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Abstract. In this work, we present the Adaptive Multi-Selection Frame-
work (called AMF). AMF is an API built for helping designers to develop
optimized combinations of multiple algorithms solving the same problem
in function of the physical architecture and algorithm behavior. AMF of-
fers a simple and generic model for developing automatic combination of
algorithms. In this model, the user needs to specify the set of algorithms
to be combined and a representative benchmark of instances of the prob-
lem solved by the algorithms. This generic solution has advantages over
many existing solutions for making automatic combination that are spe-
cific to a fixed set of algorithms or computational problems. Automatic
combinations of algorithms are made in AMF with the multi-selection
technique. For each instance of a computational problem, its resolution
under multi-selection includes a selection of a subset of candidate al-
gorithms followed by a concurrent run of the selected algorithms with
a smart resource sharing. The resource sharing is decided according to
the physical architecture, the problem instance and the time allowed to
compute it. The multi-selection strategy provides excellent results when
there is a large variance of execution time per instance. The actual im-
plementation of AMF is built for shared memory architectures. However,
it can be extended to distributed ones. The AMF principles have been
validated in particular on the well-known Constraint Satisfaction Prob-
lem.
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1 Introduction

The continuous evolution of algorithmics is leading to a huge amount of algo-
rithms available for each computational problem. For the same problem, the
performance of these algorithms might vary depending on many aspects like
the considered problem instance or the machine architecture [1, 19]. In order
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to obtain good performances, there is the need for solutions that can combine
efficiently various algorithms designed for solving the same problem. The huge
variety of computational problems for which such solutions are required, the
large amount of algorithms and machine architectures suggest that automatic
generic combinations should be prioritized. In this paper, we focus on the au-
tomatic combination of multiple algorithms solving the same problem, specially
those related to hard computational problems. Our main objective is to pro-
vide a framework that eases the implementation of automatic combination of
algorithms.

1.1 Contributions

We propose the Adaptive Multi-Selection Framework designed to ease the task
of combining multiple algorithms solving the same problem on parallel architec-
tures. For this end, AMF typically requires for each computational problem a
set of candidate algorithms (sequential or parallel) and a benchmark for tun-
ing algorithm performances. These information determine AMF knowledge on
building automatic combination of algorithms for the targeted computational
problem.

AMF works like a problem solver and provides an interface where any in-
stance of a computational problem can be solved under the multi-selection tech-
nique. The resolution of a problem instance under the multi-selection contains
three phases: a selection of a set of candidate algorithms for the instance, a
computation of an optimal resource sharing for the instance and the execution
of the algorithm combination related to this selection. These combinations are
defined in AMF as algorithms portfolio [12]. An algorithm portfolio execution is
a set of algorithms run each with a predefined number of resources an stopped
as soon as one algorithm completes its execution.

The actual version of AMF is designed for shared memory architectures and
support parallelism based on threads. Moreover, we provide some validations
of its utilization for defining automatic combination of algorithms for the Con-
straint Satisfaction Problem, either sequential or parallel.

1.2 Text organization

The rest of the paper is organized as follows: Section 2 presents the multi-
selection technique as designed in AMF. The architecture of AMF in a com-
ponent point of view is presented in Section 3. Section 4 gives an example of
utilization of AMF on the Constraint Satisfaction Problem. In Section 5, we
discuss about advantages of the multi-selection. Related works are presented in
Section 6 and we conclude in Section 7.

2 The Multi-selection technique

We suppose that we have a parallel machine architecture and a finite set of algo-
rithms(parallel or sequential) solving a same problem P . Within multi-selection,



each instance of P is solved in three phases. The first phase consists in a se-
lection of candidate algorithms for the instance. The second phase consists in
sharing resources between the selected algorithms. The third phase is a concur-
rent execution of the selected algorithms under the adopted resource sharing.
Each phase is described in the following.

2.1 Selection of the candidate algorithms

At this stage, we have a finite set of algorithms (parallel or sequential) solving
the computational problem P. Given an instance of P, we have to decide which
algorithm to use. The multi-selection considers two modes for instance resolution:
the online and offline mode. These two modes affect differently the selection
phase.

Let suppose that we have a base A of candidate algorithms for solving an
instance I of P. In the offline mode, all candidate algorithms known for P will
be selected at this stage of the multi-selection. Thus the selection in the offline
mode will output A(I) = A. In the online mode, just a subset of candidate
algorithms is retained. This means that the selection in the online mode will
output a set A(I) where A(I) ⊆ A.

Details about the selection phase in AMF will be given in Section 3.1. For
now, we can retain that the two possible modes (online and offline) lead to
different types of overhead on instance resolution. We illustrate this as follows:
let us denote the total resolution time for solving I as t(I). In multi-selection, we
have t(I) = ts(I)+trs(I)+tep(I) where, ts, trs and tep are, respectively, the time
for selecting a subset of algorithms, the time for computing a resource sharing,
and the time for executing the chosen algorithms with the computed resource
sharing. Since in the offline mode the selection of algorithms is the same for each
problem instance, one can pre-compute the optimal resource sharing that will be
re-used for all instances. Thus, the cost ts(I)+ trs(I) will typically be negligible
in the offline mode.

