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Acoustic emission (AE) is a non-destructive testing method used in many industrial applications (testing for 
leaks, or monitoring weld quality, etc…) for the examination of large structures subjected to various stresses 
(e.g. mechanical loading) in different domains (aerospace, pressure-vessel industries in general, etc...). The 
energy released by a defect under stress can propagate as guided waves in thin structures or as surface Rayleigh 
waves in thick ones. A limited number of sensors placed at various positions are needed to monitor large 
structure. Then, AE-data analysis is used to calculate the spatial location of the signal origin by using the signal 
arrival times at a number of sensors. The French Atomic Energy Commission is engaged in the development of a 
tool for simulating AE examinations. These tools are based on specific models for the AE sources, for the 
propagation of guided or Rayleigh waves and for the behavior of AE sensors. Here, the coupling of a fracture 
mechanics based model for AE source model and Green functions of Rayleigh wave is achieved through an 
integral formulation relying on the elastodynamic reciprocity principle. Predictions computed with this three 
dimensional model are compared to results from the literature for validation purpose. 

1. Introduction 
The far field acoustic emission from a crack under stress 

is dominated by the presence of Rayleigh wave. In fact, in a 
three dimensional geometry, surface wave decay as r-1/2 and 
bulk waves decay as r-1, where r is the distance between the 
source and an observation point. 

Some methods have been developed in the literature to 
calculate the acoustic emission from a crack, using the 
reciprocity principle and based on different AE source 
models, hypothesis and approximations. 

For instance, Harris and Pott [1] have developed a 
Rayleigh wave acoustic emission model from buried crack 
that predicts Rayleigh wave excited by the starting of a 
faulting event. The surface wave was expressed by an 
integral formulation relying on the elastodynamic 
reciprocity theorem. This formulation combines bulk waves 
emitted by the starting event and the Rayleigh wave 
components of the Green’s tensor, calculated in [2] from 
the coupling between the P-wave and S-wave component 
(SV) polarized in the plane of incidence. 

The Rayleigh wave displacement is then evaluated by 
the application of the stationary phase technique and the 
particle velocity of the emitted wave is approximated near 
the Rayleigh wave arrival time. 

In this paper we present an acoustic emission 
formulation to predict the Rayleigh wave emitted by a 
propagation of a crack under stress in a three dimensional 
geometry. This method was presented by Achenbach [3] for 
a two dimensional acoustic emission problem. This model 
combines Rayleigh wave Green functions and the crack 
opening displacement obtained by the exact complex 
solution from fracture mechanics. 

The Rayleigh wave Green functions are obtained from 
the application of the reciprocity principle in cylindrical 
coordinate system following the method presented by 
Achenbach in [4]. 

2. AE model 
In three-dimensional geometry, the displacement of the 

Rayleigh wave emitted by the propagation of a crack under 
stress is calculated from the application of the reciprocity 
theorem; this theorem connects two different elastodynamic 
states, state A and state B. 

In the frequency domain, the reciprocity principle for a 
body of volume V and surface S can be written as: 

 
V

A B B A B A A B
i i i i ij i ij i j

S
f u f u dV u u n dSτ τ⎡ ⎤ ⎡ ⎤− = −⎣ ⎦ ⎣ ⎦∫ ∫ . (1) 

where ni are the components of the outward normal to S, 
fi , ui and τij are the components of body forces, 
displacements and stresses. 

2.1. Application of the reciprocity theorem 
We select state A as the solution of the acoustic 

emission problem and state B as the Rayleigh wave emitted 
by a point source applied in the xk direction (xk=x1, x2 or z)  

 

 

Figure 1: (a) geometry of the acoustic emission problem (b) 
geometry of the crack and definition of the local cylindrical 
coordinate system (ρ, ϕ, x1) and (c) definition of the global 

cylindrical coordinate system (r, θ, z) 

We apply the reciprocity equation to the region of the 
half space defined in Figure 1 where Σ is the surface of the 
crack located in the (x2,z) plan. 

The integral over the free surface and the hemisphere of 
radius R as R → ∞ vanishes and the reciprocity equation 
can be written as: 

(a)

(b) (c) 
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 ( ) ( ) ( ) ( ), ,( ) , ,A G A A G
k i k ij i ij k ju u X u X n X d Xξ ξ τ τ ξ

Σ

⎡ ⎤= − Σ⎣ ⎦∫  (2) 

Where ,
G
i ku and ,

G
ij kτ are respectively the displacement 

and stress components of the Rayleigh Green’s tensor. 
X =(r,θ,z) and ξ=(r0,θ0,z0)  are respectively the positions 

of the observation point and the source. 

