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The half space property for cmc 1/2 graphs in E(-1, τ )

In this paper, we prove a half-space theorem with respect to constant mean curvature 1/2 entire graphs in E(-1, τ ). If Σ is such an entire graph and Σ is a properly immersed constant mean curvature 1/2 surface included in the mean convex side of Σ then Σ is a vertical translate of Σ. We also have an equivalent statement for the non mean convex side of Σ.

Introduction

In the theory of constant mean curvature surfaces, the half-space property is a problem that have received many contributions in recent years. If Σ is a properly embedded constant mean curvature H 0 surface in a Riemannian 3-manifold M , we may wonder about the existence of an other properly embedded constant mean curvature H 0 surface Σ which has no intersection with Σ. If such a surface exists, can we say anything about its geometry?

One of the first results about this question is the half-space theorem of Hoffman and Meeks [START_REF] Hoffman | The strong halfspace theorem for minimal surfaces[END_REF]. It says that a minimal surface of R 3 on one side of a plane P is a plane parallel to P . This result can also be interpreted as a maximum principle at infinity: if the minimal surface has a boundary, the distance from the surface to P is reached along its boundary (for a general result, see [START_REF] William | Maximum principles at infinity[END_REF]). The same type of half-space results have been proved by several authors in other homogeneous spaces (see [START_REF] Rodriguez | Half-space theorems for mean curvature one surfaces in hyperbolic space[END_REF][START_REF] Ros | Properly embedded surfaces with constant mean curvature[END_REF][START_REF] Hauswirth | On complete mean curvature 1 2 surfaces in H 2 ×R[END_REF][START_REF] Daniel | Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group[END_REF][START_REF] Daniel | Halfspace theorems for minimal surfaces in Nil 3 and Sol 3[END_REF][START_REF] Peñafiel | On H = 1/2 surfaces in P SL 2 (R)[END_REF][START_REF] Mazet | A general halfspace theorem for constant mean curvature surfaces[END_REF][START_REF] Rosenberg | The half-space property and entire positive minimal graphs in M ×R[END_REF]). In most of these results, the half-space property is studied with respect to a surface Σ which is parabolic. The parabolicity is really an important hypothesis as it has been proved in [START_REF] Mazet | A general halfspace theorem for constant mean curvature surfaces[END_REF] and [START_REF] Rosenberg | The half-space property and entire positive minimal graphs in M ×R[END_REF].

The first result involving non parabolic surfaces is due to Daniel, Meeks and Rosenberg [START_REF] Daniel | Halfspace theorems for minimal surfaces in Nil 3 and Sol 3[END_REF] and concerns minimal surfaces in the Heisenberg space Nil 3 . As a Riemannian homogeneous space, Nil 3 is a Killing Riemannian submersion over R 2 . So, in Nil 3 , we can consider surfaces called graphs that are images of sections of the submersion. Among these surfaces, the minimal entire graphs (graph over the whole R 2 ) have been classified by Fernandez and Mira [START_REF] Fernández | Holomorphic quadratic differentials and the Bernstein problem in Heisenberg space[END_REF]; certain ones are parabolic and others are not (see Examples 1 and 2 below). Actually, Daniel, Meeks and Rosenberg proved that if Σ is a properly immersed minimal surface in Nil 3 on one side of an entire minimal graph Σ then Σ is a vertical translate of Σ.

An other situation where interesting non parabolic surfaces appears is in considering entire constant mean curvature 1/2 graphs in H 2 × R. In fact, Daniel and Hauswirth [START_REF] Daniel | Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group[END_REF] proved that there is an isometric correspondence between such surfaces and entire minimal graphs in Nil 3 . This suggests that a half-space property similar to the one of Nil 3 should be true for these surfaces in H 2 × R. Actually, we have partial results in this direction, the half-space property had been established by Nelli and Sa Earp [START_REF] Nelli | A halfspace theorem for mean curvature H = 1 2 surfaces in H 2 × R[END_REF] for a particular entire graph which is rotationally symmetric (Example 1). More recently Cartier and Hauswirth [START_REF] Cartier | Deformation of cmc-1/2 surfaces in H 2 × R with vertical ends at infinity[END_REF] proved also the half-space property for a family of entire graphs that can be obtained by deforming the rotationally symmetric one.

In this paper, we prove the half-space property for all entire cmc 1/2 graphs in H 2 ×R. In fact, we prove this for entire cmc 1/2 graphs of E(-1, τ ). E(-1, τ ) denotes the family of simply connected homogeneous spaces which are Killing Riemannian submersions over H 2 ; we have H 2 × R = E(-1, 0). Our main theorem (Theorem 3) is then Theorem. Let Σ be an entire constant mean curvature 1/2 graph in E(-1, τ ) and Σ be a properly immersed constant mean curvature 1/2 surface in E(-1, τ ). If Σ is included in the mean convex side of Σ then Σ is a vertical translate of Σ.

We also have a statement when Σ is included in the non-mean convex side of Σ.

Our strategy of proof is similar to the one of [START_REF] Daniel | Halfspace theorems for minimal surfaces in Nil 3 and Sol 3[END_REF] and [START_REF] Rosenberg | The half-space property and entire positive minimal graphs in M ×R[END_REF] which consists in constructing a family of barriers that converges to a vertical translate of Σ. The main difficulty is to prove that the barriers we construct actually converge to a vertical translate of Σ. So the main part of the proof (Proposition 5) is devoted to a uniqueness result for the exterior Dirichlet problem associate to the constant mean curvature 1/2 equation. This uniqueness result is in fact a maximum principle at infinity for a certain partial differential equation. If u 0 ≤ u 1 are two solutions of our exterior Dirichlet problem, we construct (u t ) 0≤t≤1 a family of solutions of the exterior problem that goes continuously from u 0 to u 1 . Then ∂ t u t defines a Jacobi field on the graph of u t . We use the associated family introduced by Daniel in [START_REF] Daniel | Isometric immersions into 3-dimensional homogeneous manifolds[END_REF] to study this Jacobi field on a minimal surface in Nil 3 . In fact, we prove uniqueness of this Jacobi field. In some sense, it can be interpreted as an infinitesimal version of the half-space theorem of Daniel, Meeks and Rosenberg. Using this uniqueness, we can reintegrate ∂ t u t in order to prove that u 0 and u 1 should differ by a constant which leads to the conclusion.

