
HAL Id: hal-00802695
https://hal.science/hal-00802695

Submitted on 20 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multi-Periodic Synchronous Data-Flow Language
Julien Forget, Frédéric Boniol, David Lesens, Claire Pagetti

To cite this version:
Julien Forget, Frédéric Boniol, David Lesens, Claire Pagetti. A Multi-Periodic Synchronous Data-
Flow Language. 11th IEEE High Assurance Systems Engineering Symposium, Dec 2008, Nanjing,
China. pp.251-260. �hal-00802695�

https://hal.science/hal-00802695
https://hal.archives-ouvertes.fr

A Multi-Periodic Synchronous Data-Flow Language

Julien Forget∗, Frédéric Boniol∗, David Lesens† and Claire Pagetti∗

∗ONERA, Toulouse, France, Email: firstname.lastname@onera.fr

†EADS Astrium Space Transportation, Les Mureaux, France

Abstract

Implementing real-time critical systems is an increas-

ingly complex process that calls for high-level formal

programming languages. Existing languages mainly focus

on mono-periodic systems, implementing multi-periodic

systems with these languages is possible but inefficient. As

a result, current practice usually consists in writing one

program for each different rate and then letting a real-time

operating system handle the multi-rate aspects. This can be

a source of non-determinism as communications between

processes of different rates are not precisely defined. We

propose a new language, built upon synchronous data-flow

languages, to handle multi-rate systems properly. It has

strong formal semantics, which prevents non-deterministic

communications, and relies on real-time primitives that

enable efficient use of existing multi-periodic schedulers.

I. Introduction

Programming reactive systems is a complex task since

this does not only consist in implementing the functional

aspects of the system. These systems are often critical,

an error can lead to dramatic results, therefore the main

concern for the program supervising a reactive system is

an increased need for predictability. This requires of course

strong functional determinism, which means that the pro-

gram will always produce the same output sequence with

respect to the same input sequence. However the program

must be temporally deterministic as well, always having

the same temporal behaviour and respecting hard real-

time constraints. The system also needs to be optimized,

in terms of latency, hardware cost, power consumption or

weight for instance. The complexity of the development

process and the criticity of the systems call for high-level

formal programming languages, which cover the complete

process from design to implementation. Automatic code

generation process provides high confidence in the final

program as every step of the generation is proven formally.

A. Motivation

1) Multi-Rate Reactive Systems: In [1] we studied the

programming of an adapted version of the Mission Safing

Unit (MSU) of the Automated Transfer Vehicle designed

by Astrium Space Transportation for resupplying the In-

ternational Space Station. This unit supervises the main

computing unit of the vehicle in order to detect possible

failures. As any reactive systems, it repeats indefinitely the

same process (described in Fig. 1): acquire inputs on sen-

sors, perform computations, produce outputs on actuators.

It is a typical example of multi-rate reactive system, con-

sisting in a set of communicating processes (BASIC_OP,

APPLY_CMD, UPSTREAM and DOWNSTREAM) executing

at two different rates (10Hz or 2Hz). Programming this

system first requires to describe the functional behaviour of

each process separately and then to assemble the different

processes, specifying the rate of each process and how

they communicate. Obviously, communications between

processes executing at the same rate will not be performed

in the same way as communications between processes of

different rates (called multi-rate communications). Further-

more, a multi-rate communication will usually require to

be delayed (the Z boxes) when it goes from a slow process

to a fast process so as not to delay the fast process, while a

multi-rate communication that goes from a fast process to

a slow process can be performed immediately. Our study

showed that existing languages lack simple primitives to

precisely specify this assembly level. The current paper

addresses this issue.

Fig. 1. The Mission Safing Unit

2) Formal Languages for Automated Code Genera-

tion: Reactive systems have traditionally been imple-

mented using low level programming languages (ADA

or C) at a level very close to the underlying operating

system. However, verifying the correction of such low

level programs is difficult, which led to the use of higher

level languages. Matlab/Simulink [2] or AADL [3] can

be used during the specification and prototyping phases

but due to the lack of formal semantics and/or of an

efficient formally defined compiler, the final program is

implemented separately using low level languages. The

Synchronous approach [4] is well adapted to implementing

reactive systems and provides formally proven automatic

code generation. Unfortunately, our study [1] showed that

synchronous languages lack primitives to handle multi-rate

systems. This paper proposes a new language, built upon

synchronous languages, that addresses this issue.

3) Real-Time Constraints in the Synchronous Ap-

proach: Synchronous data-flow languages (LUSTRE/

SCADE [5], SIGNAL [6]) have successfully been applied to

the implementation of reactive systems in the past. They

are well adapted to describing precisely the data flow be-

tween communicating processes. A synchronous program

captures the functional behaviour of a reactive system by

describing the computations performed during one basic

iteration of the system, called instant (this behaviour is

then repeated indefinitely). Computations can be activated

or deactivated at different instants using clocks (Boolean

conditions). Clocks define the temporal behaviour of the

program on a logical time scale: the sequence of instants.

The synchronous approach enforces precise specification

of communications between processes because only flows

present at the same instants (i.e. flows that have the

same clock) are allowed by the compiler. Flows that have

different (but still related) clocks must be brought to the

same clock, using sampling primitives, before they can be

combined.

Unfortunately, classic synchronous data-flow languages

are best adapted to mono-rate systems. Indeed, the activa-

tion conditions of processes are all specified with respect

to the same base rate, the rate at which basic iterations are

repeated. Multi-rate can be emulated with Boolean clocks,

for instance a clock that is true once every n instant can

stand for a rate n times slower than the base rate. However,

this is tedious in practice [1]. Indeed, if a process executes

once every n instant, it still needs to end before the end

of the instant where it starts. If the process requires longer

than one instant to execute, its computations must be split

by the programmer over several instants. This amounts

to calculating and implementing a multi-periodic schedule

manually.

B. Contribution

We propose a new language for programming multi-

rate reactive systems. It is built upon synchronous data-

flow languages to inherit their strong formal properties.