2.2. Rayleigh wave components of the 
Green’s function 

We have calculated the displacement of Rayleigh wave 
generated by a point load in a cylindrical coordinate system 
by the application of the reciprocity theorem [4]. 

 
Figure 2: half space subjected to a point load at z=z0. 

The displacement components of Rayleigh wave generated 
by a point load of magnitude Q (Figure 2) applied at z=z0 in 
the x1 direction are: 

 
( ) ( ) ( )0 '

,1 Φ
4

R
RR

r R
QV zk V

i I
u z k r cosθ=  (3) 

 
( ) ( ) ( )1

0
, 4

1 Φ
R

RR
R

R

QV zk Vu z k r sin
rki Iθ θ

⎛ ⎞−
⎜ ⎟
⎝ ⎠

=  (4) 

 
( ) ( ) ( )0

,1 Φ
4 R

R
R R

zu
QV zk W z s

I
k

i
r co θ=  (5) 

where ' ( ) dx
dx
Φ

Φ = . 

In the case of a point load of magnitude M in the x2 
direction we have: 

 
( ) ( ) ( )0 '

,2 Φ sin
4

R
R R

r Ru V z k r
MV zk

i I
θ= −  (6) 

 
( ) ( ) ( )2

0
, 4

1 Φ cosR
R

R

R
Ru V

MV zk
i I

z k r
rkθ θ

⎛ ⎞−
⎜ ⎟
⎝ ⎠

=  (7) 

 
( ) ( ) ( )2

0
, Φ sin

4

R
R R

z R
MV zk

i
u W z k r

I
θ= −  (8) 

In the case of a point load of magnitude P in the z direction 
we have: 

 
( ) ( ) ( )0 '

, 04
Φ

R
R R

r z Ru V z
W zk

I
r

P
i

k= −  (9) 

 , 0zuθ =  (10) 

 
( ) ( ) ( )0

, 04
Φ

R

z
R R

z R
PW zk

i I
u W z k r= −  (11) 

Where: 

 
0

( ) ( ) ( ) ( )R R R R
rr rzI T z V z T z W z dz

∞
⎡ ⎤= −⎣ ⎦∫  (12) 

 ( ) 3
R pz qzW z d e e− −= −  (13) 

 ( ) 1 2
R pz qzV z d e d e− −= +  (14) 

 4 5( ) eR pz qz
rrT z d e dμ − −⎡ ⎤= +⎣ ⎦  (15) 

 6 7( ) e eR pz qz
rzT z d dμ − −⎡ ⎤= +⎣ ⎦  (16) 

d1, d2, d3, d4, d5, d6, and d7 are defined by: 

 
2 2

1
1
2

R

R

k qd
k p

+
= −  (17) 

 2
R

qd
k

=  (18) 

 
2 2

3
1
2

R

R

k qd
k
+

=  (19) 

 
2 2 2
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21 ( )
2

R
R

R

p k qd k q
pk
+ −

= +  (20) 

 5 2d q= −  (21) 

 
2 2

6
R

R

k qd
k p

+
=  (22) 

 
2 2

7
R

R

k qd
k p

+
= −  (23) 

The quantities p and q are defined by: 

 2 2 2
R lp k k= −  (24) 

 2 2 2
R tq k k= −  (25) 
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and 

 ( ) (1)
1 ( )R Rk H rkrΦ =  (26) 

 ( ) (1)
0 0 ( )R Rr rk H kΦ =  (27) 

 
(1)
nH is the first kind Hankel function of order n. 

The compressional and shear wave numbers are: 

 

1
2

( 2 )lk ρω
λ μ

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 (28) 

 

1
2

tk ρω
μ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (29) 

The Rayleigh wave number is: 

 t
R

R

kk η=  (30) 

Where  

 0.87 1.12
1R

v
v

η +
=

+
 (31) 

ρ, ν, λ and μ are respectively the density of the medium, 
Poisson ratio and the elastic Lamé constants defined by: 

(1 )(1 2 )
Eνλ

ν ν
=

+ −
 and

2(1 )
Eμ

ν
=

+
, where E is the 

Young's modulus. 

