oscillations, 

the number and position of the oscillations agree to a large extent. In previous experiments on 

multi-photon ionization with 800 nm laser light, the number of nodes in the ATI rings was directly 

related to the angular momentum of the ground or resonance state plus the number of photons 

absorbed 12, 13. This is understood as follows: each time a photon is absorbed the dipole selection 

rules apply and a transition to a 1Δ = ±  state is made, with a bias towards 1Δ = + . The bias is in 

reality is often the case, as explained by Fano 18. If for example an electron starts out in an ℓ = 1 

state, upon absorbing three photons it can end up in a superposition of ℓ = 0, 2 and 4.  A dominance 

of angular momentum ℓ = 4 will lead to 4 minima over a 180 degrees angular range. This 



furthermore implies that a minimum or maximum at 90 degrees with respect to the polarization axis 

indicates whether the final angular momentum is a superposition of respectively odd or even 

angular momenta. 

Following this line of reasoning, one can apply a biased random walk model 16, 17 to predict 

the number of observed maxima in the angular distributions. Chen et al.17 and Arbó et al.16 obtained 

a good fit to their low energy electron angular distribution using a ratio of 0.3325:0.6675 for 

transitions according to 1Δ = − and 1Δ = + , respectively. We applied the model in the same 

manner as Chen et al. The observed angular momentum was retrieved from the angular 

distributions by counting the number of minima over a 180 degrees angular range (see Table 1). 

Good agreement is achieved for a ratio of 0.115:0.885 for the 1Δ = − : 1Δ = + transition 

probabilities. There is no reason to assume that the obtained ratio should match the one obtained 

by Chen et al. and Arbó et al. exactly, since the bias between the 1Δ = − and 1Δ = +  transitions 

depends in a non-trivial way on the quantum numbers n and ℓ  31 which are very different in our 

case. 

So far, we have explained the angular distribution of the ejected photoelectrons using a 

multi-photon picture, with the number of nodes related to the angular momentum changes that 

occur each time a photon is absorbed. A similar nodal structure in the angular distributions can be 

obtained using a wave-packet interference picture 20. This is demonstrated in Figure 4a, which shows 

the result of an SFA calculation for the ionization of the xenon 10s state with 29 µm light at an 

intensity of 1·108 W/cm2. The calculation was done for a three-and-a-half cycle laser pulse with a half 

cycle turn-on and turn-off. A nodal structure in each ATI ring is observed, with alternating parity for 

each subsequent ATI ring. This agrees with what was found in the experimental data and TDSE 

calculations shown in Figure 2 and 3, and with what was predicted by the random walk model (Table 

1). As described above, the ATI structure can be explained as an interference of trajectories ionized 

at subsequent maxima of the laser field, separated by a full laser cycle. The trajectories they follow 

are identical, but the first ionized electron feels one more oscillation. This interpretation of the ATI 

structure is confirmed by the calculation shown in Figure 4b, in which only trajectories from the first 

half and the third half cycle are included. The interference between these two electron wave-

packets indeed leads to an ATI structure, with peaks in the photoelectron kinetic energy distribution 

separated by the energy of a single photon. We have verified that the addition of trajectories from 

the second and fourth maxima similarly leads to an ATI pattern. The rings that characterize the ATI 

pattern do not, however, have a pronounced angular dependence (Figure 4b). The nodal structure 

that we observed experimentally in the low-order ATI peaks comes from a different type of wave-

packet interference, namely the interference of wave-packets ionized at the opposite maxima of the 



laser field during the same cycle. This is demonstrated by Figure 4c where the trajectories from the 

first and second field maxima are added. The presented analysis is in line with recent work by 

Korneev et al 20, who analytically explained that the interference of the trajectories from the first 

and second field maxima leads to the 2ħω separated oscillation at 90 degrees angle. In Figure 4d all 

trajectories from two laser cycles are taken into account in the SFA calculation, which is the 

minimum number of trajectories for the ATI with nodal structure to appear. A detailed comparison 

of the SFA with the TDSE calculations and the experimental data is shown in Figure 3. Though the 

parity is always correct, the number of nodes is generally underestimated in SFA. This 

underestimation has been investigated in reference 17 , where it is shown that upon removing the 

long range Coulomb tail in TDSE, the nodal structure of the TDSE calculation is identical to the SFA 

structure, implying that the long range Coulomb force is crucial in determining the correct number 

of nodes. 

