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Multimodal galloping of dense spectra structures

A. Luongo and F. Di Fabio

Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno,
Universita degli Studi di L’Aquila, Monteluco di Roio, AQ, Italy

Summary

Nonlinear interaction phenomena among galloping modes of slender structures having
several frequencies contained in one or more bands are analyzed. Due to nonlinear modal
coupling associated with aerodynamic forces, all the modes of a band are in internal
resonance. By referring to a nearly-periodic system consisting of weakly coupled beams and
using the multiple scale perturbation method, a system of nonlinear differential equations in
the amplitudes and phases of the interactive modes is obtained. Numerical results relative to
a two-beam system are presented. In particular, the conditions under which steady-state
solutions can occur are determined and their stability is investigated, while the occurrence
of periodic motions involving exchanges of energy among the interactive modes is also
remarked upon. Attention is given to the influence of small imperfections causing asymmetry
of the structure.

1. Introduction

Galloping phenomena in prismatic structures both in the linear and non-
linear fields have been widely studied [4-7]. In the classical approach the
structure is considered to oscillate with an assumed modal shape (monomodal
galloping), the aerodynamic forces being expressed by the quasi-static theory.
Linear analysis allows determination only of the critical velocity of galloping,
i.e. the value at which selfexcited oscillations are triggered. The nonlinear
theory also permits investigation of the postcritical behavior, describing the
transient and steady-state regimes through the classical asymptotic methods of
nonlinear mechanics.

Mathematical and experimental models have also been employed to ana-
lyze nonlinear interaction between two modes (bimodal galloping), one
flexural the other torsional [1] or both flexural [8]. These studies have shown
that if the two modes are in a state of internal resonance, strong coupling



occurs in the postcritical range. Internal resonance is encountered when the
natural frequencies @, and w, of the linearized system are in suitable integer
ratios. If the aerodynamics nonlinearities are assumed to be of the cubic type,
internal resonance takes place when w;/w,=1, 3, 1/3. The resonance w, =w,
has been found to entail the strongest coupling.

In this work the nonlinear interaction among two or more galloping modes
(multimodal galloping) are studied. To this end elastic structures with dense
spectra are considered, i.e. systems having a high number of frequencies
contained In one or more bands. Thus, all the modes associated with the
frequencies of the band are near to the internal resonance condition of the 1:1
type and therefore all are involved in the aeroelastic phenomenon.

The analysis is developed by reference to a chain of n cantilevers weakly
coupled by a soft elastic spring. By applying the quasi-static theory and
expanding the aerodynamics nonlinearities up to cubic terms in the velocities,
n modal second-order equations are obtained. By using the multiple scale
perturbation method 2n differential first-order equations ensue; these allow
evaluation of amplitude and phase modulating functions. Numerical results
are so far limited to a two-beam system, similar to that of Pheinsusom et al.;
nevertheless, some new more detailed findings have emerged here. Two differ-
ent systems are considered, one symmetrical the other asymmetrical; in both
cases a study is made of steady-state solutions, their stability and transient
regime.

2. Equations of motion

Let us consider the system illustrated in Fig. 1, made of n clamped-free beams
coupled by elastic springs. Let the mechanical, geometrical and inertial prop-
erties of the beams differ by small quantities (for example due to imperfections)
and let the stiffness k. of the spring be small in comparison with the nominal
bending stiffness of the beams. The structure is therefore a nearly-periodic
weakly-coupled system. It is well-known [2] that such a system has a band
spectrum; the smaller k., the narrower the bandwidth. In a given band all the
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Fig. 1. (a) Model; (b) Displacements.
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beams oscillate with practically the same shape \ (x) of the isolated cantilever;
thus the continuous system can be reduced to an n DOF system. This is
accomplished by assuming v;(x, t) =¥ (x)u;(t), where v; is the transversal dis-
placement at the nondimensional abscissa x of the i-th beam and u; a function
of time ¢ only, for example the displacement of the tip x=1, if y(1)=1.