In Section 2, we recall some definitions about the E(κ, τ ) spaces and explain what are the entire constant mean curvature graphs in them. Section 3 is devoted to two gradient estimates for solutions of the constant mean curvature equation, these estimates are used in the construction of the barriers and in the proof of the uniqueness result. In Section 4, we prove our main theorem assuming the uniqueness result (Proposition 5). This uniqueness result is proved in Section 5. Finally, in Appendix A, we give some computations concerning Killing Riemannian submersions and, in Appendix B, we construct two barriers that are used in Section 4.

2 Entire cmc 1/2 graphs in E(-1, τ )

The ambient spaces E(κ, τ )

In this section, we give a quick introduction to the ambient space E(κ, τ ) when κ ≤ 0; for a complete description we refer to [START_REF] Daniel | Isometric immersions into 3-dimensional homogeneous manifolds[END_REF].

The space E(κ, τ ) is a simply connected homogeneous space with an isometry group of dimension at least 4. For κ ≤ 0, we define

D κ = {(x, y) ∈ R 2 | 1 + κ(x 2 + y 2 ) ≥ 0} (D 0 = R 2 ). A model for the ambient space E(κ, τ ) is then D κ × R with the following complete Riemannian metric ds 2 κ,τ = λ 2 κ (dx 2 + dy 2 ) + (2τ λ κ (ydx -xdy) + dz) 2
where

λ κ = 2 1 + κ(x 2 + y 2 )
The map π : E(κ, τ ) → (D κ , λ 2 κ (dx 2 + dy 2 )), (x, y, z) → (x, y) is then a Killing Riemannian submersion (see definitions in Appendix A) over either the hyperbolic space H 2 (κ) of curvature κ or the Euclidean space R 2 (κ = 0). Moreover the unit Killing vector field is ξ

= ∂ z . If µ > 0, the map h µ : (x, y, z) → µ(x, y, z) is a diffeomorphism from E(κ, τ ) to E( κ µ 2 , τ µ ) such that h * µ (ds 2 κ µ 2 , τ µ ) = µ 2 ds 2 κ,τ
So the study of the geometry of the spaces E(κ, τ ) when κ < 0 reduces to the one of the spaces E(-1, τ ); so in the following we only focus to these spaces. We will denote H 2 = H 2 (-1) and λ = λ -1 , we also use ∇ to denote the Levi-Civita connection on E(-1, τ ). The vector field ξ generates a flow (ϕ t ) t , in the following we will denote by p + t the point ϕ t (p) where p ∈ E(-1, τ ). This notation is coherent with the identification of sections with functions in the model.

The coordinate z defines a function on E(-1, τ ). In the following, we will consider the gradient of this function. So we introduce the vector field ζ with the following expression

ζ = ∇z = -2τ yF 1 + 2τ xF 2 + ξ (1) 
where

F 1 = 1 λ ∂ x -2τ y∂ z and F 2 = 1 λ ∂ y + 2τ x∂ z are the horizontal lift of an orthonormal frame of H 2 (let us notice that (F 1 , F 2 , ξ) is an orthonormal frame of E(-1, τ )).

The mean curvature of graphs in E(-1, τ )

In E(-1, τ ), a surface is called a graph if it is the image of a smooth section σ : Ω ⊂ H 2 → E(-1, τ ), this image is called the graph of σ (see Appendix A). For such a section, we can define a vector field Gσ on Ω by the following property:

(Gσ(p), X) H 2 = (ξ, d p σ(X)) E(-1,τ ) for any X ∈ T p H 2
When τ = 0 and σ is a function, Gσ is the gradient of σ; in general, Gσ will play the role of the gradient.

In fact, the graph of σ has constant mean curvature

H 0 if div H 2 Gσ 1 + Gσ 2 = 2H 0 (2)
where the mean curvature is computed with respect to the upward pointing normal (see [START_REF] Peñafiel | On H = 1/2 surfaces in P SL 2 (R)[END_REF] in Appendix A for a proof of (2)).

If we use the coordinates given by the model, a section σ can be identified to a function (i.e. z = σ(x, y)) and Gσ has the following expression:

Gσ = 1 λ 2 (σ x + 2τ λy)∂ x + 1 λ 2 (σ y -2τ λx)∂ y 2.3 Entire cmc 1/2 graphs in E(-1, τ )
If σ is a section defined on the whole H 2 and its mean curvature is constant H 0 , it is known that this mean curvature is less than 1/2 (see [START_REF] Peñafiel | Graphs and multi-graphs in homogeneous 3-manifolds with isometry groups of dimension 4[END_REF]). In fact, we are interested in entire graphs with mean curvature 1/2; so we consider sections σ defined on the whole H 2 which are solution of div H 2 Gσ

1 + Gσ 2 = 1 (3) 
Such an entire graph Σ bounds two connected components of E(-1, τ ), one is above the graph, it is the mean convex side of Σ, and one is below.

In fact, the space of all constant mean curvature 1/2 entire graphs in E(-1, τ ) is classified (see [START_REF] Daniel | Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group[END_REF], [START_REF] Hauswirth | On complete mean curvature 1 2 surfaces in H 2 ×R[END_REF] and [START_REF] Peñafiel | On H = 1/2 surfaces in P SL 2 (R)[END_REF]). Let us give some explanations on the classification.

Let X : Σ → E(-1, τ ) be a simply connected constant mean curvature 1/2 surface in E(-1, τ ). On this surface, we can consider four geometric data: they are its metric g, its shape operator S, a function ν and a vector field T such that along Σ the vector field ξ can be written ξ = T + νN where N is the unit normal vector to Σ. In [START_REF] Daniel | Isometric immersions into 3-dimensional homogeneous manifolds[END_REF], Daniel prove that these data satisfies to equations which are necessary and sufficient for the existence of the immersion X. Now if we consider θ such that τ + i 2 = e iθ τ 2 + 1 4 , we can consider the following data

g = g S = e θJ (S - 1 2 I) ν = ν T = e θJ T
These new data solve the conditions introduced by Daniel [START_REF] Daniel | Isometric immersions into 3-dimensional homogeneous manifolds[END_REF] for the existence of a minimal immersion X of Σ in E(0, τ ) with τ = τ 2 + 1 4 . Actually this gives an isometric correspondence between minimal immersions in E(0, τ ) and cmc 1/2 immersions in E(-1, τ ). By the work of Daniel, Hauswirth, Rosenberg, Spruck and Penafiel [START_REF] Daniel | Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group[END_REF][START_REF] Hauswirth | On complete mean curvature 1 2 surfaces in H 2 ×R[END_REF][START_REF] Peñafiel | On H = 1/2 surfaces in P SL 2 (R)[END_REF], we know that being an entire graph is preserved by this correspondence. So every entire cmc 1/2 graph in E(-1, τ ) corresponds to an entire minimal graph in E(0, τ ). By the work of Fernandez and Mira [START_REF] Fernández | Holomorphic quadratic differentials and the Bernstein problem in Heisenberg space[END_REF], we know that the space of entire minimal graphs in E(0, τ ) is in correspondence with the space of quadratic holomorphic differential over C or the unit disk. This gives the classification of entire cmc 1/2 graphs in E(-1, τ )