Algorithms selected at this phase of the multi-selection will then be executed
concurrently. However, it is only the result of one execution that will be exploited
at the end. This means that the more selected algorithms, the more the overhead
in the resolution. The philosophy of the online mode is to try to reduce tep(I)
by efficient selection of algorithms even if it will lead to more significant values
of ts(I) + trs(I). Such a selection can be guide by a comparative analysis of
instance feature and algorithm behavior [9].

2.2 Computation of the optimal resource sharing

For the determination of resource sharing (second phase in multi-selection), the
multi-selection uses the dRSSP model [5]. In dRSSP, we assume that we have
a finite set of homogeneous computation units or resources P = {0, . . . ,m}. On
these units, parallel algorithms can be run.

Given a computational problem P, the inputs for dRSSP model are : a finite
set of algorithms A = {A1, . . . Ak}, a finite set I = {I1, . . . , In} of representative



instances of P, and cost values C(Ai, Ij , p) giving the execution time of each
algorithm Ai ∈ A on the instance Ij ∈ I when executed on p ∈ P resources.

The resolution of instances in the dRSSP model is based on Algorithm port-
folio [12]. Let us define a resource sharing as a vector S = (S1, . . . , Sk) such that
Si ∈ P and

∑
Si ≤ m. Here, Si is the number of resources used by Ai. With

Algorithm portfolio, we can define the resolution time of any instance under this
resource sharing as C(S, Ij) = min

Ai∈A
{C(Ai, Ij , Si)|Si > 0)} 3.

Given these inputs, we suppose in dRSSP that to solve the problem P, any
of its instance will behave like one instance in I. Therefore, a global approach to
minimize the resolution time of the problem instance can consist in finding the
resource sharing S minimizing

∑

Ij∈I

C(S, Ij). We will denote this as the MinSum

optimization function.
In the optimal solution under the MinSum objective, significant variations

can be observed between instances resolution time. In a competition setting
where we have a finite set of instances to solve in a maximal amount of time,
this might not be a problem. However, in a context where instances are not
solved in block, variations between execution times of instances are sensitive. In
this case for example, a good optimization goal is to minimize the maximal time
we can wait for having the solution of an instance. This will be taken as the
MinMax objective given by the function: minimize max

Ij∈I
C(S, Ij).

Under the MinMax or MinSum objectives, one can easily show that the prob-
lem of computing the optimal resource sharing is NP complete [5]. Thus, heuris-
tics must be used in the online mode in order to have an acceptable overhead on
instance resolution (in the offline mode the resource sharing is pre-computed).

Minimize
∑

Ij∈I

C(S, Ij)

1. Si ∈ {0, . . . ,m}
2.

∑

Si ≤ m

(a) MinSum optimization

Minimize max
Ij∈I

C(S, Ij)

1. Si ∈ {0, . . . ,m}
2.

∑

Si ≤ m

(b) MinMax optimization

2.3 Execution of algorithms with resource sharing

The last stage of the multi-selection is the concurrent execution of algorithms on
the instance to solve, according to the computed resource sharing. All algorithms
with a non null resource allocation are executed until one ends its execution. This
requires to have interruptible algorithms. We will see however later that AMF
provides a support to automate the interruption of algorithms in a concurrent
execution on multi-core machines.
3 This is deduced from the fact that we stop the execution on each instance as soon
as one algorithm completes its execution



At this stage, we presented the multi-selection technique. The basic require-
ments of this technique ( benchmark of instances, parallel or sequential algo-
rithms, interruptibility, multi-core machines) makes it applicable on a large class
of computational problem and machine architecture. We will discuss about the
multi-selection technique in Section 5. In the next section, we illustrate how it
is applied with AMF.

2.4 The multi-selection in AMF

The AMF framework is implemented in C/C++. The description of a computa-
tional problem in AMF is made through applications. An application has mainly
a set of algorithms solving a same problem. It can be associated to a benchmark
of instances for the related computational problem. AMF works like a problem
solver that generates automatic combination of algorithms when it receives spec-
ifications of a benchmark and application. It also offers an interface for solving
instances of known computational problems under the multi-selection.

In Figure 1a), we describe an example of application insertion in AMF. Ap-
plications and benchmarks are defined through through block of data of type
AMF Application and AMF Benchmark. The application in the example is re-
lated to the CSP (Constraint Satisfaction Problem) and has three algorithms
(max deg, min dom, max dom deg) that are CSP heuristics. These algorithms
are sequential since the application is of type AMF SEQ). Parallel algorithms
can be also defined in AMF. In this case, the application is of type AMF PAR.
Certain requirements must be fullfilled for a successful application insertion. As
indicated by Figure 1b), the algorithms solving the computational problem of
the specified applications must be defined in the file AMF AMF ALG.cpp.