It adds high level primitives to assemble synchronous

processes executing at different rates. The rates of the

different processes are specified using a new class of clocks

called strictly periodic clocks. Transformations on strictly

periodic clocks are introduced to handle multi-rate commu-

nications. Strictly periodic clocks are defined uniquely by

their period and by their phase. Transformations on strictly

periodic clocks either increase or decrease their period

or change their phase to produce new strictly periodic

clocks. Strictly periodic clocks and Boolean clocks are

complementary so our language uses both. Strictly periodic

clocks define the real-time rate of a flow while Boolean

clocks define activation conditions. The programmer can

first specify the base frequency of a process using strictly

periodic clocks and then specify that on this frequency the

process is activated only if a certain condition holds, using

Boolean clocks.

For the most part, strictly periodic clocks and their

associated primitives could be programmed using Boolean

clocks. However, providing specific primitives for this

class of clocks has two important benefits. First, on the

contrary to Boolean clocks, strictly periodic clocks and

their associated transformations are statically evaluable.

Thus the compiler does not need to overapproximate the

set of activation dates of the tasks activated by such clocks.

Strictly periodic clocks directly provide the real-time char-

acteristics required by the scheduler, that is the period,

release date and deadline of each process of the program.

Second, a program written using strictly periodic clocks

clearly identifies the real-time behaviour of the system by

separating flow rates from flow activation conditions.

C. Paper Outline

This article is organized as follows. Section II presents

the synchronous model adapted to real-time and strictly

periodic clocks. The syntax of our language and its formal

synchronous temporised semantics are then defined in

Section III. The semantics of a synchronous program are

well-defined only if the program always combines flows

present at the same instants, that is only flows that have

the same clock. This is checked by the clock-calculus

detailed in Section IV. The clock-calculus uses a type

system to generate clock constraints from a program. It

then tries to solve the set of constraints to check that

the program is correct. If the program is correct, the

compiler can generate code according to the semantic rules

previously defined. The code generation, that translates the

synchronous program to lower level sequential code (for

instance C code), is presented in Section V.

II. Strictly Periodic Clocks

A. Synchronous Real-Time

Our synchronous real-time model relies on the Tagged-

Signal Model [7]. Given a set of values V and a countable

set of tags T , an event is an element of V × T and a

signal, also called flow for our class of systems, is a set of

events. We only consider functional signals, i.e. a signal

cannot contain two events with the same tag. Two flows are

synchronous if they have the same set of tags. The clock of

a signal is its projection on T . A process (more precisely a

behaviour satisfying a process) is a set of signals. We focus

on a subclass of processes called synchronous temporised

systems. In such a system, the set of tags is completely

ordered, which gives a chronological order on events.

Synchronous temporised systems are related to real-

time by a datation function. The datation function asso-

ciates a real-time date to each tag of the synchronous

temporised system. It is a strictly increasing and bijective

function, denoted date, of type T → Q, which returns

dates corresponding to the time elapsed since the beginning

of the execution of the program. Synchronous temporised

systems respect a relaxed synchronous hypothesis (similar

to [8]) where each flow is required to be computed before

its next activation, instead of before the next instant. When

a flow is required to be activated at tag ti and its next ac-

tivation is ti+1, the implementation will verify the relaxed

synchronous hypothesis only if the corresponding value is

produced during the time interval [date(ti), date(ti+1)[.
The deadline date(ti+1) may actually have to be refined

due to data dependencies, this point will be detailed in

Sect. V-A. The datation function relates flow activations to

real-time dates and enables us to abstract from the type of

underlying real-time model (it can for instance be discrete

as well as continuous).

B. Definitions

A clock is a sequence of tags, we define a particular

class of real-time periodic clocks called strictly periodic

clocks:

Definition 1. (Strictly periodic clock). A clock h =
(ti)i∈N, ti ∈ T , is strictly periodic if and only if:

∃n ∈ Q+∗, ∀i ∈ N, date(ti+1) − date(ti) = n

n is called the period of h, denoted π(h) and date(t0) is

called the phase of h, denoted ϕ(h).

A strictly periodic clock defines the real-time rate of a

flow. As date is bijective, a strictly periodic clock can be

uniquely characterized by its phase and by its period. The

notion of phase defined above is a little more general than

usual as we do not impose that ϕ(h) < π(h).

Definition 2. The term (n, p) ∈ Q+∗ × Q denotes the

strictly periodic clock α such that:

π(α) = n, ϕ(α) = π(α) ∗ p

Definition 3. (Periodic clock division). Let α be a strictly

periodic clock and k ∈ Q+∗. “α/.k” is a strictly periodic

clock such that:

π(α/.k) = k ∗ π(α), ϕ(α/.k) = ϕ(α)

Definition 4. (Periodic clock multiplication). Let α be a

strictly periodic clock and k ∈ Q+∗. “α ∗. k” is a strictly

periodic clock such that:

π(α ∗. k) = π(α)/k, ϕ(α ∗. k) = ϕ(α)

Definition 5. (Phase offset). Let α be a strictly periodic

clock and k ∈ Q. “α →. k” is a strictly periodic clock

such that:

π(α →. k) = π(α), ϕ(α →. k) = ϕ(α) + k ∗ π(α)

Divisions and multiplications respectively decrease or

increase the frequency of the clock while phase offsets

shift the phase of the clock. This is illustrated in Fig. 2.

Again, we do not constrain that ϕ(α →. k) < π(α).

α

α ∗. 2

α/.2

α →. 1

Fig. 2. Strictly periodic clocks.

Let P be the set of strictly periodic clocks. From

previous definitions we directly obtain Properties 1, 2 and

3.

Property 1. ∀α, β ∈ P:

• ∀k ∈ Q, α = β →. k ⇔ β = α →. −k
• ∀k ∈ Q+∗, α = β/.k ⇔ β = α ∗. k

Property 2. ∀(n, p) ∈ Q+∗ × Q:

• ∀k ∈ Q+∗, (n, p) ∗. k = (n
k , kp)

• ∀k ∈ Q+∗, (n, p)/.k = (nk, p
k)

• ∀k ∈ Q, (n, p) →. k = (n, p + k)

Property 3. The set of strictly periodic clocks P is closed

under operations ∗., /. and →..