Example 1 (The rotational example). Using the Poincaré disk model

D -1 , the function σ(x, y) = 2 1 -x 2 -y 2
is a solution of (3) for τ = 0. So its graph is an entire 1/2 graph in H 2 × R. This graph is invariant by rotations around a vertical axis. This graph is conformal to the unit disk i.e. it is a non-parabolic surface.

Example 2 (The translational example). In the half-space model for H 2 , the function

u(x, y) = x 2 + y 2 y is a solution of (3) for τ = 0. So its graph is an entire 1/2 graph in H 2 × R.
This graph is invariant by translations along a certain horizontal geodesic line. This graph is conformal to C i.e. it is a parabolic surface.

Gradient estimates

In the sequel, we need several gradient estimates for constant mean curvature 1/2 graphs in E(-1, τ ). Actually, we consider these surfaces as graphs of functions in the model; in consequence the estimates we get depend on our choice of the model.

Some preliminary computations

Let σ be a section of E(-1, τ ) whose graph has constant mean curvature H 0 , σ is a solution of (2). Let N denote the upward pointing unit normal to the graph Σ of σ. On Σ, we consider the function ν = (N, ξ). Since ξ is a unit killing vector field, ν is a Jacobi function on Σ so:

∆ Σ ν = -(Ric(N, N ) + S 2 )ν.
where Ric is the Ricci tensor of E(-1, τ ). Actually, we have [START_REF] Daniel | Isometric immersions into 3-dimensional homogeneous manifolds[END_REF]), thus we get:

Ric(N, N ) = -(1 + 2τ 2 ) + ν 2 (1 + 4τ 2 ) (see
∆ Σ ν = -(-(1 + 2τ 2 ) + ν 2 (1 + 4τ 2 ) + S 2 )ν.
We also have

∆ Σ 1 ν = - ∆ Σ ν ν 2 + 2 ∇ Σ ν 2 2 ν 3 .

So if we introduce the operator

Lu = ∆ Σ u -2ν(∇ Σ 1 ν , ∇ Σ u), we have: L 1 ν = (-(1 + 2τ 2 ) + ν 2 (1 + 4τ 2 ) + S 2 ) 1 ν ≥ - 1 + 2τ 2 ν .
Using the model, we denote by h the restriction of the z coordinate to Σ.

We then have

∇ Σ h = ζ
where X denotes the orthogonal projection of X on T Σ. Using the expression (1), we obtain the following estimate:

∇ Σ h = ζ 2 -(ζ, N ) 2 ≥ 1 -ν 2 -c 1 ν (4) 
where c 1 is a positive constant. For the Laplacian of h we have:

|∆ Σ h| ≤ c 2 (x, y) (5) 
with c 2 (x, y) a smooth function that depends on τ and H 0 .

Let p be a point in H 2 and d denote the hyperbolic distance from p. The function d can be extended to the whole E(-1, τ ) by considering d • π. We then have ∇d = ∇d where X denote the horizontal lift of X (see Appendix A) and ∇ is the gradient operator on H 2 . We then have

∇ Σ d 2 = ∇d 2 ≤ d (6) 
and because of formulas ( 11), ( 12) and ( 13)

|∆ Σ d 2 | ≤ c 3 (x, y, d) (7) 
with c 3 a smooth function depending on τ and H 0

A gradient estimate close to the boundary

In this section, we give a first gradient estimate which is similar to Lemma 3.1 proved by Rosenberg, Schulze and Spruck in [START_REF] Rosenberg | The half-space property and entire positive minimal graphs in M ×R[END_REF]. This result will be used to control the gradient of a section close to the boundary of the domain.

Proposition 1. Let σ be a section of E(-1, τ ) satisfying to (2) which is defined on a bounded domain Ω ⊂ H 2 and is C 1 up to the boundary. Then there are two positive constants M and α that depends only on Ω and τ such that sup

Ω W ≤ max(M, sup ∂Ω W ) sup Ω e -ασ sup Ω e ασ .
where W = 1 + Gσ 2 . The quantity e ±ασ are computed by identifying σ with a function in the model.

Proof. Let η = e αh where α will be chosen later. From estimates (4) and ( 5), there is a positive constant k that depends only on Ω and τ such that

∆ Σ η = (α 2 ∇ Σ h 2 + α∆ Σ h)η ≥ (α 2 (1 -ν 2 -kν) -αk)η Thus L η ν = (L 1 ν )η + 1 ν ∆ Σ η ≥ (-(1 + 2τ 2 ) + α 2 (1 -ν 2 -kν) -αk) η ν
There is ν 0 that depends only on k such that, for ν ≤ ν 0 :

-(1 + 2τ 2 ) + α 2 (1 -ν 2 -kν) -αk ≥ -(1 + 2τ 2 ) + α 2 /2 -αk
Thus, if α is chosen sufficiently large (depending only on k and τ ) we get L η ν ≥ 0 where ν ≤ ν 0 . By the maximum principle, this implies that the maximum of η ν is reached on the boundary of Σ or in {ν ≥ ν 0 }. This implies that η ν ≤ max(sup

∂Σ η ν , 1 ν 0 sup Σ η)
This is the expected estimate since ν = W -1 .