Figures 1c) and 1d) describe the insertion of a new benchmark for CSP.
Similarly to the creation of an application, the insertion is made by invoking a
function of the class AMF Learner. Finally, in Figure 1f), we show how to update
information for an inserted application.

Figure 1e) presents the resolution of an instance with AMF. All problem
instances in AMF are specified using a block of data of type AMF Instances.
In the example, we defined an instance of the application CSP and used the
function generateOneCSP for initializing data of the CSP problem. Then, we
invoked an AMF solver (object of the class AMF Solver) for its resolution under
the multi-selection. After the resolution of the instance, the result is given as a
void pointer that from a transtypage operation one can re-structure. All results
are provided in AMF as an array of floats. The implementation of algorithms in
AMF AMF ALG.cpp must take into account this information.

Figure 1 gives a tour of possible operations in AMF and manipulated objects.
The internal structure of the framework is described in the next section.

3 The AMF component structure

Figure 2 describes AMF internal components and dependencies among them.
The key component of this architecture is AMF Learner that centralizes infor-



a) CREATION OF AN APPLICATION b) REQUIRED CONTENT OF _AMF_ALG.cpp

#include "AMF.h" //....others headers

int main(void){ void* max_deg(void *){//code };

AMF_Application A; void* min_dom(void *){//code };

char[3][*] Alg = {"max_deg", "min_dom", void* max_dom_deg(void *){//code };

"max_dom_deg"}; //....others headers

A.app_name = new char[3];

strcpy(A.app_name, "CSP");

A.app_type = AMF_SEQ;

A.alg_number = 3;

A.Alg_name = Alg;

AMF_Learner *L;

L = new AMF_Learner();

L->add_app(A);

return 0;

}

c) CREATION OF A BENCHMARK d) REQUIRED CONTENT OF reader.cpp

#include<iostream> //....others headers

#include "AMF.h" void* CSPReader(FILE *F){//code};

int main(void){ /* This function given a file descriptor

AMF_Benchmark B; F towards data of CSP returns the next CSP

AMF_Learner *L; instance on which the pointer of F is*/

L = new AMF_Learner; //....others headers

L->load_app_conf();

B.app_id = L->getID("CSP");

if(B.app_id >= 0){

B.BenchFilename= new char[30];

strcpy(B.BenchFilename,"CSPBenchmark");

B.BenchReaderName = new char[30];

strcpy(B.BenchReaderName, "CSPReader");

B.benchsize = 150;

L->load_bench_conf();

L->add_bench(B);

} return 0;

}

e) RESOLUTION OF AN INSTANCE f) UPDATE OF AN APPLICATION

#include "AMF.h" #include "AMF.h"

#include "AContainer/CSP/generateOneCSP.h" int main(void){

using namespace std; AMF_Application A;

int main(void){ char[4][*] Alg = {"max_deg", "min_dom",

AMF_Instances I; "max_dom_deg", "max_deg" };

AMF_Solver *SOL; A.app_name = new char[4];

CSPInstance CSPInst; strcpy(A.app_name, "CSP");

generateOneCSP(22, 6, -1, &CSPInst); A.alg_number = 4;

float result[MAX_RESULT]; A.Alg_name = Alg;

I.app_name = new char[3]; AMF_Learner *L;

strcpy(I.app_name "CSP"); L = new AMF_Learner;

I.arg = (void *)&CSPInst; L->load_app_conf();

I.mode = AMF_OFFLINE; A.app_id = L->getID(A.app_name);

I.objective = AMF_MINSUM; A.app_type = L->get_app_type(A.app_id);

SOL = new AMF_Solver(); L->update_app(A);

SOL->solve(I, result); return 0;

cout<< "the result is "<< };

(int)result[0] << endl;

return 0;

}

Fig. 1.: Possible usages of AMF



AMF_Solver

AMF_Portfolio AMF_OptimizerAMF_Learner

AMF_AContainer AMF_BContainer

Fig. 2.: AMF Components and relations between them

mation about manipulated applications, available benchmarks and platform set-
tings. The component AMF Learner works as a tuning engine that learns from
the physical architecture and generates automatic combination of algorithms for
registered applications. It also works as a knowledge base informing other com-
ponents about applications and benchmarks defined in AMF. AMF Portfolio is
responsible for the portfolio execution of defined combinations of algorithms. It
communicates with AMF AContainer that contains all algorithms solving com-
putational problems of applications defined in AMF. AMF BContainer contains
multiple source files of benchmark instances used for tuning applications. Ideally,
these instances must capture the difficulty of the related computational problem.
The benchmark and algorithms containers can be modified by the user.

The submission of a request for the resolution of an instance is done in AMF
through AMF Solver. This component calls AMF Optimizer for computing an ad-
equate resource sharing and then run the a portfolio engine with the appropriate
resource sharing. In the next sections we give details about these components.