C. Comparing Strictly Periodic Clocks

Let EP be the set of expressions on strictly periodic

clocks, that is expressions obtained by applying a suc-

cession of periodic clock transformations on a strictly

periodic clock. The following arithmetical properties, when

read from left to right, form a rewriting system R to

simplify expressions in EP . They can easily be derived

from the definition of periodic clock transformations and

from Property 2:

Property 4. ∀α ∈ P:

• ∀k, k′ ∈ Q+∗, α ∗. k ∗. k′ = α ∗. kk′

• ∀k, k′ ∈ Q+∗, α/.k/.k
′ = α/.kk′

• ∀k, k′ ∈ Q, α →. k →. k′ = α →. (k + k′)
• ∀k, k′ ∈ Q+∗, α/.k ∗. k′ = α ∗. k′/.k
• ∀k ∈ Q,∀k′ ∈ Q+∗, α →. k ∗. k′ = α ∗. k′ →. kk′

• ∀k ∈ Q,∀k′ ∈ Q+∗, α →. k/.k
′ = α/.k

′ →. (k/k′)

Theorem 1. The rewriting system R is convergent.

The proof is fairly standard and not detailed here. As R
is convergent, any expression e of EP has a unique normal

form, denoted NF (e) and:

∀e1, e2 ∈ EP , e1 = e2 ⇔ NF (e1) = NF (e2)

Lemma 1. ∀e ∈ EP , ∃α ∈ P, k, k′ ∈ Q+∗, k′′ ∈ Q:

NF (e) = α ∗. k/.k
′ →. k′′

D. Integer Strictly Periodic Clocks

We defined the general model of strictly periodic clocks

using dates in Q. However, to define a compilable lan-

guage, we need to restrain to dates in N+. Indeed operating

systems rely on a discrete time model and there is always

a lower bound on the level of granularity that can be used

to describe time. For instance the date 1/3 does not exist

in a real system, or is approximated. For the same reasons,

scheduling theory, needed to implement our systems, only

applies to dates and durations in N. We consequently

constrain the type of the function date to be T → N+

and the parameter k used in periodic clock divisions and

periodic clock multiplications to be an element of N∗. The

parameter k used in phase offsets remains an element of

Q. In the rest of the document we will only consider such

integer strictly periodic clocks and we will refer to them

simply as strictly periodic clocks.

In the set of integer strictly periodic clocks, clock (n, p)
is a valid strictly periodic clock only if: n ∈ N+∗, n ∗ p ∈
N+. Indeed, clocks that do not verify this property refer to

dates that cannot be expressed with the restricted datation

function (unless some approximations are performed). This

restricted set is not closed under ∗. and →. anymore (but

is still closed under /.). We use notation k|k′ to say that k
divides k′ (the rest of the integer division is 0). First, let

(n, p) be a strictly periodic clock, if k|n then (n, p) ∗. k
is a valid strictly periodic clock, but otherwise it is not, as

this clock refers to dates which value is not in N. Second,

if (p + k)n ∈ N+ then (n, p) →. k is a valid strictly

periodic clock, but otherwise it is not, as this clock refers

to negative dates. The clock calculus, presented in Sect. IV,

will check that no such invalid clock is used in a program.

III. A Synchronous Real-Time Language

We now define a language for programming multi-

rate reactive systems using strictly periodic clocks. The

language builds upon data-flow synchronous languages,

adding high level real-time primitives based on strictly

periodic clocks.

A. Syntax

The syntax is close to LUSTRE, however we do not

impose to declare types and clocks, which are computed

automatically, similarly to LUCID SYNCHRONE [9]. The

main novelty is the introduction of expressions on strictly

periodic clocks (epck). The language grammar is given

below:

i ::= true | false | 0 | ...
var ::= x | var, var
e ::= i | x | (e, e) | e fby e | N(e)

| e when e | merge e e e | epck
epck ::= e/ˆk | e ∗ˆk | e ∼> q
eq ::= var = e | eq; eq
io ::= x : (n, p) | x | io; io
nd ::= node N(io) returns (io)

[var var;] let eq tel
| imported node N(io) returns (io);

dr ::= wcet N = n;

A program consists in a list of node declarations (nd)

and a list of node durations, more precisely an upper bound

on worst case execution times (dr). Nodes can either be

defined in the program (node) or implemented outside

(imported node), for instance by a C function. Node

durations must be provided for each imported node and

predefined node of the language (for instance arithmetic

operators). The clock of input/output parameters (io) of

a node can be declared strictly periodic (x : (n, p), n
being the period and p being the phase of the clock) or

unspecified (x). The body of a node consists in an optional

list of local variables (var) and a list of equations (eq).

Each equation defines the value of one or several variables

using an expression on flows (var = e). Expressions may

be immediate constants (i), variables (x), pairs ((e, e)),
initialised delays (e fby e), applications (N(e)), Boolean

sub-sampling (e when e), combination of flows on com-

plementary Boolean clocks (merge e e e) or expressions

using strictly periodic clocks (epck). e/ˆk sub-samples e
using a periodic clock division and e ∗ˆk over-samples e
using a periodic clock multiplication (k ∈ N∗). e ∼> q
applies a phase offset of factor q (q ∈ Q+). Values k and

q used in operations on strictly periodic clocks must be

statically computable, furthermore they are not flows, they

have no clock (they can be considered as always present

with the same value).

i#((v, t).s) = (v, t).i#(s)

op#((v1, t).s1, (v2, t).s2) = (op(v1, v2), t).op
#(s1, s2)

fby
#((v1, t).s1, (v2, t).s2) = (v1, t). fby

′#(v2, s1, s2)

fby
′#(v, (v1, t).s1, (v2, t).s2) = (v, t). fby ′#(v2, s1, s2)

when
#((v, t).s, (T, t).cs) = (v, t). when #(s, cs)

when
#((v, t).s, (F, t).cs) = when

#(s, cs)

merge
#((T, t).s, (v, t).s1, s2)) = (v, t).merge #(s, s1, s2))

merge
#((F, t).s, s1, (v, t).s2)) = (v, t).merge #(s, s1, s2)

Fig. 3. Synchronous semantics of classical

operators.