Let the wind flow normally to the plane structure. Assuming that any
interference phenomena can be neglected and applying the quasi-static theory,
the aerodynamic forces in the plane can be expressed as

710=3 VD a0 FH 8 o | 0
where p is the air density, V the wind velocity, D; a dimension of the i-th beam
cross-section and .o7;; aerodynamic coefficients. Quadratic coeflicients .&/,; have
been assumed to be zero.

By applying the generalized Hamilton principle, the following n second-
order ordinary differential equations in the u; unknowns are obtained

Mii+ Coi+Ku=C,a+f () (2)

In Eq. (2) M is the diagonal mass matrix, K the stiffness matrix, C, and C, the
diagonal damping and aerodynamic matrices respectively, and fis the vector
of the nonlinear forces. Note that geometrical and/or mechanical nonlineari-
ties of the structure have been neglected in comparison with the aerodynamic
nonlinearities.

By introducing the linear transformation u = ¢¢, where @ =[u;;] is the modal
matrix of the structure (in the absence of aerodynamic effects) and ¢ is the
vector of the modal coordinates, the following equations are obtained

n n n
qi+w1?qi=ci(?i+ Z z Z C‘ijkz(Ij"Ik"II (i=1,2, ., n), 3)
j=1 k=11=1
w; being the i-th natural frequency. Coeflicients ¢; and c¢;;, depend on the wind
velocity and are given in the Appendix. It should be noted that out-of-diagonal
linear terms of the type c;;¢; have been neglected, because they vanish when
imperfections disappear. This approximation is consistent with the pertur-
bative solution developed below.

3. Perturbation analysis

Nonlinear Egs. (3) are asymptotically solved for small amplitudes by using
the multiple scale perturbation method [3]. The equations are first rewritten by
multiplying the r.h.m. by a perturbation parameter ¢ < 1. This entails assuming
amplitudes of order £!/? and coeflicients ¢; of order ¢, i.e. wind velocities near the
critical values (for which ¢;=0). The unknowns are then expanded in series of ¢

qi(t)=q;o(To, Ty, ---)+eqi (T, Ty, - )+ - “4)



where To=t, Ty =¢t, ---, are independent time scales. By using the chain rule

d d?
a=D0+PD1+, ﬁ:D(2)0+28D61+, (5)
where D, =¢/0Ty, D},=0*/0T;3T, the following perturbation equations are
obtained

Dioqio +wiqio=0 (6a)
D3oqiy +wi g =—2D5,qi0+¢:Dogio + Z (Doq;0)(Doqro)Doqio) (6b)
okl

Eq. (6a) admits the generating solution
Qio=A (T, ) exp (1w;Ty) +c.c., )

where A;1s the complex amplitude and c.c. stands for complex conjugate terms.
By substituting Eq. (7) in the r.h.m. of Eq. (6b), harmonic terms of frequencies
w;, w;+ w,+w, are obtained. Due to the fact that the n frequencies are nearly
coincident, i.e.

w;=w,+&0; (i=2, - n) 8)

these terms are resonant. There exists therefore combination resonance
between all the modes of the system.
To remove secular terms the following condition must be satisfied

20, D A;=c;w; A + Z Cijr1 Wy, [AjAkAl exp (iajkli T))
N

+ AjAkAl exp (o, T\)+ A‘iAkAl exp (igy,;; T1)] 9
in which ¢;,;=0;4+ 06, —0,—0; and the overbar denotes the complex conjugate.
By expressing the amplitudes in the polar form

Ai<T1>=%ai<T1>exp [i6,(T,)] (10)

and zeroing the real and imaginary parts of Egs. (9), 2n differential equations of
the first order in the unknowns a; (7T, ), 8,(T,) are obtained. To make the system
autonomous the n—1 functions