3.1 The Solver

The solver component is constituted mainly by the class AMF Solver. In this
part we will present the following methods of this class:

void solve(AMF_Instance I, float *argout)

void set_MultiSelector(char *app_name, char *method_name)

The solve method takes in inputs an instance (I) and outputs an array of
floats(argout) containing the solution of the instance. AMF Instance is a structure
whose fields comprise:

– the application name to which the instance refers,
– a void pointer toward the input data describing the instance,
– the mode of resolution chosen (online or offline),
– the time limit for instance resolution (this time is significant only if the

chosen mode is online),



– the type of optimization (MinSum or MinMax).
– a proportion field p ∈ [0, 1],

When the solve method is called, it communicates with the learner to have
information about the referred application (in particular, the benchmark file
tuned for its). Using this information, it will ask a resource sharing to the opti-
mizer and will finally call a portfolio engine for its execution. Thus, the solver
coordinates the entire execution of the multi-selection in AMF. It is important
to notice that the solution of an instance in AMF is always returned as an array
of floats. Despite this restriction, we believe that this format can handle many
other internal representations (strings, integers etc.).

For the first phase of the multi-selection, AMF gives the possibility to de-
fine an appropriate method (a selector) for selecting a subset of candidate al-
gorithms in the online mode of resolution. Each selector code must be defined
in the file MultiSelector.cpp. The signature of a selector has the structure void
<selector name>(AMF Instance I, int tab[], int k). Its implementation must en-
sure that <selector name> modifies the array tab for indicating among the k

algorithms available for the application, the ones selected ( when tab[i] = 1,
1 ≤ i ≤ k, the solver will consider that the algorithm i is selected).

After, the implementation of the selector, the AMF internal database can be
informed of the new defined selector through a call to the method set MultiSelector
of the class Solver.

We believe that the definition of an efficient selector is a challenging task,
requiring a good knowledge on the addressed computational problem. Some pat-
terns for building selectors have been studied in [15, 2, 7]. Morever, AMF has a
default one for all applications. Thus, one might have at a moment for a given
application two selectors that can be used in the online mode. The choice be-
tween these selectors depends on the proportion field p of the AMF instance to
solve. When an instance is submitted for the online resolution mode, if p = 0,
then, the solver supposes that a personalized selector has been defined for the
application and call it. If p ∈]0, 1], the AMF default selector will be called. This
latter one will select randomly a proportion of p algorithms among available ones
for the referred application.

In AMF, a constant array of functions containing addresses of selector is
defined in the file MultiSelector.h. This pointer is used by the solver to determine
for each application the associated selector. When the method set MultiSelector
is called, the content of MultiSelector.h is re-generated in order to update the
pointer of selectors.

3.2 The Optimizer

The optimizer component is implemented by AMF Optimizer. It is used in two
main scenarios:

– When a new benchmark data is provided for an application, the optimizer
is called by the learner to pre-compute an offline resource sharing;



– For the resolution of an instance in the online mode, the optimizer is called
by the solver component to compute a good resource sharing within time
limit.

The main functions used in the Optimizer are :

void getOnlineRS(AMF_Algp_desc)

void getOfflineRS(AMF_Algp_desc)

getOnlineRS serves to compute a resource sharing in the online mode and
getOfflineRS serves for the offline mode.

The Optimizer structure The Optimizer components contains 4 classes:
AMF Optimizer, AMF AO, AMF MS, AMF MMO. Dependencies between these
classes are presented in Figure 3. The two classes AMF MSO, AMF MMO are

AMF_Optimizer

AMF_MMO AMF_MSO

AMF_AO
...

virtual void getOnlineRS(AMF_Algp_desc );

virtual void getOfflineRS(AMF_Algp_desc );

...

AMF_Algp_desc{

int app_id;

int app_type; // (seq. or parallel)

int *Resource_Sharing;// Resource repartition

int objective_function; //minsum or minmax

float timeLimit; // <> 0 if mode = online

...

}

Fig. 3.: Classes of the optimizer component. The function getOnlineRS and getOf-
flineRS are designed to compute a resource sharing in the online and offline
modes.

specialized on the computation of resource sharing under respectively the Min-
Sum and MinMax objectives (see Section 2.2). These two classes are derived
from an abstract optimizer class (AMF AO). Finally, the class AMF Optimizer
works as interface of communication for other components.

Optimizer implementation a) Main heuristics : For computing resource
sharing, AMF has for each optimization objective, 5 heuristics specialized in
resource sharing building on parallel application and 5 ones for sequential appli-
cations. These heuristics solved the dRSSP model presented in Section 2.2 and
are listed in Table 1. Detailed explanations on the heuristics implementations for
parallel applications can be found in [5] and especially in [11] for HIF. Heuristics



Optimization heuristics in the parallel case (|A| = k, |I| = n and m resources)

Heuristics Approx. ratio Time complexity

HIF arbitrary O(min(k,m).(n2k2 + km2))

MAG k − g + 1 O(n2k−g.(m+ 1)g.(nk))
MA 2k − 1 O(k)

RAND arbitrary O(k)
WTA arbitrary O(nk)

Optimization heuristics in the sequential case

HIFs arbitrary O(m.n2k2)
WTAs arbitrary O(nk)
RANDs arbitrary O(k)

OPTs 1 O
(

k

m

)

Table 1.: Heuristics used for optimization, guaranteed approximations ratio and
complexity. k is the number of algorithms to combine, n is the size of the bench-
mark for tuning algorithms and m is the number of computational units in the
dRSSP model.

for sequential algorithms are just adaptations of those of the parallel case where
we limited the number of possible resources for each algorithm to 1.