B. Synchronous Temporised Semantics

We provide a semantics based on Kahn’s semantics on

sequences [10]. It is a direct adaptation of the synchronous

semantics presented in [11] to the Tagged-Signal model.

For any operator ⋄, ⋄#(s1, ..., sn) = s′ means that the

operator ⋄ applied to sequences s1, ..., sn produces the

sequence s′. Term (v, t).s denotes the flow whose head

has value v and tag t and whose tail is sequence s.

Operator semantics is defined inductively on the argument

sequences. We omit rules on empty flows, which all return

an empty flow. The semantics of some operators (for

instance binary operators) is defined only for synchronous

flows. The clock calculus will check that the program only

combines synchronous flows and consequently that the

semantics of the program is well-defined. In our model

the absence of a flow is defined implicitly in its clocks: if

a tag does not appear in a clock, then the corresponding

flow is absent at this instant. As the sequence of tags of a

clock is increasing, we can express the constraint that the

arguments of an operator must be synchronous by requiring

that at each step the tags of the heads of the arguments are

the same. We start by redefining the semantics of classic

synchronous operators in Fig. 3 (T stands for true and F
for false).

• A constant flow produces the same value every time

it is present (i#).

• Binary operators are applied point-wisely (op#).

• x fby y concatenates the head of x to y, delaying

the values of y by one tag.

• x when c produces a sub-sequence of x, only

producing values of x when c is true.

• merge (c, x, y) combines flows x and y which are

on complementary Boolean clocks: when c is true, x
is present and y is absent. When c is false, x is absent

and y is present. The result is present every time c is

present (i.e. on the clock of c).

The synchronous semantics of operators on strictly

periodic clocks is given in Fig. 4. These semantic rules

are temporised in addition to being synchronous. Operator

∗̂ produces values on tags that do not all appear in the flow

on which they are applied. These new tags must respect

some specific temporal properties relating them to the tags

of the parameter flow. Function π is extended to flows,

π(f) = π(c) where c is the clock of flow f .

∗̂ #((v, t).s, k) =

k−1
Y

i=0

(v, t′i).∗̂
#(s, k)

(where t′0 = t and date(t′i+1) − date(t′i) = π(s)/k)

/ˆ#(

k−1
Y

i=0

(vi, ti).s, k) = (v0, t0)./ˆ#(s, k)

∼>#((v, t).s, q) = (v, t′).∼>#(s, q)

(where date(t′) = date(t) + qπ(s))

Fig. 4. Synchronous temporised semantics of

operators on strictly periodic clocks.

• x ∗ˆ k produces a flow k times faster than x. Each

value of x is duplicated k times in the result. The

time interval between two successive values of the

result (the period) is k times shorter than the interval

between two successive values in x.

• x/ ˆ k produces a flow k times slower than x. The

result only keeps the first value of each k successive

values of the argument.

• x ∼> q delays each value of x by qπ(x) temporal

units. The classic pre operator of LUSTRE is ap-

proximately equal to ∼> 1. However, on the contrary

to pre, operation ∼> 1 does not require a specific

analysis to check that the program does not access

uninitialised values. Indeed, the clock calculus does

not allow flows to be combined if they do not have

the same phase (see Sect. IV).

Operation α →. q is defined for q ∈ Q, because clocks

unification (see Sect. IV) requires operation α →. q to

be invertible (α →. −q). However, operation x ∼> q is

defined only for q ∈ Q+. Indeed if q was negative, the

values of x ∼> q would have to be produced earlier than

the values of x, effectively shortening the deadline for the

computation of x. When trying to combine two flows that

do not have the same phase, the user should prefer to delay

the flow with the smallest phase instead of requiring the

flow with the greatest phase to be produced earlier.

C. Example

Figure 5 shows the program for the MSU written with

our new language. This case study is a simplified version of

the real unit, in particular the details of nodes upStream

and downStream do not correspond to the actual sys-

tem. The MSU is duplicated for safety reasons, here we

present only one of the duplicated processes. The activation

condition c applied to the node msu is used to ignore

the result when the system detects that the unit is faulty.

The two units communicate through flows otherMSU

imported node bas icOp (i , j , k) r e t u r n s (o , p , q) ;

imported node A(i) r e t u r n s (o) ; . . .

wcet bas icOp =40; wcet applyCmd =20; wcet A=30;

wcet B=10; wcet C=20; wcet D=40; wcet E=10; wcet F =30;

node upStream (i) r e t u r n s (o1 , o2)

l e t

o1=A(B(i)) ; o2=C(i) ;

t e l

node downStream (i) r e t u r n s (o)

l e t

o=D(E (F (i))) ;

t e l

node msu (fromEnv , otherMSU)

r e t u r n s (toEnv , toOtherMSU)

var bop1 , bop2 , us1 , us2 , ds ;

l e t

bop1 , bop2 , toOtherMSU=

bas icOp (fromEnv , otherMSU , (0 fby ds) ∗ ˆ 5) ;

toEnv=applyCmd ((0 fby us1)∗ ˆ 5 , bop1) ;

us1 , us2= u p s t r e a m (bop2 / ˆ 5) ;

ds=downStream (us2) ;

t e l

node main (c , fromEnv : (1 0 0 , 0) , otherMSU : (1 0 0 , 0))

r e t u r n s (toEnv , toOtherMSU)

l e t

toEnv , toOtherMSU =(msu (fromEnv , otherMSU)) when c ;

t e l

Fig. 5. Program for the MSU.

and toOtherMSU. Operations applyCmd and basicOp

execute on the fast rate (100ms period) while operations

upStream and downStream execute on the slow rate

(500ms period). Slow operations are further split into

several sub-nodes. Inputs and outputs are respectively

consumed and produced on the fast rate. Communications

from fast to slow operations are performed instantaneously

(from basicOp to upStream) while communications

from slow to fast use a delay (fby, from downStream to

basicOp for instance). The durations of imported nodes

are provided at the beginning of the program (we did not

list the complete declaration of imported nodes).