In conclusion, our discussion demonstrates that the observed structures in low-order ATI can 

be explained both by a multi-photon absorption process, as well as by a description in terms of 

wave-packet interferences. For the latter, the long range Coulomb force is crucial for a correct 

prediction of the number of nodes. This is similar to the fact that in the multi-photon absorption 

process a bias towards 1Δ = + , which depends on the Coulomb potential18 , is essential. 

 

Analysis of xenon s, p, d and f state ionization 

In our experiment, we have also investigated the influence of different initial atomic orbitals 

and their orientations on the final photoelectron angular distribution. In Figure 5, raw experimental 

data are compared for the ionization of selected xenon s, p, d and f-states. A progressive widening of 

the central lobe (along the laser polarization) is observed when increasing the angular momentum of 

the initial state. This is further illustrated in Figure 5e, which shows the angular distribution (in the 

2D experimental image) at the radius corresponding to the first ATI ring. For the s-state, a narrow 

contribution is observed along the laser polarization, i. e. at 0 and 180°. For the p-state this 

contribution is wider and a very small dip appears. For the d-state, one can distinguish a prominent 

dip along the laser polarization and for the f-state an extra oscillation appears within this dip. In our 

experiment we have observed that this behavior is general for s, p, d and f-states.  

To investigate this observation in more detail, we focus on the 11p[3/2]2 state. In Figure 6 

the angle-resolved photoelectron signal resulting from the ionization of the xenon 11p state is 

shown as a function of wavelength. Since the polarization of the dye laser and the FELICE laser are 

orthogonal to each other, we expect to populate only the |mℓ| = 1 state 32. This implies, as explained 

above, that this state is not fully cylindrical symmetric and the resulting 2D distributions cannot be 



inverted. Because we expect that by inverting the data only finite errors are introduced in the 

regions of interest – i.e., the number of oscillations in the rings and the dip at 0 and 180 degrees - 

the inversion was performed to be able to make a comparison to the TDSE calculations.  For a 

reasonable comparison we have however found it to be necessary to use a superposition of mℓ = 0 

and |mℓ| = 1 states with a relative strength of the mℓ = 0 and |mℓ| = 1 contribution corresponding to 

a statistical ratio of 1:2. A possible explanation for this is the presence of a magnetic field, leading to 

a Zeeman splitting of the mℓ-states. In our experimental setup, a large magnetic field is produced in 

the vicinity of the interaction region by the coil of the metastable source. Even though the 

interaction region is shielded with a μ-metal tube, it is not expected to perfectly screen the magnetic 

field, especially since there is a substantial hole in the μ-metal to let the gas atoms into the chamber. 

The Zeeman splitting will lift the degeneracy between the mℓ-states and induce a wave-packet 

motion between the various mℓ-states, with an oscillation period proportional to the inverse of the 

energy splitting, ~1/ΔE. Since the electronic state is coupled to the core state of xenon in a jK 

coupling scheme, mJ is the good quantum number and the projection of mJ on mℓ will lead to a 

population of the mℓ = 0 state. Without shielding, the residual magnetic field at the interaction 

region would have been about 2.3·10-4 T, leading to a very small energy splitting of about 2.7·10-8 eV 

and a corresponding oscillation period on the order of tens of nanoseconds. If only 1% of the 

magnetic field penetrates, the oscillation period is still on the order of a few μs, comparable to the 

length of the FELICE macro-pulse, which was a few μs. Hence it is conceivable that in our experiment 

a mixture of mℓ = 0 and |mℓ| = 1 states play a role. 

Using a statistical mixture of mℓ-states, the TDSE calculations and the experimental data 

show a similar widening of the central lobe, and highly structured ATI rings with the correct parity 

for most of the cases.  The observed deviations are again attributed to the different time structure in 

the experiment and in the calculations, as well as to uncertainties about the relative contributions of 

the mℓ = 0 and |mℓ| = 1 states. 

Concerning the previously mentioned holographic structures, note that due to the lower 

value for the maximum vector potential as compared to the 10s state, the value for Up/ω ~ 1. 

Consequently no clear holographic structures are expected. Indeed no pronounced holographic 

structures are observed in the experimental data or in the theoretical calculations.  