A gradient estimate inside the domain

We give now an other gradient estimate which is used to control a solution far from the boundary. It is similar but less precise than the one given by Korevaar in [START_REF] Korevaar | An easy proof of the interior gradient bound for solutions to the prescribed mean curvature equation[END_REF] or Spruck in [START_REF] Spruck | Interior gradient estimates and existence theorems for constant mean curvature graphs in M n × R[END_REF] Proposition 2. Let σ be a section of E(-1, τ ) satisfying to (2) which is defined on a geodesic disk of H 2 centered at p = (x p , y p ) ∈ D -1 and of hyperbolic radius R. We assume that σ viewed as a function in the model is positive. Then there exists a positive constant M that depends on

x 2 p + y 2 p , R, σ(p) and H 0 such that W (p) ≤ M
Proof. Let d be the hyperbolic distance from p in H 2 and we extend it to the whole E(-1, τ ). Let us define, on Σ, ϕ = (-

h 2h 0 + 3/4 -( d R )
2 ) + which is less than 3/4 and where h 0 = σ(p). If P = (p, σ(p)), we have ϕ(P ) = 1/4 and ϕ = 0 close to ∂Σ. Let us consider η = e Kϕ -1 for a constant K that will be chosen below. Let us define u = η ν , we see that max u is positive and is reached inside the support of ϕ.

We have

Lu = (L 1 ν )η + ( 1 ν )∆ Σ η ≥ -(1 + 2τ 2 ) η ν + 1 ν (K 2 ∇ Σ ϕ 2 + K∆ Σ ϕ)e Kϕ ≥ (K 2 ∇ Σ ϕ 2 + K∆ Σ ϕ -(1 + 2τ 2 )) e Kϕ ν + 1 + 2τ 2 ν ≥ (K 2 ∇ Σ ϕ 2 + K∆ Σ ϕ -(1 + 2τ 2 ))
e Kϕ ν Let us see that K can be chosen such that the first factor in the above expression is positive.

Let us estimate the different terms. We have

∇ Σ ϕ = - ζ 2h 0 -2 ∇ Σ d 2 R 2
Thus, by ( 1) and ( 6), there is a constant k 1 that depends on p and R such that

(∇ Σ ϕ, ξ) ≤ - 1 2h 0 (1 -k 1 ν) + k 1 ν
So there exists ν 1 > 0 that depends on k 1 and h 0 such that if ν ≤ ν 1

(∇ Σ ϕ, ξ) ≤ - 1 2 √ 2h 0 and ∇ Σ ϕ 2 ≥ 1 8h 2 0
Besides, by ( 5) and ( 7), there is a constant k 2 that depends only on the domain p, R, h 0 such that |∆ Σ ϕ| ≤ k 2 . This implies that for ν ≤ ν 1 we have

K 2 ∇ Σ ϕ 2 + K∆ Σ ϕ -(1 + 2τ 2 ) ≥ K 2 1 8h 2 0 -Kk 2 -(1 + 2τ 2 )
So there exists K > 0 that depends only on h 0 , k 2 and τ such that, for

ν ≤ ν 1 , K 2 ∇ Σ ϕ 2 + K∆ Σ ϕ -(1 + 2τ 2 ) > 0
Thus applying the maximum principle for the operator L, we get that the maximum of u is reached at a point Q where ν ≥ ν 1 . Thus

e K/4 -1 ν(P ) ≤ u(Q) ≤ e 3K/4 -1 ν 1
So we get the expected estimate:

1 ν(P ) ≤ 1 ν 1 e 3K/4 -1 e K/4 -1 4 
The half-space theorem

In this section, using Proposition 5, we prove the half space theorem with respect to constant mean curvature 1/2 entire graph in E(-1, τ ). The theorem is the following.

Theorem 3. Let Σ be a constant mean curvature 1/2 entire graph in E(-1, τ ).

Let Σ be a properly immersed constant mean curvature 1/2 surface in E(-1, τ ) such that Σ ∩ Σ = ∅.

• if Σ is above Σ then Σ = Σ + t for some t > 0.

• if Σ is below Σ and is well oriented with respect to Σ then Σ = Σ -t for some t > 0.

Being well oriented means that the mean curvature vector of Σ points in the connected component of E(-1, τ ) bounded by Σ and Σ . Since Σ is only immersed, this condition has a meaning only for points of Σ lying on the boundary of the connected component.

In the following, we write the proof only for the first case. We will just make remarks to explain where the orientation hypothesis is used in the second case. The approach is very similar to the one used by Rosenberg, Schulze and Spruck in [START_REF] Rosenberg | The half-space property and entire positive minimal graphs in M ×R[END_REF] (see also Daniel, Meeks and Rosenberg [START_REF] Daniel | Halfspace theorems for minimal surfaces in Nil 3 and Sol 3[END_REF]).

Construction of the barriers

We are working in the model. Let us consider an increasing sequence 0 < r 0 < r 1 < • • • < r n < • • • with r n < 1 and lim r n = 1 and let A n be the annulus {r 0 ≤ r ≤ r n } ⊂ D -1 and A = {r 0 ≤ r < 1} (r 2 = x 2 + y 2 ). We denote by σ the function that defines the graph Σ.

Using the implicit function theorem, there is δ > 0 such that there is a smooth family (u t,1 ) 0≤t≤δ of smooth solutions u t,1 of (3) on A 1 with u t,1 = σ + t on {r = r 0 } and u t,1 = σ on {r = r 1 }.

In fact, the same construction can be made for every n with the same δ (see Figure 1). Lemma 4. There is δ > 0 such that, for every n ≥ 1 and 0 ≤ t ≤ δ, there exists a smooth solution u t,n of (3) on A n such that u t,n = σ + t on {r = r 0 } and u t,n = σ on {r = r n }.

Moreover, for any k > 0 the family of functions (u t,n ) 0≤t≤δ,n≥1 is uniformly bounded in the C 2,α norm on A k . Because of the maximum principle, we have uniqueness of solutions to a Dirichlet problem on compact domains; so the above solutions u t,n are unique. Thus u 0,n = σ.

Proof. Let δ be given by the construction of u t,1 . Let us prove that this constant works also for other n. Let us define u 0,n = σ on A n , the existence of u t,n will come from the method of continuity. In order to apply this method, we need some a priori estimates for the solutions.

So let us consider a solution u t,n (t ≤ δ). By the maximum principle, we have σ ≤ u t,n ≤ σ + t ≤ σ + δ, so there is a constant c

1 (n) > 0 such that |u t,n | ≤ c 1 (n) on A n .
By the maximum principle, on A 1 , we have u δ,1 + t -δ ≤ u t,n ≤ σ + t. But these three functions coincide on {r = r 0 } so the gradient of u t,n on {r = r 0 } is bounded by a constant c 2 that does not depend on n and t.