This system illustrates how multi-rate reactive sys-

tems can be programmed. The programmer first specifies

the main operations of his system independently from

each other in separated “functional nodes” (basicOp,

applyCmd, upStream and downStream). Then he

specifies the rates of each operation and how they com-

municate in an “assembly node” (msu). We added an op-

tional third hierarchy level that instantiates strictly periodic

clocks, by specifying their phase and period, and adds

the activation condition. Node rates are determined by the

strictly periodic clocks of their inputs and the synchronous

semantics forces the programmer to precisely specify

which data is exchanged during multi-rate communications

through the use of periodic clock transformations. Here

upStream consumes data produced by iterations 0, 5, 10,

and so on, of basicOp. This is only one possible type

of multi-rate communications that the programmer could

specify with this language. He could as well have chosen to

store five successive iterations of basicOp in an array and

consume them all at each iteration of upStream. Still,

the language enforces precise specification of communi-

cations. This does not leave room for non-deterministic

communications that could change depending on the order

in which operations are finally scheduled.

IV. Clock Calculus

Before translating a program to lower level code, the

compiler performs static analysis to detect sources of run-

time errors. Type-checking verifies that expressions only

combine flows of the same types while the clock calculus

checks that expressions only combine flows present at the

same instants. The type-checking of our language is quite

standard and is not detailed here. This section only details

the clock calculus.

A. Clock Types

We say that an expression is well-synchronized if it does

not access to undefined values (it only combines flows

on the same clocks), ill-synchronized otherwise. The aim

of the clock calculus is to verify that a program only

uses well-synchronized expressions. If the program is well-

synchronized then its semantics are well-defined (by the

semantic rules of Sect. III-B). For each expression of the

program, the clock calculus produces constraints that have

to be met for the expression to be well-synchronized. As

shown in [11], the clock calculus can use a type system

to generate these constraints. The clock calculus produces

judgements of the form H ⊢ e : cl, meaning that ”the

expression e has clock cl in environment H”. The grammar

of clock types is given below:

σ ::= ∀α1 <: C1, ..., αm <: Cm.cl
cl ::= cl → cl | cl × cl | ck | c : ck
ck ::= ck on c | ck on not c | pck
pck ::= pck ∗. k | pck/.k | pck →. q | (n, p) | α
c ::= nm | X
H ::= [x1 : σ1, ..., xm : σm]

Clock types can either be clock schemes (σ) quantified

over a set of clock variables, which belong to different

subtypes of clocks (C1, ..., Cm), or unquantified clocks

(cl). A clock can be a functional clock (cl → cl), a clock

product (cl × cl), a clock sequence (ck) or a dependence

(c : ck). A clock sequence can be a clock sampled using

a Boolean condition (ck on c, ck on not c) or a strictly

periodic clock (pck). The clock operator on is defined as

follows (the opposite operator on not only keeps tags

when c is false):

on#(t.ck, (true, t).c) = t.on#(ck, c)

on#(t.ck, (false, t).c) = on#(ck, c)

This requires c to be on clock ck (c : ck). A strictly

periodic clock can be a strictly periodic clock over-sampled

periodically (pck ∗. k), a strictly periodic clock under-

sampled periodically (pck/.k), a strictly periodic clock

with phase offset (pck →. k), a constant strictly periodic

clock ((n, p)), or a clock variable (α). The values n and p
are constant integer values. Integer values k and rational

values q used in periodic clock transformations must be

computable statically. A carrier (c) is either a name (nm)

or a carrier variable (X). A strictly periodic clock α is

a linear expression resulting of a succession of periodic

clock transformations on another strictly periodic clock

β. In the following, α will be called an abstract strictly

periodic clock if β is a clock variable. It will be called a

concrete strictly periodic clock if β is a strictly periodic

clock constant.

We distinguish different subtypes among the global

clock type set C in order to ensure that the periodic

clock transformations used in the program will always

produce valid strictly periodic clocks (see Sect. II-D).

The two main clock subtypes of C are Boolean clocks B
(clocks containing the operator on) and strictly periodic

clocks P . Boolean clocks and strictly periodic clocks can

be mixed in the same program as they correspond to

complementary notions. Strictly periodic clocks define the

real-time frequency of a flow while Boolean clocks define

activation condition of a flow. The clock grammar says

that Boolean clocks can be derived from strictly periodic

clocks but strictly periodic clocks cannot be derived from

Boolean clocks. The programmer will first specify the

base frequency of the flow and then specify that on this

frequency the flow is present only if a certain condition

is true. Clock type P is further split into subtypes Pk, a

b
,

k ∈ N∗, a
b ∈ Q+, a ∧ b = 1 (a and b are co-prime), b|k,

where:

Pk, a

b
= {(n, p)|(k|n) ∧ p ≥

a

b
}

In other words, the set Pk,q contains all the strictly periodic

clocks α for which transformations α ∗. k and α →. −q
produce valid strictly periodic clocks. Notice that P =
P1,0. The sub-typing relation <: on clock types is defined

as follows:

• B <: C, P <: C
• Pk,q <: Pk′,q′ ⇔ k′|k ∧ q ≥ q′

The set of all subsets of C ordered by the subset inclusion

<: forms a lattice. We can apply classical results on sub-

typing and bounded types quantification [12].