In the experimental data, for a wavelength of 24.2 μm, a rather remarkable radial structure 

is observed within the first ATI ring, which is not accurately reproduced by the TDSE calculations. We 

have observed this in other experimental data (not shown), accompanied by a smooth angular 

distribution. The precise nature of this structure is currently not well understood. Upon ionizing rare 

gas atoms from their ground state, radial sub-structures have been previously observed 12, 13, 33. They 



are formed when the ionization passes through a set of high lying resonant states, called Freeman 

resonances 3. However, in our case the sub-structure only occurs below the first ATI ring, which is 

not the expected behavior for a Freeman resonance. Other well-known special phenomena that may 

occur in the threshold region in an ATI experiment are highly oscillatory angular patterns that 

correlate with channel closing/opening 7, 34. This pattern however occurs in the angular domain 

without any remarkable accompanying behaviour in the radial domain. Further investigations are 

needed in order to understand this special and unresolved phenomenon. 

 With the TDSE calculations, it is possible to disentangle the contributions from the mℓ = 0 

and |mℓ| = 1 state, as shown in Figure 7. In Figure 7a and b, TDSE calculations for respectively mℓ = 0 

and |mℓ| =1 are shown for λlaser = 26 µm and Ilaser = 1·108 W/cm2. Two major differences are 

observed. First, the contribution along the laser polarization axis shows a dip for |mℓ| = 1, which 

explains the observed small dip in the main-lobe of the measured 11p state. The TDSE calculations 

show that without contribution from mℓ = 0 this dip would have been even larger. The origin of this 

dip can be explained in two ways and relates to the orientation of the atomic orbitals. For ℓ = 1, 

|mℓ| = 1 the orientation of the atomic orbital is such that there is no contribution along the laser 

polarization axis, as shown in the cartoon in Figure 7. Since the quantum number mℓ is conserved in 

the ionization, no photoelectron signal is expected along the z-axis. The same feature can also be 

explained by the fact that the ionization from the positive and negative halves of the orbital (cartoon 

Figure 7) destructively interfere along the z-axis. According to the TDSE calculations, an even wider 

region along the laser polarization is suppressed for the |mℓ|= 2 projection of the d-orbital, 

explaining its even larger dip as observed in Figure 5. 

The second observation is that the nodal structures of the ATI rings have opposite parity for 

mℓ = 0 and |mℓ| = 1. According to the cartoon in Figure 7, the mℓ = 0 orbital is aligned along the laser 

polarization and consequently has an electron distribution with opposite parity along the laser 

polarization. This induces a π-shift between the phase of the electron wave-packets that are ionized 

in opposite directions along the laser polarization during successive half cycles, as indicated by the 

blue and red arrows. Due to the different orientation of the |mℓ| = 1 orbital, no asymmetry in the 

laser polarization direction is present and the π-shift is absent. The π-shift in the mℓ = 0 case leads to 

an opposite parity with respect to the |mℓ| = 1 case. 

Next we analyze the observed angular distribution by applying the random walk model 

discussed earlier (Table 2). Since the random walk model does not include the mℓ quantum number, 

a comparison can only be made to TDSE calculations for mℓ = 0 states. Upon using the same ratio for 

the 1Δ = − and 1Δ = +  transitions as previously used for the xenon 10s state, the predicted and 

observed angular momentum agree, except for a wavelength of 31.2 μm. In the table, the angular 



momentum for the |mℓ| = 1 states are also given. They were obtained from counting the minima in 

the angular distribution as given by the TDSE calculations. As outlined above, the parity for |mℓ| = 1 

is always opposite to mℓ = 0 and more specifically the angular momentum always differs by one. 

One can also explain the oscillations in the angular distribution of the ATI by wave-packet 

interferences. SFA calculations were performed and compared to TDSE calculations. In Figure 7 the 

result is shown for an ionization potential corresponding to 11p, λlaser = 26 µm and an intensity of 

Ilaser = 1·108 W/cm2. Since the atomic orbital’s structure is not included in the SFA-calculation no 

distinction can be made between mℓ = 0 and |mℓ| = 1. The above given explanation for the observed 

difference in parity for mℓ = 0 and |mℓ| = 1 implies that the parity of the SFA calculation should 

match the |mℓ| = 1 parity, because in this case all the trajectories are emitted with the same phase.  

Indeed, the parity of the nodal structures in the ATI ring for the SFA-momentum map corresponds to 

the parity of the |mℓ| = 1 state of the TDSE-momentum map (Figure 7d). The mℓ = 0 states can be 

mimicked upon introducing a π-shift for all trajectories emitted in opposite directions, as indicated in 

Figure 7e, where all ionization times for π-shifted trajectories are marked with a red dot. The result 

is shown in Figure 7c and indeed it matches the TDSE mℓ = 0 case. 