From Appendix B, we know that there exists a smooth function

h on A n such that h = σ on {r = r n }, h ≥ c 1 (n) on {r = r 0 } and div H 2 Gh 1 + Gh 2 ≤ 1
so by the maximum principle, σ ≤ u t,n ≤ h on A n . These functions coincide on {r = r n } so the gradient of u t,n on {r = r n } is bounded by a constant c 3 (n). Thus by Proposition 1, there is a constant c 4 (n) such that ∇u t,n ≤ c 4 (n) on A n for any t ∈ [0, δ]. This implies that the equation solved by u t,n is uniformly elliptic.

Then the DeGiorgi-Nash-Moser and Schauder estimates implies a priori bounds for higher derivatives of u t,n on A n . The method of continuity can then be applied to prove the existence of the solutions. We notice that the estimates we just get depend on n but in the lemma we want estimates that are also independent of n.

For the C 1 estimate, let us consider k ≥ 1, as above σ ≤ u t,n ≤ σ + δ so the family (u t,n ) n is uniformly bounded on A k+1 . Thus by Proposition 2, the gradient of u t,n is uniformly bounded on {r = r k }. Since ∇u t,n ≤ c 2 on {r = r 0 }; Proposition 1 tells that ∇u t,n is uniformly bounded on A k . As above this gives uniform estimates for higher derivatives on A k . Since (u δ,n ) and their derivatives are uniformly bounded, a diagonal process gives a smooth solution u δ of (3) on A and a subsequence (u δ,n ) such that u δ,n → u δ where the convergence is smooth in all compact subsets of A.

By construction, we have u δ = σ + δ on ∂A and σ ≤ u δ ≤ σ + δ. We remark that σ + δ is an other solution of (3) with the same property; so by Proposition 5 (see Section 5), u δ = σ + δ.

Remark 1. For the case Σ below Σ, we need to construct solutions (u -δ,n ) which are below σ. The proof is similar, we just use the k barriers of Appendix B instead of the h barriers.

Proof of the half space theorem

Let Σ be a properly immersed constant mean curvature 1/2 surface in E(-1, τ ) which is above Σ. By replacing Σ by Σ + t if necessary, we can assume that Σ is not above Σ + ε for any ε > 0.

If Σ and Σ touches, the maximum principle implies that Σ = Σ; so we can assume that the two surfaces do not meet. Let δ > 0 be such that Σ does not meet Σ + t for t ∈ [0, δ ] over {r ≤ r 0 }. Let δ ≤ δ such that Lemma 4 is true and let us consider a subsequence of (u δ,n ) such that u δ,n → σ + δ.

Let us denote by Σ δ,n the graph of u δ,n . The surface Σ δ,n -δ is below Σ so below Σ . Besides the boundary of Σ δ,n -t for t ∈ [0, δ] never meet Σ , thus, by the maximum principle, Σ δ,n is below Σ . Letting n tends to +∞ along the chosen subsequence implies that Σ + δ = lim Σ δ,n is below Σ . This gives a contradiction and Theorem 3 is proved.

Remark 2. When Σ is below Σ, the orientation hypothesis is used in order to apply the maximum principle between Σ and Σ and between Σ and Σ -δ,n + t.

A uniqueness exterior result

In this section we prove a uniqueness result for (3) in an exterior domain on

H 2 .
We still consider the model for E(-1, τ ). Let us consider r 0 ∈ (0, 1) and A = {r ≥ r 0 } ∈ D -1 = H 2 . We have the following uniqueness result. Proposition 5. Let u, v be two smooth solutions of (3) on A such that u = v on ∂A and |u -v| is bounded on A then u = v.

The rest of this section is devoted to the proof of this result. Let u and v be as in the proposition. If u = v and exchanging u and v if necessary, there is a t 0 > 0 such that v + t 0 ≥ u and inf A (v -u + t 0 ) = 0. Let us denote ũ = v + t 0 . We have ũ = u + t 0 on ∂A and inf A (ũ -u) = 0.

Construction of a foliation

Let r 0 < r 1 < • • • be an increasing sequence with lim r n = 1. As above, we denote A n = {r 0 ≤ r ≤ r n } Let δ < t 0 be given by Lemma 4 with σ = u. Then we have the associated family of solutions u t,n (t ∈ [0, δ]) of (3).

We remark that if t ≤ t , the maximum principle tells that u t,n ≤ u t ,n ≤ u t,n + t -t ≤ ũ. By Lemma 4, for any k, the family (u t,n ) 0≤t≤δ,n≥1 is uniformly bounded in the C 2,α norm over A k .

Thus by a diagonal process, there is a family of smooth solutions (u qδ ) q∈Q∩[0,1] of (3) in A and a subsequence such that u qδ,n → u qδ for any q ∈ Q ∩ [0, 1] (the convergence is smooth in any compact subset of A). If q ≤ q ∈ Q∩[0, 1], we have u qδ ≤ u q δ ≤ u qδ + (q -q)δ. Besides the family (u qδ ) q∈Q∩[0,1] is uniformly bounded in the C 2,α norm over A k . These two properties imply that, for t ∈ [0, δ], the function

u t = sup q∈Q∩[0,1] qδ≤t u qδ = inf q∈Q∩[0,1] qδ≥t u qδ
is well defined and is a smooth solution of (3) on A (we notice that this definition coincide with the original one when t/δ ∈ Q). By construction, if t ≤ t , u t ≤ u t ≤ u t + (t -t) and u t = u + t = u 0 + t on ∂A. Moreover, for any k, the family (u t ) t∈[0,δ] is uniformly bounded in the C 2,α norm over A k . Thus lim t→t u t = u t with smooth convergence on any compact subset of A.

We also have u = u 0 ≤ u t ≤ u δ ≤ ũ; this implies that inf A (u t -u) = 0.

Derivation of the foliation

In the preceding subsection, we have constructed the family (u t ) and proved that it depends continuously in the parameter t. In this subsection, we study the differentiability with respect to t. Since all the functions u t satisfies to (3),

a derivative v = dut dt | t= t is a priori a solution of div H 2 ∇v -χ ut (∇v, χ ut ) 1 + Gut 2 = 0 ( 8 
)
where χ u = Gu 1 + Gu 2 (see Appendix A). We will prove that this is in fact the case.

Lemma 6. Let t ∈ [0, δ] and (t k ) a sequence converging to t then there is a solution v of (8) and a subsequence such that

u t k -ut t k - t -→ v
with a smooth convergence in any compact subset of A.