We express the Green tensor in the cylindrical coordinate 
using the superposition principle: 

 
, , ,

, , ,

, , ,

r r r r z
R

r z

z r z z z

u u u
G u u u

u u u

θ

θ θ θ θ

θ
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= ⎜ ⎟
⎜ ⎟
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 (32) 

where: 
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 ( ) ( ) ( )( )0 2
, 4
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R
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( ) ( ) ( )( ),

0

4
Φ 2sinz R

R
Ru W z

V zk r c s
i I

k oθ θ θ= −  (39) 

2.3. Rayleigh wave acoustic emission 
Eq. (2) can be written as: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, ,

( ) , ,

, ,

A G A A G
k i k ij i ij k j

G A A G
i k ij i ij k j

u u X u X n X d X

u X u X n X d X

ξ ξ τ τ ξ

ξ τ τ ξ

+

−

+

Σ

−

Σ

⎡ ⎤= − Σ⎣ ⎦

⎡ ⎤+ − Σ⎣ ⎦

∫

∫
 (40) 

Σ+ and Σ- are respectively the crack surface on x1=0+ 
and x1=0-. 

We assume that the crack is a surface of displacement 
discontinuity. In the case of a tensile stress (Mode I), the 
displacement at the surface of the crack in the global 
cylindrical coordinate system is: 

 1
A Au uθ =  (41) 

Eq. (41) can be written as: 

 
( ) ( ) ( ),( ) ,A A G

k ku u X n X d Xθ θθ θξ τ ξ
+

+

Σ

⎡ ⎤= −Δ Σ⎣ ⎦∫  (42) 

Where  

 1 10 0
A A A

x x
u u uθ θ θ+ −= =

Δ = −
 (43) 

The integral over the surface Σ+ can be written as: 
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( )) ( ) ( )
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,
,
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,
,

G G
r k kA A

k

G
z kG

r k

u X u X
u u

r r

u X
u X d X

z

θ
θ

ξ ξ
ξ λ λ μ

θ

ξ
ξ λ

+Σ

+

⎛ ⎛∂ ∂
⎜ ⎜= −Δ + +

⎜⎜ ∂ ∂⎝⎝
⎞∂
⎟+ + Σ
⎟∂ ⎠

∫

 (44) 

As ( ) ( ), ,, ,G G
i k k iu X u Xξ ξ= , 
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∫

 (45) 
We simplify the expression by considering a dipole acting 
at z=h, as shown in figure (1), i.e. X= (0, 0, h): 
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,
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θ
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∫ ∫

 (46) 

2.4. Acoustic emission source 
In the case of tensile circular crack of radius a loaded by 

uniform pressure σ on its faces, the crack opening 
displacement (COD), expressed from the complex solution 
issued from fracture mechanics in the local cylindrical 
coordinate system (ρ, ϕ, x1) can be looked up from a book 
on fracture mechanics: 

 
2

2 2
1

4(1 )( , ) 2 ( )vu t a t
E

σρ ρ
π
−

Δ = −  (47) 

3. Simulation of AE  
We assume that the crack diameter evolves from 0 1mml =  
to 5mml =  at a velocity V= 2000m/s during T=0.8µs, we 
consider a sampling frequency  50 eF MHz= and 
 200 .MPaσ =  
We define ρj and tn as: 

 j jV tρ = Δ  (48) 

 0
1

nt t n
Fe

= +  (49) 

j varies from 0 to J/2, and n varies from 0 to N where: 

 1/ et FΔ =  (50) 

 TN
t

=
Δ

 (51) 

 lJ
V t

=
Δ

 (52) 

Eq.(40) can be discretised as follows: 

 ( )
2

2 2
1 0

4(1 )2 ( ), ( ) / 2nj j
vu l nV t

E
tρ σ ρ

π
−

Δ = + Δ −  (53) 

for 0( ) / 2jr l nV t≤ + Δ
 

 1( ) 0jruΔ =  (54) 

for 0( ) / 2 / 2jl nV t r l+ Δ ≤ ≤
 

We take the Fourier transform of the COD Eq. (53) to 
obtain the displacement field of the emitted Rayleigh wave 
in the frequency domain given by Eq. (47). 