We added small changes in the MAG implementation. The original one con-
sists of selecting a number g of algorithms (guessed algorithms) on which all
possible assignments of resources are explored. If for the g chosen heuristics,
we explore an assignment of resources that use a total of mg resources, one
fairly shares the m−mg resources to the remaining algorithms (each algorithm

then has approximately ⌊
(m−mg)

k−g
⌋ resources). One can easily notice that when

the number of guessed algorithms g = k, the MAG heuristic gives the optimal
solution.

We modified MAG in observing that given a selection of g algorithms, be-
tween the k− g remaining ones, some might not have any resources in the exact

solution. So, instead of assigning to all these algorithms ⌊
(m−mg)

k−g
⌋ resources,

we considered any possible subsets of algorithms k′ < k − g algorithms among
the remaining ones and shared between them the m − mg resources. The best
resource sharing that we obtain is retained.

In the offline optimization mode (execution of getOfflineRS), the resource
sharing is computed using the optimal heuristics (OPTs and MAG with g = k).
In the online mode (execution of getOnlineRS), the computation of the resource
sharing must be done under the time limit defined in the AMF instance (see
Section 3.1). Therefore, a tradeoff must be found between the quality of the
solutions proposed and the time limit for the optimization.

b) Optimization in the online mode :

The online optimization mode comprises two steps: the construction of a
plan that is, an ordered subset of optimization heuristics to be executed and the



execution of the optimization heuristics following the plan. The total time for
deriving a resource sharing with a time limit t can be formulated as: trs(I|t) =
tcp(I|t) + tep(I|t). In this expression, tcp(I|t) is the time required for computing
the plan and tep(I|t) is the time required for executing the plan. The construction
of the plan must guarantee that tep(I|t) ≤ t and tcp(I|t) are small.

For having small values of tcp(I|t), we classified the optimization heuristics
in three classes: the polynomially fast heuristics ( MA, RAND, WTA), the poly-
nomially slow heuristics (HIF), and the exponential heuristics (MAG, OPT).
Given a time limit t, the construction of the plan starts with an estimation of
the time required for executing and selecting the best resource sharing from the
first class of heuristics. If the estimation suggests that this part of the plan will
not exceed t, one evaluates the possibility of including polynomially slow heuris-
tics with the remaining time limit estimated. Finally, exponential heuristics are
considered. For this latter case, we search for the best value of g that will lead
to an optimization under the remaining time limit.
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Fig. 4.: MinSum cost and execution time of heuristics for sequential optimization
on a benchmark of SAT solvers

The clustering of optimization heuristics is motivated by their theoretical
complexities (see Table 1) and experimental behaviors. In particular, Figure 4
depicts an experimentation made on a benchmark of sequential SAT solvers
with the sequential heuristics for optimization. The results concern the MinSum
objective. The experiments are done on a total of 23 sequential SAT solvers.
We built on this set a resource sharing with optimization heuristics, assuming
that we have 1, 2, 3.. homogeneous resources. Details about the experiments can
be found in [11]. The times of the polynomially fast heuristic are not reported
but are always under 0.1 seconds. This figure exhibits the tradeoffs between
the quality of the heuristic and the execution time required. For example HIF
computes a better solution than WTA as shown by Figure 4a). However, it is



more time consuming as shown by Figure 4b).

3.3 The Learner

The learner is the central component of the AMF architecture. Its is mainly
involved in the following scenarios:

– It learns platform settings (mainly at the installation of AMF) and tunes
the analytical performance model of the optimizer;

– It is the main component for application and benchmark registration;
– The learner is also invoked by other components when they need information

about applications (e.g. the optimizer needs to know if an application is
parallel or sequential).

The basic functions used for these operations are:

void tune_bench(int app_id)

void add_app(AMF_Application)

void add_bench(AMF_Benchmark)

AMF_Application getData_app(int app_id)

AMF_Benchmark getData_bench(int app_id)

We will discuss them in what follows.

Tuning of the optimizer The tuning of the optimizer starts when the function
add bench is called. It consists of measuring the performances of heuristics listed
in Table 1 on the parallel machine (we suppose multi-core) where AMF runs.
The learner supposes that the execution time of each of each heuristics can
be described as a real function f(m,n, k, g) (m is the number of cores of the
architecture). This choice is motivated by the complexity result obtained in
Table 1. For the tuning, the learner explores the database of applications and
benchmarks for finding possible value (n, k). For all valid points (n, k) 4, the
learner considers all values of g ∈ {1, . . . , k} and makes multiple executions
(actually 20 but it is customizable) of available optimization heuristics (HIF,
MA etc). It retains the mean execution time obtained from the executions and
save it.