The idea of the proof comes from the work of Solomon about the regularity of minimal foliations [START_REF] Solomon | On foliations of R n+1 by minimal hypersurfaces[END_REF].

Proof. Let v k be equal to u t k -ut. We then have Gu t k = Gut + ∇v k . Thus v k is a solution of the following equation

0 = div H 2 ∇v k + Gut 1 + ∇v k + Gut 2 - Gut 1 + Gut 2 = div H 2 1 0 ∇v k -χ w k,s (∇v k , χ w k,s ) 1 + Gw k,s 2 ds ( 9 
)
with w k,s = ut + sv k . Let us denote by P k,s the linear operator

P k,s (X) = X -χ w k,s (X, χ w k,s ) 1 + Gw k,s 2 .
Actually, P k,s is a smooth section of the endomorphisms on T H 2 defined on A.

Let n ∈ N * , we know that the functions u t k and ut are uniformly bounded in C 2,α norm over A n . Thus the family (w k,s ) k∈N,s∈[0,1] is uniformly bounded in C 2,α norm over A n . This implies first that the family (P k,s ) is uniformly bounded in C 1,α norm over A n and that there exist a constant c n > 0 such that, for any

X ∈ T H 2 , (P k,s X, X) = X -(X, χ w k,s ) 2 1 + Gw k,s 2 ≥ (1 -χ w k,s 2 ) X 2 1 + Gw k,s 2 ≥ c n X 2
Thus we have proved that the operators

L k (w) = div H 2 1 0 P k,s (∇w)ds
are uniformly elliptic with uniformly bounded C 0,α coefficients in A n . So, by Schauder estimates, there is a constant c n such that

v k C 2,α (An) ≤ c n ( v k C 0 (A n+1 ) + v k C 2,α ({r=r 0 }) ) ≤ 2c n |t k -t|
The last inequality comes from the fact that

|v k | = |u t k -ut| ≤ |t k -t| and v k = t k -t along {r = r 0 }. Thus v k /(t k -t) is uniformly bounded in C 2,α
norm over A n . So, by a diagonal process, there is a subsequence v k /(t k -t) that converges smoothly to a function v on any compact subset of A.

Besides, since v k → 0 smoothly, the operator P k,s converges uniformly to the operator P defined by:

P (X) = X -χ ut (X, χ ut ) 1 + Gut 2 .
So v is a solution of (8).

Since

u t ≤ u t ≤ u t + (t -t) if t ≤ t , the function v satisfies 0 ≤ v ≤ 1.
Moreover, on ∂A, we have v = 1. The constant function 1 is an obvious solution to (8) that satisfies to the same properties; in the following we will indeed prove that 1 is the only such solution.

The associate surface in E(0, τ )

Let t be in [0, δ] and Σ be the graph of ut. We will consider several metrics on the annulus Σ, so in the computations, we will always explain to which metric the computation is made. The function v constructed by Lemma 6 can be viewed as a function on Σ. From Appendix A, if ν is the angle function (N, ξ), vν is a Jacobi function on (Σ, g) where g is the induced metric from E(-1, τ ). In this section, we use the associated family of constant mean curvature surfaces introduced by Daniel [START_REF] Daniel | Isometric immersions into 3-dimensional homogeneous manifolds[END_REF] and the work of Daniel and Hauswirth [START_REF] Daniel | Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group[END_REF] to prove the following result.

Lemma 7. There exist a flat metric g 0 on Σ and a vector field G on Σ such that any function w such that wν is a Jacobi function of (Σ, g) is a solution to

div 0 ∇ 0 w -χ(∇ 0 w, χ) 1 + G 2 0 = 0 ( 10 
)
with χ = G √ 1+ G 2 0
(the sub or superscript 0 means that the computation are made with respect to the g 0 metric).

Proof. Let Σ be the universal cover of Σ. The immersion X of Σ in E(-1, τ ) is encoded in the induced metric g, the shape operator S, the function ν and the orthogonal projection T of the vector field ξ. As in Section 2.3, let θ be such that τ + i 2 = e iθ 1 4 + τ 2 . Then, the data

g = g S = e θJ (S - 1 2 I) ν = ν T = e θJ T
encode a minimal immersion X of Σ in E(0, 1 4 + τ 2 ) (J denotes the rotation by π/2 in the tangent space to Σ) (see [START_REF] Daniel | Isometric immersions into 3-dimensional homogeneous manifolds[END_REF]).

The Jacobi operator of X ( Σ) is:

∆ g + (-2τ 2 + 4τ 2 ν 2 + S 2 ) = ∆ g + (-2( 1 4 + τ 2 ) + 4( 1 4 + τ 2 )ν 2 + S 2 - 1 2 ) = ∆ g + (- 1 2 -2τ 2 ) + (1 + 4τ 2 )ν 2 + S 2 )
where the computation are made with respect to the metric g = g . Thus the Jacobi operator of X ( Σ) is the same that the one of X( Σ). If w is viewed as a function on Σ, the function wν is a Jacobi function on X( Σ) so it is a Jacobi function on X ( Σ).

Let π be the submersion from E(0, τ ) to R 2 . Since ν = ν > 0, the map π • X is a local diffeomorphism from Σ to R 2 , so we can lift to Σ the flat metric of R 2 . Let g 0 denote this flat metric on Σ. Besides locally, we can describe X ( Σ) has the graph of a section s. By Appendix A, since wν is a Jacobi function on X ( Σ), the function w, viewed as a function on

R 2 , is a solution of div R 2   ∇ R 2 w -χ s (∇ R 2 w, χ s ) 1 + Gs 2 R 2   = 0
The computation are made with respect to the Euclidean metric of R 2 . But the vector field G = (π • X ) * (Gs) is globally well defined on Σ and then v is a solution on Σ of:

div 0 ∇ 0 w -χ(∇ 0 w, χ) 1 + G 2 0 = 0 where χ = G √ 1+ G 2 0
. Let us now see that this description passes to the quotient surface Σ. Let us consider γ a generator of π 1 (Σ). The element γ acts on Σ as a diffeomorphism without any fixed point. Moreover, from the uniqueness part of Theorem 4.3 in [START_REF] Daniel | Isometric immersions into 3-dimensional homogeneous manifolds[END_REF], there exists M an isometry of E(0, τ ) such that for any p ∈ Σ we have X (γ • p) = M (X (p)). Besides there is an isometry m of R 2 such that π(M (q)) = m(π(q)) for any q ∈ E(0, τ ). This implies that π(X (γ • p)) = m(π(X (p))) so γ * g 0 = g 0 and γ * G = G. This implies that the metric and the vector field pass to the quotient surface Σ and w on Σ is a solution of [START_REF] Manzano | On the classification of Killing submersions and their isometries[END_REF].