Finally, clocks may be generalized (at a node definition)

and instantiated (at a node call) as follows:

inst(∀α <: C.cl) = cl[(cl′ ∈ C)/α]

genH(cl) = ∀α1 <: C1, ..., αm <: Cm.cl

where α1, ..., αm = FTV (cl)\FTV (H)

This states that a clock scheme is instantiated by replacing

clock variables by clocks belonging to the correct clock

(SUB)
H ⊢ e : ck H ⊢ ck <: C

H ⊢ e : C

(∗̂)
H ⊢ e : pck = Pk,0 k 6= 0

H ⊢ e ∗ˆk : pck ∗. k

(/ˆ)
H ⊢ e : pck k 6= 0

H ⊢ e/ˆk : pck/.k

(∼>)
H ⊢ e : pck = Pb,0 (q =

a

b
), a ∧ b = 1

H ⊢ e ∼> q : pck →. q

Fig. 6. Strictly periodic clocks inference

rules.

subtypes and that any clock variable can be generalized if

it does not appear free in the environment (FTV stands

for “free type variables”).

B. Clock Inference Rules

We give clock inference rules for operators on strictly

periodic clocks in Fig. 6. The other inference rules remain

the same as in [11]. A rule
A

B
means that the type

judgement B holds if and only if condition A holds.

• The (SUB) rule is the classical subsumption rule of

sub-typing applied to clock types. It states that if ck
is a clock subtype of C then any expression of clock

ck also has clock type C.

• Operator ∗̂ can only be applied to an expression the

clock of which is a subtype of Pk,0. This ensures that

the period of the resulting clock is an integer.

• Operator /ˆ can only be applied to an expression the

clock of which is strictly periodic.

• The parameter q of operator ∼> denotes a rational
a
b for which a ∧ b = 1. The constraint pck = Pb,0

ensures that the phase of pck →. q is an integer.

To determine if the subsumption rule can be applied,

we use the following properties:

Property 5. ∀α ∈ P,∀k, k′ ∈ N+∗,∀q, q′ ∈ Q :

• α ∗. k′ <: Pk,q ⇔ α <: Pk∗k′,q/k′

• α/.k
′ <: Pk,q ⇔ α <: Pk/gcd(k,k′),q∗k′

• α →. q′ <: Pk,q ⇔ α <: Pk,max(0,(q−q′))

• α <: Pk,q ∧ α <: Pk′,q′ ⇔ α <: Pk,q ∩ Pk′,q′ ⇔
α <: Plcm(k,k′),max(q,q′)

These properties are derived from the definition of Pk,q

and Property 2. When read from left to right, they form

subsumption rules that can be applied to transfer sub-

typing constraints on a clock type to the clock variable

appearing in it (for an abstract clock) or to the constant

clock appearing in it (for a concrete clock). In the former

case, the constraints are just added to the constraints

already existing on this clock variable. In the latter case,

we directly check that the constant clock verifies the

constraints.

(→)
cl1 = cl′1 cl2 = cl′2

cl1 → cl2 = cl′1 → cl′2
(×)

cl1 = cl′1 cl2 = cl′2

cl1 × cl2 = cl′1 × cl′2

(ON)
ck1 = ck2 c1 = c2

ck1 on c1 = ck2 on c2

(VAR)
α <: Pk,q pck <: Pk′,q′ α = NF (pck)

α = pck <: Pk,q ∩ Pk′,q′

(VAR’)
α 6∈ FTV (cl)

α = cl
(CONST)

n = n′ p = p′

(n, p) = (n′, p′)

(∗.)
pck = pck′/.k

pck ∗. k = pck′

(/.)
pck = pck′

∗. k pck′ <: Pk,0

pck/.k = pck′

(→.)
pck = pck′

→. (−
a

b
) pck′ <: Pb, a

b

pck →.

a

b
= pck′

Fig. 7. Clock unification rules.

Computing a real-time schedule for the program is

much more simple if we use concrete dates (concrete

clocks) instead of dates parametrized by variables (abstract

clocks). Therefore we constrain the clock type of the main

node to be fully instantiated, no clock variable can appear

in it. This means that the clocks of the main node inputs,

from which all clocks of the program are derived, can

only be concrete strictly periodic clocks and implies that

any clock used in the program is derived from a strictly

periodic clock.

On the contrary to classical synchronous languages,

some expressions can now have a faster clock than the

clock of the fastest input of the node in which they appear.

This is an important feature which implies that the clocks

hierarchy of a node does not form a tree anymore, the

root of which is the base clock of the node (the clock of

unsampled inputs). This enables greater flexibility in the

specification of a system, as the programmer can choose

any rate of its system as the base description rate of the

system [1]. However, optimized compilation using loop

instructions is for now an opened question.

C. Clocks Unification

The resolution of the set of constraints produced for

a program follows [13] where typing judgements are

treated as unificands, i.e. typing problems are reduced to

unification problems. The resolution algorithm of the clock

calculus consists in trying to find substitutions σ such that

σ(H) ⊢ e : σ(cl), ie substitutions that unify H ⊢ e : cl.

Clock unification rules are given in Fig. 7. A rule
A

B
means

that to solve B we must solve A.

• We use structural unification for clocks → and ×.

• Boolean clocks (on) are unified syntactically:

ck1 on c1 and ck2 on c2 can be unified if ck1 and ck2

can be unified and if c1 and c2 are syntactically equal.

This simplification indeed implies that sometimes

two equivalent clocks cannot be unified. Unification

of Boolean clocks is performed syntactically while

unification of strictly periodic clocks is performed

semantically.

• In rule (VAR), condition α = NF (pck) implicitly

includes an occurrence check: if α appears in pck,

then the normal form of pck must be α (or equiv-

alently α ∗. k/.k →. 0). If α does not occur in

pck, it can be substituted by pck. In both cases, pck
inherits the subtyping constraints of α (in addition to

its own constraints). The rule (VAR’) is used when

a clock variable is unified with a clock that is not

strictly periodic, α 6∈ FTV (cl) checks that α is not

a free type variable of cl, i.e. that α does not occur

in cl. (VAR) and (VAR’) are the only rules in which

substitutions take place.

• Rule (CONST) says that two constant clocks can be

unified if their periods and phases are equal.