Applications and benchmarks registration Benchmarks and applications
registration are made in AMF through the learner functions: add app and add bench.
An application to add is described through a block of data of type AMF Application.
This block is mainly characterized by:

– An application ID that is an integer unique to each application;
– A name which is supposed to be the computational problem to which we

refer (e.g. SAT for Satisfiability );

4 A point (n, k) is valid if there is a benchmark of size n for an application of size k



– A list of algorithms that are given through pointer toward algorithms im-
plemented and available for the resolution of computational problem;

– A type that can be Sequential if all algorithms available for the application
are sequential or Parallel otherwise. This information is important for the
computation of resource sharing.

An AMF Benchmark comprises mainly:

– An application ID that is the application referred by the benchmark;
– A benchmark source file that are brute instances representative of the com-

putational problem;
– A benchmark reader that is a pointer towards a function that can extract

an instance from the benchmark source file.

The registration of a new application will automatically create a unique iden-
tifier for it. It also inform the portfolio engine by code generation of this new
registration (we will se how later).

To any application, there is associated a unique AMF Benchmark block of
information. For completing a benchmark registration, the learner first calls
the function tune bench for automatically generating a benchmark performance
profile 5. It then calls optimization heuristics that given this benchmark profile
can compute an optimal resource sharing for algorithms known on the registered
applications. Finally, it informs the benchmark container (by code generation)
of the presence of a new identified reader function, and eventually tunes the
optimization heuristic if a new couple (number of benchmark instances, number
of algorithms) is introduced.

Communications with other components The learner is involved in multi-
ple operations by other components when they need information about applica-
tions and benchmarks. To do so, they invoke its functions getData app and get-
Data bench. To ease the access to this information, the learner maintains a table
of applications and a table of benchmarks. These tables can be loaded explicitly
as in Figure 1, in using the methods load app conf() and load bench conf().

The Learner manipulates a great deal of information related to the AMF
internal setting. In Figure 5, we describe relations between information related
to applications and benchmarks that are manipulated by the learner.

3.4 The portfolio engine

The portfolio engine is mainly invoked in two scenarios:

– It is invoked in the last stage of the multi-selection for the portfolio execution
of algorithms;

– It is invoked by the learner when this latter has to generate a benchmark
performance profile.

5 This profile is given by the values C(Ai, Ij , p) described in Section 2.2
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Fig. 5.: Data dependencies in the learner. Each entry of the application table
is related to at most one entry in the benchmark table (when a benchmark
is specified for the application). These entries also point to benchmark source
files (in the benchmark container), benchmark performance profile files, and
algorithms (in the algorithm container).

The portfolio engine keeps a pointer towards candidate algorithms (defined
in the algorithm container) for application registered in AMF. The description
of this pointer is in the file AlgPointers.h of the Portfolio container. This file is
updated by the learner when an application is inserted or updated.

Given a defined resource sharing for an application, the portfolio engine can
start the concurrent execution of algorithms accessible from its pointers following
the resource sharing. In the concurrent execution, if the application is sequential,
the resource sharing indicates the algorithms that will be run. In the parallel
cases, it gives the number of resources for the execution of each algorithm. For
coordinating the execution of multiple algorithms, the portfolio engine uses a
Monitor object. This object has two important attributes:

– A boolean value that indicates that a solution is found;

– An array of float where can be written as result at the end of the execution.

These attributes can only be manipulated through synchronized functions imple-
mented in the monitor. The monitor object is accessible in the file AMF ALG.cpp
(where application algorithms are defined) and must be used in the implemen-
tation of algorithms to indicate that a result is found. We will see an example
of utilization in Section 4.



3.5 Algorithms and Benchmark container

The algorithms and benchmark containers comprise implementation of algo-
rithms and benchmark readers. Algorithms source codes in C/C++ must be im-
plemented in the file AMF ALG.cpp. The signature of each algorithm must have
the generic form void* <algorithmName>(void *). Despite the fact that the input
argument is of type void *, its internal organization is of type AMF Argument.
This structure comprises:

– A pointer towards the input arguments that are data of the computational
problem instance ;

– A pointer towards a monitor object used for the synchronization and collec-
tion of results;

– The number of resources for the execution.

For an effective coordination of the execution, each algorithm defined in
AMF ALG.cpp must set in the monitor (given in input) a solution when it is
found (An example of such an implementation is provided later). Moreover,
AMF typically supports for now parallel algorithms based on threads.

The benchmark container comprises programs for reading benchmark source
files provided in AMF. The definition of benchmark readers in AMF is done in
the file reader.cpp of the Benchmark container. The signature of a reader must
have the form void* <readerName>(FILE *F). The implementation must ensure
that in the file pointed by F, a call of the reader function returns an instance as
a void pointer. In the registration of a new benchmark, the name of the reader
must be given.

4 Example of Constraint Satisfaction

We validated the AMF architecture for the resolution of the Constraint Satis-
faction Problem. For this purpose, we inserted in AMF parallel and sequential
versions of algorithms solving this problem. In Table 2, we detail the different
actions that we did related to the parallel version of CSP (PCSP).