In fact, the metric g 0 on the surface Σ which has a compact boundary satisfies the following property. Lemma 8. The flat metric g 0 is complete.

Proof. It suffices to prove that every curve in Σ starting from a point in the boundary of Σ which is proper in Σ has infinite length with respect to g 0 . On Σ, we lift the function r which is the radial coordinate on D -1 ; r : Σ → [0, 1) is proper. r can also be lifted to Σ.

Actually, it suffices to prove that every curve in Σ starting from a point in the boundary of Σ such that r • γ → 1 has infinite length with respect to g 0 .

So let γ be such a curve in Σ. We have the following estimate:

(γ, g 0 ) = (π(X (γ)), R 2 ) ≥ X (γ) ν d g = X(γ) νd g ≥ π(X(γ)) νd H 2
In {r 0 ≤ r ≤ r 1 }, we know that there is ν 0 > 0 such that ν ≥ ν 0 . So for a curve γ with r • γ proper, we have:

(γ, g 0 ) ≥ 2ν 0 (argth r 1 -argth r 0 ) = 0 > 0

This estimate implies that we can only consider points in Σ which are at a distance larger than 0 from ∂ Σ in the g 0 metric. Using this, we can apply the work of Daniel and Hauswirth [START_REF] Daniel | Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group[END_REF] to prove that, if ( Σ, g 0 ) does not satisfied to the expected property, then X ( Σ) has a subset which is a graph over a strip S ∈ R 2 isometric to (0, ε) × R. Moreover this graph goes to +∞ on one of its boundary component. But the existence of such a minimal graph is impossible by Theorem 6.3 in [START_REF] Daniel | Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group[END_REF].

A uniqueness result for Jacobi function

In this subsection, we prove a uniqueness result for solution of a certain partial derivative equation over a flat surface.

Lemma 9. Let (S, ds 2 ) be a complete flat surface with a compact boundary.

Let G be a smooth vector field on S. We consider w and w two smooth functions on S with the same boundary value which solve the following partial derivatives equation:

div ∇u -χ(∇u, χ) 1 + G 2 = 0 with χ = G √ 1+ G 2 . If w -w is bounded then w = w .
Proof. The first step of the proof is to estimate the growth of the surface S. Let d be the distance function from ∂S. d is a Lipschitz function. If n is the inward unit normal vector to ∂S, the set {d = d 0 } is included in the image of the map ϕ d 0 : ∂S → S; p → exp p (d 0 N (p)) (actually this map is well defined only on a subset of ∂S). With κ the geodesic curvature of ∂S, we obtain:

({d = d 0 } ≤ (im ϕ d 0 ) ≤ ∂S |1 + κd 0 |d ≤ (1 + κd 0 ) (∂S)
where κ = max |κ|. Thus ({d = d 0 } has at most a linear growth.

Let P be the linear map defined on T S by:

P (X) = X -χ(X, χ) 1 + G 2
We have

P (X) 2 = X 2 -(X, χ) 2 1 + G 2 - (1 -χ 2 )(X, χ) 2 1 + G 2 ≤ X 2 -(X, χ) 2 1 + G 2 = (X, P (X)) 1 + G 2 ≤ (X, P (X))
The So we have:

I(d 1 ) M + d 0 d 1 µ 2 (s) cM s ds ≤ µ(d 0 )
We notice that µ is a priori just a locally bounded measurable function, but we can integrate the above differential inequality. Indeed let g(d 0 ) be the left-hand side of the above inequality. Since µ is locally bounded, g is locally Lipschitz. Moreover

g(d 0 ) = I(d 1 ) M + d 0 d 1 µ 2 (s) cM s ds ≥ I(d 1 ) M + d 0 d 1 g 2 (s) cM s ds Now if f (d 0 )
is the right-hand side of the above inequality, f is C 1 , satisfies the same differential inequality and we have :

f (s) = g 2 (s) cM s ≥ f 2 (s) cM s So f (d 0 ) ≥ I(d 1 ) 1 -I(d 1 ) M 2 c log( d 0 d 1 ) Now since f (d 0 ) ≤ g(d 0 ) ≤ µ(d 0 ) µ(d 0 ) ≥ I(d 1 ) 1 -I(d 1 ) M 2 c log( d 0 d 1 )
But this lower bound blows up at

d 0 = d 1 exp( M 2 c I(d 1 )
), so we get a contradiction and this finishes the proof of Lemma 9.

End of the proof

Let us now use all the preceding lemmas to finish the proof of Proposition 5.

So let u and ũ be the function introduced at the beginning of the section. Let (u t ) t∈[0,δ] be the family of function constructed in Section 5.1.

Let t ∈ [0, δ] and (t k ) be a sequence converging to t. From Lemma 6, there are a solution v of (8) and a subsequence such that

u t k -ut t k - t -→ v
By construction 0 ≤ v ≤ 1 and v = 1 on ∂A. w ≡ 1 is an other solution of (8) with the same properties. Let us see v and w as functions on the graph Σ of ut. From Lemmas 7 and 8, there is a complete flat metric g 0 on Σ and a vector field G such that v and w are solutions of [START_REF] Manzano | On the classification of Killing submersions and their isometries[END_REF]. Thus, by Lemma 9, v = w ≡ 1. The uniqueness of the possible limit implies that

u t k -ut t k - t -→ 1
for every sequence (t k ). So u t is differentiable with respect to t and ∂u t ∂t = 1. This implies that ũ ≥ u δ = u 0 + δ = u + δ. So we have a contradiction with inf A (ũ -u) = 0 and it finishes the proof of Proposition 5

A Some computations in Killing Riemannian submersions

In this appendix we recall some definitions about Killing Riemannian submersions and make some computations concerning graphs in such an ambient space (see [START_REF] Manzano | On the classification of Killing submersions and their isometries[END_REF][START_REF] Espinar | Locally convex surfaces immersed in a Killing submersion[END_REF]). Let (M n+1 , ḡ) and (B n , (•, •)) be two complete Riemannian manifolds. Let π : M → B be a submersion. The tangent space T p M at p then splits in ker dπ ⊕ (ker dπ) ⊥ where ker dπ is the 1-dimensional space of vertical vectors and (ker dπ) ⊥ is the space of horizontal vectors. The submersion π is called Riemannian if dπ is an isometry from (ker dπ) ⊥ to T π(p) B. Definition 1. A Riemannian submersion π : M → B is a Killing submersion if it admits a complete vertical unit Killing vector field.