 

Conclusion 

We have measured angle-resolved photoelectron spectra for the ionization of selected 

xenon Rydberg states in the multi-photon ionization regime. The data show highly structured 

photoelectron angular distributions. The TDSE calculations show similar patterns with in general a 

higher contrast, which is attributed to a different pulse structure that existed in the experiment. We 

have successfully explained the observed nodal structures by two complementary viewpoints, 

namely in the frequency domain (i.e. by multi-photon absorption) and in the time domain (i.e. by 

electron wave-packet interferences). For this, respectively, a random walk model and an SFA 

calculation were applied. For the correct prediction of the number of maxima a bias is required in 

the random walk model. When analyzing the structures as wave-packet interferences, the inclusion 

of the long range Coulomb force is essential. The SFA method also allowed us to identify that the 

interference responsible for the nodal structure in the ATI rings is caused by trajectories that are 

launched at opposite maxima of the laser field. Upon selecting specific Rydberg states in the 

experiment, we have furthermore shown that the atomic orbital and its orientation leave a specific 

imprint on the final photoelectron angular distribution. TDSE calculations gave further insight into 

the origin of the different imprints.  

We can conclude that photoelectron spectra carry a rich amount of information on the 

ionization process and the target structure. This information can be understood by applying either a 



frequency or time domain picture, providing complementary explanations that are not restricted to 

either the tunneling regime or the multi-photon regime.  
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Figures and Tables 

 
 
Figure 1: (Color online) Experimental setup. Xenon was injected into the vacuum chamber using a pulsed 
valve. In the metastable source 21, a significant fraction of the atoms was promoted into the metastable 
5p5(2P3/2)6s[3/2]2 state by means of electron impact. In the interaction region, a tunable dye laser (in red, 
denoted with "EDye") excited the metastable xenon atoms to the Rydberg states of interest. Ionization of these 
states proceeded by interaction with the FELICE laser (in yellow, denoted with "EFELICE") 15. The photoelectrons 
were detected with a velocity map imaging (VMI) spectrometer 22, containing  a set of electrodes (R – repeller, 
E – extractor, G – ground) and a position-sensitive detector consisting of a dual stack of micro-channel plates 
(MCPs), a phosphor screen and a CCD-camera. To allow for the three-dimensional (3D) reconstruction of the 
photoelectron kinetic energy and angular distribution, an axis of cylindrical symmetry of the 3D distribution 
parallel to the detection plane is required, which was obtained by choosing the polarization of the FELICE laser 
parallel to the detector. The polarization of the dye laser was however orthogonal to the FELICE-laser 
polarization and the detection plane. Consequently, the prerequisite cylindrical symmetry was only achieved 
when the dye laser was used to excite fully symmetric atomic orbitals, i.e. s-orbitals. In this case, for the 3D 
reconstruction an Abel inversion routine based on a Legendre polynomial expansion was used, similar to the 
BASEX method 35. For all the other orbitals, the measured 2D projections are presented throughout this paper. 



 

 

 
 
Figure 2: (Color online) Electron momentum distribution recorded after ionization of the xenon 10s[3/2]2 state 
as a function of the FEL-wavelength. Each panel shows both the “inverted” experimental data (top) and the 
results of focal  volume-averaged TDSE calculations carried out for a maximum value of the vector potential 
Amax = 0.12 a.u. and considering a pulse duration of 16 full laser cycles (bottom). For a detailed discussion 
rationalizing these values of the intensity and the pulse duration, the reader is referred to the discussion in the 
text. The laser polarization direction is along the vertical axis. 