These actions define the general operations that are required for program-
ming with AMF. As one can see the effort done by the developer consists mainly
in providing algorithms, benchmarks, and benchmark readers in the algorithms
and benchmarks containers. At the end of the execution of actions described in
Table2, a new application is ready for utilization in AMF.

Parallel algorithms defined in AMF must be based on threads. This is im-
portant for the synchronization of the execution. Others rules in code writing
must be respected in the actions done above, we will discuss about them in the
Section 4.1.

4.1 Writing algorithms and readers

There are three aspects that are important while defining a new algorithm:
the algorithm signature, the management of result and the coordination with



Action Modified Components Description

Definition of parallel

PCSP algorithms

The files AMF ALG.cpp and

AMF ALG.h of AMF AContainer

The data structures for the PCSP in-

stances are defined in AMF ALG.h and

the algorithms in AMF ALG.cpp

Copy of a PCSP bench-

mark file in AMF

AMF BContainer A benchmark data file for PCSP is put in

the Bcontainer

Definition of a bench-

mark reader

AMF BContainer the code of a reader for PCSP instance is

written in the file reader.cpp

Insertion of the PCSP

application

AMF Learner, AMF PContainer In using the method add app of the

AMF Learner, one inserts the PCSP ap-

plication. It modifies the portfolio engine

and the configuration of the application

table

Insertion of a PCSP

benchmark

AMF Learner, AMF BContainer In using the method add bench of the

AMF Learner, one inserts a PCSP bench-

mark. It generates pointers towards read-

ers for the BContainer and configure the

benchmark table

Global compilation All components The framework must be re-compiled to

handle new codes generated in the previ-

ous steps

Table 2.: Defining a new application and benchmark in AMF

other algorithms. Let us suppose that data of PCSP instances as defined in the
file AMF ALG.h are type CSPInstance. An example of algorithm for PCSP is
described in Figure 6:

For receiving the inputs arguments, one must notice that AMF will execute
the defined algorithms with an argument that is of type AMF Argument (even
if it is passed as a void pointer). This is what explains the cast operations that
the developer must do at the beginning of Figure 6a). From the cast operation,
the algorithm has access to a monitor (here std1→sync). It must use this latter
one to set the result of its execution. The monitor provides the barrier func-
tions (lock barrier() and unlock barrier()) to allow modifications of the result in
mutual exclusion. Finally, throughout the function setEnd, ones indicates for all
algorithms that a solution has been found. It is important when defining each
algorithm for PCSP to think about setting the result in the monitor object when
a solution is found. This is what will inform the other algorithm that are run
concurrently to stop their execution.

When writing a reader, it is important to return a void pointer that can
be translated from a cast operation in the adequate data structure. We give in
Figure 6b) an example of reader structure for a CSP instance.



a) DEFINITION OF AN ALGORITHM b) DEFINITION OF A READER

void* pmin_domain(void *arg){ void* PCSPReader(FILE *F){

AMF_Argument *std1; CSPInstance *Inst;

std1 = (AMF_Argument *)arg; Inst = new CSPInstance;

CSPInstance *std; // read the last un-read instance of F

int sat; return (void *)Inst;

std = (CSPInstance *)(std1->argin); }

// We solve std

// A solution is found here and saved

// in the variable sat

std1->sync->lock_barrier();

if(!std1->sync->is_ended()){

float result[200];

result[0] = (float) sat;

std1->sync->setArg(result);

std1->sync->setEnd();

}

std1->sync->unlock_barrier();

}

Fig. 6.: Example of algorithms and benchmark reader

4.2 Qualitative assessment

Using AMF, we defined one sequential and parallel CSP applications, each hav-
ing with 9 algorithms. The description of these algorithms can be found in [11].
For each application, we associated a benchmark of 225 CSP instances described
in [11]. Then, we consider a scenario in which one has to solve again these 225
instances using AMF. In this scenario, we used a selector that ignores the bench-
mark instances. Thus, even if AMF has been tuned on the instances that we have
to solve, it does not use this information.

In this scenario, we evaluated both the offline and online mode of resolution
and the resolution under different optimization objective. We run the experi-
ments on a parallel multi-core machine with 4 cores. The cores have a frequency
of 2661MHz and hyper-threading is used in each core.

Experiments in the offline mode Table 3 presents the execution time ob-
tained with AMF for solving the CSP instances with sequential algorithms. In
this table, p is the number of threads that are created in the resolution. One can
see here that if 4 threads are used in the MinSum optimization, the execution
time obtained is better than those of the best single algorithm. Execution times
presented are the means that we obtained from 30 executions. The standard
deviation in the time was small (lower than 0.002).