If π : M → B is a Killing Riemannian submersion, we denote by ξ this unit Killing vector field. Besides, if X is a vector field in B, we denote by X its horizontal lift by π.

Using this notation there exists a 2-form ω on B such that for any vector fields X, Y on B we have:

[ X, Y ] = [X, Y ] + ω(X, Y )ξ
We notice that [ X, ξ] = 0. When X is a tangent vector to B, we denote X ω the vector such that (X ω , Y ) = ω(X, Y ) for any Y . With this notation the Levi-Civita connection of M and B are relied by

∇ X Y = ∇ X Y + 1 2 ω(X, Y )ξ (11) 
∇ X ξ = - 1 2 X ω (12) 
∇ ξ ξ = 0 [START_REF] Nelli | A halfspace theorem for mean curvature H = 1 2 surfaces in H 2 × R[END_REF] In a Killing Riemannian submersion, we are interested by surfaces that are the image of sections σ. These surfaces are called vertical graphs in M and the image of σ is also called the graph of σ. If σ is a section defined over Ω ⊂ B, we define on Ω a vector field Gσ by the following property:

(Gσ, X) = ḡ(dσ(X), ξ) for any X tangent to B. This vector field Gσ plays the role of the gradient of a function.

First, the upward pointing unit normal to the graph of σ is given by the following expression:

N = -Gσ + ξ 1 + Gσ 2
In the following, we denote 1 + Gσ 2 by W . In fact the expression of N is defined in the whole π -1 (Ω) and the mean curvature of the graph of σ is given by nH = -div ḡ -Gσ + ξ W So if (E i ) is an orthonormal frame of T p B we have

nH = - i ḡ(∇ E i -Gσ + ξ W , E i ) -ḡ(∇ ξ -Gσ + ξ W , ξ) = i ḡ( ∇ E i Gσ W , E i ) + 1 2W ḡ( E ω i , E i ) = div Gσ W + i 1 2W ω(E i , E i ) = div Gσ W
where div denote the divergence operator on B. So the mean curvature is given by

nH = div Gσ 1 + Gσ 2 (14) 
Let us denote by Σ the graph of σ. The map σ : Ω → Σ is a chart, so let us make some computation using this system of coordinates. We have: dσ(X) = X + (Gσ, X)ξ so the induced metric is g(X, Y ) = (X, Y ) + (Gσ, X)(Gσ, Y ). If u is a function on Ω, we get (∇u, X) = du(X) = g(∇ g u, X) = (∇ g u, X) + (Gσ, ∇ g u)(Gσ, X) Thus ∇u = ∇ g u + (Gσ, ∇ g u)Gσ; this implies that

∇ g u = ∇u -(χ σ , ∇u)χ σ
We use the model for E(-1, τ ) but we consider hyperbolic polar coordinates on D -1 , so x = tanh(ρ/2) cos θ and y = tanh(ρ/2) sin θ.

Let 0 < ρ 1 < ρ 0 be two radii and f be a smooth function on {ρ = ρ 0 }. For M a constant, we construct a smooth function h on {ρ 1 ≤ ρ ≤ ρ 0 } such that

• h = f on {ρ = ρ 0 }, h ≥ M in {ρ = ρ 1 } and • div H 2 Gh 1 + Gh 2 ≤ 1
We see f as a function of θ and we define on {ρ 1 ≤ ρ ≤ ρ 0 } the function h(ρ, θ) = f (θ) + α(ρ 0 -ρ). Let us prove that for α sufficiently large h satisfies the expected properties. We have h(ρ 0 , θ) = f (θ) and h(ρ 1 , θ) = f (θ)+α(ρ 0 -ρ 1 ) ≥ M if α ≥ (M -min f )/(ρ 0 -ρ 1 ). In the polar coordinates, we have

Gh = -α∂ ρ + 1 sinh ρ f (θ) sinh ρ -2τ tanh ρ 2 ∂ θ Thus div H 2 Gh 1 + Gh 2 = - cosh ρ sinh ρ α W + α ∂ ρ ( f (θ) sinh ρ -2τ tanh ρ 2 2 2W 3 + 1 sinh ρ ∂ θ ( f (θ) sinh ρ ) W - 1 sinh ρ ( f (θ)
sinh ρ -2τ tanh ρ 2 ∂ θ ( f (θ) sinh ρ -2τ tanh ρ where

W = 1 + α 2 + f (θ) sinh ρ -2τ tanh ρ 2 2
With α > 0, there exists a positive constant m that only depends on f , ρ 0 and ρ 1 such that:

div H 2 Gh 1 + Gh 2 ≤ m α 2 + m α + m α 3
So when α is sufficently large, the mean curvature of the graph of h satisfies the expected estimate. Now let us define k(ρ, θ) = f (θ) + α(ρ 0 -ρ) with α < 0 By choosing α small, we can ensure that k(ρ 1 , θ) ≤ M . Moreover, because of the above computation, there is a m > 0 such that div H 2 Gk

1 + Gk 2 ≥ cosh ρ 0 sinh ρ 0 -α √ α 2 + m - m α 2 - m |α| - m |α| 3
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where χ σ = Gσ √ 1+ Gσ 2 . As a consequence, we have:

Besides the divergence operator for the metric g have the following expression:

If Σ has constant mean curvature, the function ν = (N, ξ) is a Jacobi function so 0 = ∆ Σ ν + (Ric ḡ(N, N ) + S 2 )ν with S the shape operator of Σ. Let v be a function on Σ, we then have

Thus νv is a Jacobi function if and only if ∆ Σ v-2ν(∇ Σ 1 ν , ∇ Σ v) = 0. Looking at v as a function defined on Ω, since ν = W -1 , it gives:

So vν is a Jacobi function if and only if

B Some barriers

In this appendix, we construct some barriers from above and below on the exterior boundary component of an annulus for (3).

So choosing α sufficiently close from -∞, k satisfies to