• Rules (∗.), (/.) and (→.) rely on Property 1 to trans-

form the unification problem. Rules (/.) and (→.)
also introduce sub-typing constraints, the verification

of which again relies on Property 5.

Strictly periodic clocks unification rules require priority

rules, we check that two strictly periodic clock types pck1

and pck2 can be unified as follows:

• If pck1 and pck2 are concrete strictly periodic clocks,

we can directly use Definitions 3, 4 and 5 to compute

the period and phase of the clocks and that way reduce

to rule (CONST).

• If pck1 is an abstract strictly periodic clock and pck2

is a concrete strictly periodic clock, we use rules

(∗.), (/.) and (→.) recursively (with pck1 appearing

on the left of the rules) to reduce to rule (VAR). This

leads to substituting the variable α appearing in pck1

by a concrete strictly periodic clock.

• We use the same principle if pck2 is an abstract

strictly periodic clock and pck2 is a concrete clock,

this time with pck2 appearing on the left of the rules.

• If pck1 and pck2 are both clock variables, we arbi-

trarily choose to apply the rules with pck1 appearing

on the left of the rules.

D. Example

We apply the clock calculus to the case study of the

MSU (Fig. 1). We suppose that the clock of the inputs and

outputs of an imported node are all the same. For instance

the clock scheme of node basicOp is: ∀α <: C.α×α×
α → α × α × α. We get the same kind of clock schemes

for the “functional nodes” as they do not introduce clock

constraints on their inputs and outputs. Concerning node

msu, let c1, c2, c3 be respectively the clocks of variables

fromEnv, otherMSU and ds:

• (0 fby ds)*ˆ5 has clock c3 ∗ .5 and c3 <: P5.

• basicOp(fromEnv,otherMSU,(0 fby ds)

*ˆ5): we need to unify c1, c2 and c3 ∗ .5, so we let

c2 = c1 and c3 = c1/.5. We also get c1 <: P .

• bop1,bop2,toOtherMSU=basicOp(...):

variables toOtherMSU, bop1 and bop2 all have

clock c1.

• Similarly, toEnv has clock c1. us1, us2 and ds

have clock c1/.5.

• We can generalize clock c1 and obtain the clock of

node msu: ∀α <: P.α × α → α × α.

Concerning node main:

• msu(fromEnv,otherMSU): instantiates the clock

of the node msu to clock (100, 0) × (100, 0) →

(100, 0) × (100, 0)

• (msu(fromEnv,otherMSU)) when c:

changes the clock of the result to

(100, 0) on c × (100, 0) on c

• We finally get the clock type of node main:

(100, 0) × (100, 0) → (100, 0) on c × (100, 0) on c

V. Sequential Code Generation

Synchronous languages compilers do not directly gen-

erate assembly code, but instead intermediate level code

(C code). The synchronous compiler translates the input

program consisting in a list of equations into an output

program consisting in a sequence of instructions. The

expressions used in equations are first ordered (scheduled)

and then translated into lower level code.

A. Scheduling

We use notations found in [14] to summarize our

scheduling problem. The atomic computation steps of a

synchronous program (ie the tasks the program is made up

of) are the leaf nodes of the nodes hierarchy, that is calls to

either predefined nodes or imported nodes. Node calls are

partially ordered by data dependencies between variables.

Strictly periodic clocks introduce periodicity constraints.

If the clock α of a flow f is strictly periodic, then the

activation dates of f can be computed statically using

the phase and the period of α. If α is a Boolean clock,

the activation dates of f cannot be computed statically,

so we need to approximate α. As mentioned in Sect.

IV-B, the clock of every flow is derived from a strictly

periodic clock. Thus, for the scheduling phase we can over-

approximate any clock to its strictly periodic clock parent

defined as follows:

pparent(α on c) = pparent(α)

pparent(pck) = pck

Each task τi is characterized by its period Ti, its initial

release date si, its relative deadline Di and its computation

time Ci. For a task τi of clock α, Ti = π(pparent(α)),

bOp app B A bOp app C F bOp

app E D bOp app bOp app

0 10 20 25

30 40 50

Fig. 8. Schedule for the MSU.

si = ϕ(pparent(α)) and Ci is the wcet specified for the

corresponding node. Initially, Di = Ti, however due to

data dependencies and periodic clock multiplications, the

actual deadline may be earlier. For instance, let x be a

flow produced on some clock (n, p). The deadline for its

production is initially set to period n. If x is under-sampled

by 2 (x*ˆ2), the deadline for x becomes n/2. Still, if x is

delayed before being under-sampled ((0 fby x)*ˆ2),

the under-sampling does not change the deadline for x.

A survey of scheduling problems and algorithms can

be found in [14]. We want to schedule a set of tasks

(the node calls), related by precedence constraints, and

subject to periodicity constraints. Due to the criticity of

the systems we consider, we choose off-line scheduling,

where the schedule is computed at compilation-time, rather

than on-line scheduling, where the schedule is computed

at execution-time. The main benefit is that the temporal

behaviour of the program is deterministic since every

action is planned within the schedule. For the same reason

we choose non-preemptive scheduling, which avoids hard

to predict run-time overhead. The schedule is computed

on time interval [0, 2P + max{ri}[, where P is the least

common multiple of the periods of the tasks [14]. The

schedule becomes cyclical after time P +max{ri} (a cycle

has duration P). The scheduling problem we want to solve

is known to be NP-complete for the class of off-line non-

preemptive algorithms [15]. However exact solutions that

work fine in practice exist (i.e. that generally do not require

exponential computation time with respect to the number

of tasks), for instance [16], and can be reused.

Figure 8 gives a possible schedule for the MSU. For

better readability, we did not detail the scheduling of

predefined operators. In this particular example the sched-

ule directly becomes cyclical because the slow period is

a multiple of the fast period. Gray parts correspond to

idle times. Notice that slow operations can spread over

two successive fast cycles, which cannot happen when

programming with classic synchronous languages on the

fastest rate of the system.