 

 

 
Figure 3: (Color online) Angular distributions of the first and second ATI ring observed after ionization of the 
xenon 10s[3/2]2 state, as a function of the FEL-wavelength. The presented angular distributions for the 
experimental data (yellow/ light gray) and TDSE calculations (green/ gray) are derived from the momentum 
distributions presented in Figure 2. SFA calculations (blue/ black) were performed for a single intensity of 
1·108W/cm2, which is justified by the fact that the focal volume-averaged TDSE calculations show only minor 
differences in the angular distribution compared to the single intensity 1·108W/cm2 TDSE calculations. The y-
axis represents the logarithmic signal strength in arbitrary units and the different angular distributions are 
shifted with respect to each other for clarity. The figures can be quantitatively interpreted by using the fact that 
relative vertical scales are identical and the signal strengths cover one to two orders of magnitude for 
respectively the smallest range signal (24.2 μm) and largest range signal (30.2 μm) 
 



 

 

λ (μm) N Obs. L Pred. L 

24.2 8 8 8 

25.2 9 7/9 7

26.2 9 7 7 

27.2 9 7 7 

28.2 10 6/8 8

29.2 10 8 8 

30.2 10 8 8 

31.2 11 9 9

 
Table 1. Comparison of the observed dominant angular momentum L (Obs. L) in the first ATI ring from 
ionization of xenon 10s with the angular momentum L (Pred. L) predicted by the biased random walk model 16, 

17 used with relative probabilities of 1Δ = −  versus 1Δ = +  transitions of 0.115:0.885. N in the table 
represents the number of photons that are absorbed by the atom in order to reach the energy of the first ATI 
ring. 



 

 
Figure 4. (Color online) SFA calculations for the ionization of xenon 10s using a few-cycle mid-infrared laser 

pulse with λlaser = 29 μm and I = 1·108 W/cm2. The flat top pulse used in the calculations is shown in the lower 
panel and consists of 3.5 cycles, with a half cycle turn on and off. The electron momentum distribution is 
obtained for a) a 3.5 cycle flat top laser pulse, b) considering only interference between trajectories from the 
first and third half cycle of the laser pulse, c) considering only interference between trajectories from the first 
and second half cycle of the laser pulse d) considering interference of all trajectories (1-4) that start during the 
first two laser cycles. 



 

 
Figure 5. (Color online) a-d) raw experimental photoelectron images for the ionization of the 12s[3/2]2, 
11p[3/2]2, 11d[7/2]4 and 8f[3/2]2 Rydberg states by 31.2 µm FEL radiation. Because the experiment does not 
contain an axis of cylindrical symmetry, the images are not inverted. The laser polarization axis is the vertical 
axis. The momentum in the plane of the detector perpendicular to the laser polarization axis is labeled p r’ , and 
is distinct from the actual momentum perpendicular to the laser polarization axis pr in the 3D distribution e) 
angular distributions of the first ATI ring.  



 

 
 
 
Figure 6. (Color online) Momentum maps resulting from the ionization of xenon 11p[3/2]2 state as a function of 
the FEL-wavelength. The top rows in each panel are the inverted experimental data and bottom parts show 
focal volume averaged TDSE calculations carried out for a maximum field strength of Amax = 0.10 a.u., a pulse 
duration of 16 full laser cycles and a 1:2 mixture of mℓ = 0 and |mℓ| = 1. The laser polarization direction is along 
the z-axis. 



 

 
 
 

 
Figure 7. (Color online) Calculated photoelectron momentum maps for the ionization of xenon 11p with 26 µm 

radiation and at an intensity of 1·108W/cm2. a) TDSE calculation for mℓ = 0 b) TDSE calculation for |mℓ| = 1 c) 

SFA calculation with a π-shift for each positive laser field maximum d) SFA calculation without π-shift. In the 
bottom two figures the laser field F is plotted; the π-shifted trajectories are marked by red dots and normal 
trajectories by black dots. Cartoon: the ionization of p-orbitals with mℓ = 0 and mℓ = 1. The color indicates the 
phase, where yellow and blue have opposite phases. The arrows indicate the ionization direction.  



 

 
 

λ (μm) N Obs. L 

(m = 0) 

Obs. L 

(m = 1) 

Pred. L

24.2 5 6/8 7 6 

25.2 6 7 8 7

26.2 6 7 6 7

27.2 6 7/9 6 7 

28.2 6 7 6 7 

29.2 6 7 6 7 

30.2 7 8 7 6/8 

31.2 7 10 7 6/8 

 
Table 2. Comparison of the observed dominant angular momentum L (Obs. L) in the first ATI ring from 
ionization of xenon 11p with predicted angular momentum L (Pred. L) by the biased random walk model with a 

chance for an electron to go to 1Δ = −  versus 1Δ = +  of 0.115:0.885. N in the table represents the 

number of photons needed to arrive at the first ATI ring. For 30.2 and 31.2 μm it was not possible to 
unambiguously determine the value of L from the experimental results. 