7»i:0i+JiTl—01 (l:2, 3,~~n) (1])
are introduced, each representing the phase difference at time ¢ between g; > g;o

and g, x¢,¢. In this way the following equations are drawn

1
, NPT
a;=_-¢a;i+—-— Z W;WE M) Cijkr @A [COS i+ 71— —71)
2 8(’),‘ Jok.l

+eos (it =) teos(u+y—y—w)] (=12, - n) (12a)



’_ a, .
a,1a;7;=0a, ai0i+8—w Z W00y Cijxy @0y [SID (Y47 —Ye—7i)
ijok 1

+sin (ye+y;—yi—y) +sin(p+ye—7;— 7))

a; .
_8701 j’zk;’ Cyjkt @@ [sin (y;— 7 +71)
+sin(y,—y;+ ) +sin(pe+y—y)] (i=2,3, - n) (12b)

that can be numerically integrated to find the amplitude and phase modulation
of the solution (7).

Egs. (12) represent a nonlinear dynamic system of state variable {a;,y;}
asymptotically equivalent to the original system of state variable {g;,d;}.
Although the dimensions of the two problems are practically the same, integ-
rating in state space { a;, y;} is much simpler than integrating in modal coordin-
ates space. In fact the q; and y; are much slower functions of time than g;’s. In
addition Eqgs. (12) allow determination of the steady-state solutions (un-
modulated solutions) simply as equilibrium points a;=y;=0, corresponding to
limit cycles in the modal space. This entails the solution of a nonlinear
algebraic problem. Finally, by linearizing the motion around an equilibrium
point, its stability or instability can be predicted by analyzing the eigenvalues
of the variational matrix.

4. Numerical results: a two-beam system
Preliminary numerical results are obtained for a two-beam system. In this
case Egs. (12) read
ay=cya,+3cal+3csata,cosy+caa,a%(2+cos2y)+3csalicosy
ay=d,a;+3d,a}cosy+d;a’a,(2+cos2y)+3d,a,a3cosy+3dsal (13)
a,a,y' =a,a,6—a, (3d,a}siny+d;aia,sin2y+d,a;a3siny)
—a,(ciata,siny+cia,aisin 2y +3csa3siny),

where y=y,, 6 =0, and coefficients ¢; and d; are defined in the Appendix. If the
system is symmetrical (identical beams) some coefficients vanish and the equa-
tions simplify as follows

ay=cia,+3c,a3+c,a,a%(2+cos2y)
a’2:d1a2+d3a%az (2+C082y)+3d5ag (14)
a4,y =a,a; [o—(dsai+c,a3)sin 2y]

(see also Ref. [8], where similar equations were obtained). If Egs. (13) or (14) are
linearized, equations in a; and a, uncouple and the classical monomodal
solution is recovered, according to which amplitudes grow (decay) exponenti-
ally if ¢; and d, are positive (negative). The wind velocities V,,; and V,,, for



which ¢; =0 and d, =0, respectively, are the critical galloping velocities asso-
ciated with the two modes of the structure (Den Hartog criterion, Ref. {5]). In
the postcritical range V> V., >V, both modes are excited: when the ampli-
tudes become moderately large nonlinearities govern the phenomenon and
involve coupling between the modes.

In the following the postcritical behavior of a symmetric and an asymmetric
structure is investigated.

4.1. Symmetrical system

The structure analyzed is made of two square-box beams with edge D and
thickness s, having the following characteristics: D=0.2m, s=0.02m, /=7 m,
I1=142x10 °m* E=2x10'! N/m?, pu=16.5Kg/m; the aerodynamic coefhi-
cients are ./, =2.69 and .«/; = — 168 [5]; the stiffness of the spring is k=550 N/m
and the damping ratio is assumed equal to { =0.0075 for both modes. The linear
frequencies are found to be w, =29.77 and w,=30.40 rad/s, respectively, asso-
ciated with the modes {1,1} and {1, —1}. By defining U= V/w, D, the critical
values are U,,; =4.60 and U, =4.69.