B. Schedule Translation

The schedule can be translated into classic sequential

code that requires only simple real-time primitives from the

operating system to execute. The translation of each node

into instructions of the target code, the variable allocations

and most optimizations can reuse standard synchronous

languages compilation techniques. Operators on strictly

periodic clocks mainly impact the scheduling phase. Once

node calls are scheduled, they are simply translated into

the corresponding function call. For instance, the code

corresponding to the schedule of Fig. 8 first acquires in-

puts, then calls function corresponding to node basicOp,

calls function for node applyCmd, produces outputs, calls

function for node B, and so on. This sequence is repeated

by a standard while loop. Idle times can be handled by

a simple idling primitive wait. The instruction wait(t)
causes the execution to wait until date t and then to resume

to the next instruction.

VI. Related Work

Statically computable clocks have also been studied in

[17] (ultimately periodic clocks) and [18] (affine clock

transformations). However, both of these models are not

directly related to real-time, which means that the fact that

a process A executes n times when a process B executes

one time does not imply that the period of A is n times

shorter than the period of B. This again prevents efficient

multi-periodic scheduling. Real-time periodic clocks have

previously been introduced in [8], however they lacked

specific clock transformations to efficiently handle multi-

rate communications. Multi-periodic synchronous data-

flow is also the subject of [19] though this work focuses

more on the scheduling problem instead of on the def-

inition of a formal compilable language. Finally, strictly

periodic clocks do not solve the more general problem of

communicating processes that have unrelated clocks (as

presented in [20]). Indeed, strictly periodic clocks are all

related to the same real-time scale.

VII. Conclusion

We proposed a formal language for programming

multi-rate reactive systems, its semantics and its com-

pilation. This language builds upon data-flow syn-

chronous languages and adds real-time primitives to han-

dle the multi-rate aspects. These primitives are based

real-time clocks called strictly periodic clocks. A pro-

totype of the clock calculus has been implemented

in OCAML. It is about 2500 code lines long, in-

cluding syntax analysis, typing, clock calculus and

proper error handling. It should be available shortly at

http://www.cert.fr/anglais/deri/jforget/. Fu-

ture work will take better advantage of the properties of

strictly periodic clocks for the code generation process.

Indeed, the current code might be long as it is directly

generated from one cycle of the schedule. The formal

semantics of operators on strictly periodic clocks suggests

that strictly periodic clocks can be compiled more effi-

ciently using loop instructions.

References

[1] J. Forget, F. Boniol, D. Lesens, C. Pagetti, and M. Pouzet,
“Programming languages for hard real-time embedded sys-
tems,” in 4th European Congress on Embedded Real-Time
Software (ERTS’08), Jan. 2008.

[2] Simulink: User’s Guide, The Mathworks.
[3] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture

analysis & design language (AADL): An introduction,”
Carnegie Mellon University, Tech. Rep., 2006.

[4] A. Benveniste and G. Berry, “The synchronous approach to
reactive and real-time systems,” in Readings in hardware/-
software co-design. Kluwer Academic Publishers, 2001.

[5] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
synchronous data-flow programming language LUSTRE,”
Proc. IEEE, vol. 79, no. 9, pp. 1305–1320, Sep. 1991.

[6] A. Benveniste, P. Le Guernic, and C. Jacquemot, “Syn-
chronous programming with events and relations: the SIG-
NAL language and its semantics,” Sci. of Compu. Prog.,
vol. 16, no. 2, 1991.

[7] E. A. Lee and A. L. Sangiovanni-Vincentelli, “Comparing
models of computation,” in International Conference on
Computer Aided Design (ICCAD), 1996.

[8] A. Curic, “Implementing lustre programs on distributed
platforms with real-time constraints,” Ph.D. dissertation,
Université Joseph Fourier, Grenoble, Jul. 2005.

[9] M. Pouzet, Lucid Synchrone, version 3. Tutorial and refer-
ence manual, Université Paris-Sud, LRI, Apr. 2006.

[10] G. Kahn, “The semantics of simple language for parallel
programming,” in International Federation for Information
Processing (IFIP) Congress, 1974.

[11] J.-L. Colaço and M. Pouzet, “Clocks as first class abstract
types,” in Third International Conference on Embedded
Software (EMSOFT’03), S. Berlin/Heidelberg, Ed., 2003.

[12] B. C. Pierce, Types and programming languages. Cam-
bridge, MA, USA: MIT Press, 2002.

[13] D. Rémy, “Extending ML type system with a sorted equa-
tional theory,” INRIA, Rocquencourt, France, Tech. Rep.
1766, 1992.

[14] L. George, N. Rivierre, and M. Spuri, “Preemptive and
non-preemptive real-time uniprocessor scheduling,” INRIA,
Tech. Rep. RR-2966, 1996.

[15] M. R. Garey and D. S. Johnson, Computers and Intractabil-
ity : A Guide to the Theory of NP-Completeness. W. H.
Freeman, 1979.

[16] J. Xu and D. L. Parnas, “Scheduling processes with release
times, deadlines, precedence and exclusion relations,” IEEE
Trans. Softw. Eng., vol. 16, no. 3, pp. 360–369, 1990.

[17] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau,
and M. Pouzet, “N -Synchronous Kahn Networks: a relaxed
model of synchrony for real-time systems,” in ACM Interna-
tional Conference on Principles of Programming Languages
(POPL’06), USA, 2006.

[18] I. Smarandache and P. Le Guernic, “A canonical form for
affine relations in signal,” INRIA, Tech. Rep. RR-3097,
1997.

[19] L. Cucu and Y. Sorel, “Real-time scheduling for systems
with precedence, periodicity and latency constraints,” in 10th
International Conference on Real-Time Systems (RTS’02),
2002.

[20] G. Berry and E. Sentovich, “Multiclock esterel,” in 11th
IFIP WG 10.5 Advanced Research Working Conference
on Correct Hardware Design and Verification Methods
(CHARME’01). Springer-Verlag, 2001.