The displacement field in the time domain is then 
obtained using the inverse Fourier Transform of Eq. (47). 

We have simulated the velocity of the Rayleigh wave 
emitted from the propagation of a circular crack under 
stress, located at a distance z0 from the surface; figure 3 
presents the normalized velocity as a function of τ where 

 
0 0 0

R Rv vrt T
z z z

τ = − −  (55) 

z0 and vR are defined as: 

 0z h a= −  (56) 

 2
R

R

fv
k
π

=  (57) 

where f is the frequency. 

 Figure 3: normalized Rayleigh wave particle velocity 
emitted from a buried crack located at 5 mm from the 

surface, propagating from 1mm to 5 mm at a velocity of 
2000m/s, the observation point is located at 

(r=100mm,θ=0,z=0) . 

We have compared these curves with the result of Harris 
and Pott [1] shown on Figure 4 obtained from an integral 
formulation in which they have combined Rayleigh wave 
Green function and the bulk waves emitted by the starting 
of the crack propagation. The bulk waves emitted by the 
crack were calculated by a ray method in the time domain. 
The displacement at the surface of the newly cracked 

material takes the functional form ( )
tip

rF t
V

− where: 

-5 -4 -3 -2 -1 0 1 2 3 4 5
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1/2

( ) ( )
tip tip

r rF t H t U t
V V

⎛ ⎞
− = −⎜ ⎟⎜ ⎟

⎝ ⎠
 (58) 

r is the position of the crack tip, Vtip is the crack tip 
velocity, H is the Heaviside function and U is a constant 
that depends on the fracture process. 

The integral was evaluated by separating the contribution of 
compressional and shear wave’s parts and selecting their 
wave fronts to be the surface of integration. Then the 
stationary phase technique was applied to calculate the 
displacement in the frequency domain. The particle velocity 
of the emitted Rayleigh wave was approximated in the time 
domain near the Rayleigh arrival time.  

 

Figure 4: The normalized components of the Rayleigh-
wave particle velocity at the surface, from the starting of 

the propagation of buried crack of radius a, plotted against 

0 0
Rv x

z ztτ = − (i=2 correspond to the vertical velocity and 

i=1 corresponds to the velocity component along the x 

axis), 0.5tip
t

V k
ω= , 

0
20x

z = and 0 2z
a =  

Differences between Figure 3 and 4 can have several 
explanations. In fact, the result presented in figure 3 is 
obtained by the use of the crack opening displacement at all 
points of the crack and figure 4 present the velocity of the 
emitted wave from the starting of faulting event considering 
only the crack tip velocity. In addition, the time dependence 
of the displacement at the surface of the crack are different 
which is given by Eq. (53) and (58). 
On the other hand, our integral formulation combines 
directly the COD and the Rayleigh wave Green functions. 
In the case of Harris and Pott model the integral 
formulation combines the bulk waves emitted from the 
crack approximated at the Rayleigh wave arrival time and 
Rayleigh wave Green functions. 
We have simulated the Rayleigh wave particle velocity by 
considering the time dependence of the displacement at the 
surface of Eq. (58). 
The COD can be written as: 

 0
0( , ) 2 ( ) ( )u t UF t u t

V
ρ ρ

ρ
−

Δ = − + Δ  (59) 

 

Where ρ0 =l0/2 is the initial radius of the crack and 
0( )u tΔ is the crack opening displacement at t=0. 

Figure 5 shows the Rayleigh wave particle velocity emitted 
the crack under stress. 

 
Figure 5: normalized Rayleigh wave particle velocity 
emitted from a buried crack located at 5 mm from the 

surface, propagating from 1mm to 5 mm at a velocity of 
1600m/s, the observation point is located at 

(r=100mm,θ=0,z=0). 

The result of figure 5 is closer to the result of Harris. The 
use of the same time dependence of the displacement at the 
surface of the crack gives a better agreement between both 
models. 

4. Conclusion 
We have developed an integral formulation to predict 

Rayleigh wave emitted from a crack under stress combining 
Rayleigh wave Green function and the crack opening 
displacement (COD) obtained from a fracture mechanic’s 
model.  

Comparison with literature showed a satisfying 
agreement even if the two models are different and not 
based on the same approximations and hypotheses  

The use of the same time dependence of the AE source 
improves the agreement between both models. 
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