Motion is governed by Egs. (14). Steady-state solutions ¢} =a,=7'=0 are
found by numerically solving a three-equation algebraic system. By varying
U these solutions describe equilibrium paths in a four-dimensional space
fa,,a,,7, U}. It is easy to show that the system admits two uncoupled (mono-
modal) solutions

vcl .
a, = , a,=0, y=arbitrary,
3¢,

(15)
_dl .
a,=0, a,= , y=arbitrary,
3ds
a, a,
| — stable 4 — stable
— unstable — unstable
0.12 0.12 |
e
0.06 . 0.06 _|
0.00 T T T T T T 0.00 T T T T T T
[ 10 20 30 U 0 10 20 30 U

Fig. 2. Steady-state solutions for the symmetrical system.
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that are real for U> U,,, and U> U,,,, respectively. In addition two coupled
(bimodal) solutions are found numerically when U> U, ,=23.0. When
U=U,,., the two solutions coalesce. Projections of the equilibrium paths on
to the {a,, U} and {a,, U} planes are shown in Fig. 2. Coupled solutions (3) and
(4) are found to be saddle points in the state space, i.e. they are unstable;
uncoupled solutions (1) and (2) are instead stable.

To analyze the transient response, Eqgs. (14) have been numerically integ-
rated starting from different initial conditions. The trajectories obtained have
been projected on to the {a,,a,} plane and represented in Fig. 3 for different
values of U. When U, < U< U,, (Fig. 3a) there exists only a (stable node)

a, U=4.65
.004 _
.003

.002

T
0 .002 .004 a,

(a)
a, U=30
e,
- 74 v/
.12 ] ¥
C, V7
.08 | Ce )
t
.04 |
\
.02 | 7
= (o
0 T T T Tl
0 .04 .08 12 .16 a;
(c) (d)

Fig. 3. Trajectories in the phase plane {a;,a,} and in the phase space {a;,a,,7}:
(@) Uy <U<Upqz, 0) Uy <U< Uy, 5, () U> Uy, 5, and (d) U=30.



equilibrium point A, on the a,-axis attracting all the trajectories. When
U, <U<U,, , (Fig. 3b) there exist two (stable nodes) equilibrium points B,
and B,, each on one axis. In this case the trajectories are attracted by either
solution, depending on the initial state. Note that the trajectories oscillate
around a curve (not shown) joining the two points. Finally, when U>U,,, ,
(Fig. 3c¢) there are two (stable nodes) equilibrium points on the two axis, C; and
C,, and two (unstable saddle) points on the plane, C; and C,. All the trajecto-
ries are attracted by the monomodal solutions, after having gone along the
same nearly elliptical curve.

System evolution is also described in the 3D state-space (Fig. 3d). It is
apparent that the representative point moves toward curves which are the
intersection of a cylindrical surface and y=constant planes; after having
covered the curve, the point reaches an equilibrium point on the a,- or a,-axis.
In this way one of the two components of the motion decays with a specific
phase difference y with respect to the component remaining stationary. The
phenomenon has the following energetic interpretation: during the attraction
phase to the surface the system stores (or dissipates) energy until a threshold
value is reached; after that, while the point describes an elliptical are, the
system transfers energy from one mode to the other. During this phase, and in
the subsequent steady-state regime, all the energy put in by the aerodynamic
forces is dissipated by the damping.

4.2. Asymmetrical system

Let us introduce a small asymmetry in the system by modifying the thickness
of the beam i=2, in such a way that I,=1.051, u,=1.035u,, other character-
istics remaining unchanged. The frequencies become «;=29.855rad/s,
w, =30.508 rad/s, and the associated modes {1,0.72}, and { —0.74, 1} ; the critical
wind velocities are U, =4.60 and U,,,=4.86.

a a
‘| ___ stable *| __ stable 4
— unstable (1) — unstable (V
.10 4 10 e
.06 | .06 (1)
//
.02 .02
0 T T T T T T 0 T T T T T T - -
0 10 20 30 U 0 10 20 30 U

Fig. 4. Steady-state solutions for the asymmetrical systems.
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Eqgs. (13) govern the problem. They do not admit uncoupled solutions. When
U..; < U< U,, a unique coupled solution is found, when U> U,,, two solutions
emerge, as illustrated in Fig. 4. Linear stability analysis has shown that the
paths are stable when U< U; 2 20.0 and unstable when U> U,. In the critical
state U= U, the variational matrix has two imaginary conjugate eigenvalues,
the third being real and negative. Thus a Hopf bifurcation occurs and a limit
cycle arises.

Some trajectories obtained by numerically integrating Eqs. (13) have been
represented in Fig. 5 for different wind velocities. When U< U, (Fig. 5a) the
trajectories are attracted by the two (stable foci) bimodal solutions. When U is
slightly greater than U, (Fig. 5b), instead of the stable equilibrium points there
are two stable limit cycles. By further increasing U (Fig. 5¢) the cycles assume
an ‘“‘eight” shape; then a unique cycle exists (Fig. 5d), successively becoming
very stretched and lying on an elliptical arc (Fig. 5e). In the 3D state space
(Fig. 5f) the trajectory is seen to oscillate on a cylindrical surface. As in the
previous case an energetic interpretation holds, but with the difference that
the energy is not stored in a unique mode but is continuously exchanged by the
two modes, the balance remaining null at any instant.

Curves a,(t), a,(f) relative to the various wind velocities previously
considered are plotted in Fig. 6.

[a T a, a a,
T L T T T T - T T T T T DU S S B S
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(a) (b)
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— —
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— T T T T 1 T T T T T T T T T T T
0 20 40 60 80 t 0 20 40 60 80 t

(e) (d)
Fig. 6. Time history responses: (a) U=19.76; (b) U=20.09 (c) U=20.43; and (d) U=30.



5. Conclusion

Nonlinear galloping in nearly periodic weakly coupled systems has been
analyzed. These systems have narrow band spectra so, when galloping of
a mode is excited all remaining modes in the same band are excited too, and
combination resonance phenomena occur. The equations governing the ampli-
tude and phase modulation have been formulated for an n-elements chain,
while numerical results have so far been obtained for a two-element system
only. When the two elements are identical there exist monomodal steady-state
(unmodulated) solutions, to which the system tends after a transitory phase
involving the two components of the motion. On the contrary, when small
asymmetries are introduced, only a bimodal solution exists. For critical values
of wind velocities a Hopf bifurcation manifests itself and stable limit cycles
appear; continuous exchanges of energy between the two modes are then
observed.

These preliminary results should be extended to structures in which more
than two modes are interacting in the galloping phenomenon.
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6. Appendix

Coefficients c; and c;;,; appearing in Egs. (3) are

n 1
LoV S Ductuadli | s
¢ = —2{w; + . ¢

E =n 1 (163)
Wi 12 f 2 dy
=1

h 0



n 1
1 PVP1 Z Dh=d3huihujhukhu1hlﬁj W‘dx

h=1 _ : 0 ’ (16b)
Sl | myras
h=1

0

Cijki — 5

where (; is the damping ratio of the i-th mode, u, is the mass density of the A-th
beam and u;, the A-th component of the i-th mode, other symbols being defined
in the text. Coeflicients ¢; and d; appearing in Eqgs. (13) and (14) are

VD.«/ VD.o/
C1=p—*“—‘1—C1(01 d1=8*"—1—§2(02 (17a)
1 3 3
Cr="""C1111 W] dy=-—C3111 O} (17b)
8w, 8w,
3 2 3 2
C3=c—C211 Wi Wy d3=z— C2211 W7 W) (17¢)
8w, 8w,
3
c4=—~01221w1a)§ d4=—02221w1w§ (17d)
8(1)1 8(,02
1
Cs=-—"0C1222 w% dsz—czzzzw% (17e)

8w, 8w,