We present in this table both theoretical estimations made by the AMF op-
timizer when computing a resource sharing and experimental results observed
for the resolution of instances under the MinSum and MinMax objectives. The-
oretical predictions do not coincide with measured execution times. This is due
to cache sharing and hyper-threading overhead in the concurrent execution. The
hyper-threading overhead is clearly visible since the more the number of threads



exceeding the number of cores, the more the difference with theoretical esti-
mations. Finally, the time for the MinMax optimization here does not change

(|A| = 9, |I| = 225 and m = 8)

Theoretical Experimental

p Th. MinSum Th. MaxSum MinSum MinMax

1 526 31 526 31

2 435 31 443 31

3 419 31 431 31

4 407 31 423 31

5 402 31 438 31

6 402 31 538 31

7 402 31 655 31

8 402 31 723 31

Best single algorithm, MinSum = 526, MaxSum = 31

Table 3.: Execution time (in seconds) in the offline resolution mode for sequential
CSP algorithms. p is the number of threads.

because the CSP algorithms are run with a maximal time unit of (30 seconds)
and, there are some instances that can not be solved under this time limit.

We also did an evaluation of the offline optimization with parallel CSP algo-
rithms. The results are reported in Table 4.

(|A| = 9, |I| = 225 and m = 8)

Best alg. Theoretical Experimental

p Best MinSum Best MinMax Th. MinSum Th. MaxSum MinSum MinMax

1 526 31 526 31 526 31

2 190 31 190 31 190 31

3 70 30 70 30 70 31

4 60 6 38 6 41 7

5 53 6 27 6 30 7

6 60 6 21 4 27 5

7 65 6 19 4 32 5

8 53 6 19 4 32 5

Table 4.: Execution time (in seconds) in the offline resolution mode for parallel
CSP algorithms

This evaluation again shows that AMF can outperform the best algorithm.



However, when we have more threads than core, hyper-threading overhead is
more present.

Finally, in Table 5 we depict the cumulative execution time that was needed
for generating a benchmark profile for CSP instances and for computing an
optimal resource sharing (given a benchmark profile) in the offline mode. The
optimization time is not important mainly because we do not have many cores
(see Table 1 on complexity analysis). The tuning time however is greater and,
could have been more important if we did not decide to execute parallel and
sequential CSP algorithms only one time instead of 20 times, when from the
first execution, it is clear that the algorithm can not solve the instance under
the 31 seconds.

Sequential Parallel

Optimization Profiling Optimization Profiling

1 s 23 hours 4 s 160 hours

Table 5.: Times for Benchmark profile generation and computation of optimal
resource sharing

Experiments in the online mode In these experiments, we solved CSP in-
stances with different time limits in order to have a solution under a polynomially
slow and polynomially fast optimization (see Section 3.2). In the first phase of
the multi-selection, the chosen selector selects all algorithms available for the ap-
plication. There is no interest in having such a selector for online optimization.
But, we used it solely to have a setting of comparison with the offline optimiza-
tion. In Table 7 we depict for solving the 225 instances, the ratio between the
cumulative execution time with AMF under online optimization and the optimal
measured times when performing offline optimizations. The evaluation is done
with the parallel CSP application.

While p ≤ 3, there is no overhead incurred by online optimization. This is
due to the fact that the optimal solution consists in executing the best algorithm.
This solution is found by the WTA heuristic for optimization. When p is between
4 and 6, the best algorithm is not the optimal possible solution. However, the
polynomially fast and slow optimization choose a plan that cede all resources to
the best algorithm. When p = 7, a difference appears between the polynomially
fast and slow optimization modes. While the former sets all resources to the best
algorithm, the latter suggests a better resource sharing. However, the polyno-
mially slow resource sharing leads, in the execution, to more overhead than the
polynomially fast ones. Finally, on p = 8, the polynomially slow optimization
computes a resource sharing that in the execution outperforms the polynomially
slow optimization.
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Fig. 7.: Ratio between the cumulative execution time obtained with online opti-
mization and the one obtained with offline optimization.

These experiments show that the multi-selection technique as implemented
in AMF can effectively combine multiple algorithms solving the same problem
in order to reduce the execution time needed in problem resolution. They also
show that there is a difference between the expected time in AMF when making
combination of algorithms and the effective times observed in practice. Therefore,
there is a need to integrate more knowledge about machine architectures (for
example hyper-threading overhead) in AMF. We have shown experimentally
that the multi-selection technique is efficient in combining multiple algorithms
solving the same computational problem. In the next section, we provide a short
analysis of the technique. The objective is to provide general intuitions that
justify its utilization.

5 Analysis of multi-selection

We discuss here the advantage of multi-selection as done in AMF with respect
to the importance of selecting more than one algorithm for solving a problem
instance. We also present an alternative model: algorithm ranking [20, 3]. In all
the discussion, we consider that we have a shared memory parallel context with
a finite number of m homogeneous units of computations.

a)Multiple selection vs unique selection: Let us suppose that for solving an
instance with some candidate algorithms A = {A1, . . . , Ak} we select a single
algorithm. Let us also suppose that we have n instances to solve. On each in-
stance i, let us denote by t∗i its minimal resolution time with one algorithm of
the set A

Given a technique Tx, the mean expected time for solving the n instances is
denoted E[Tx(n)] . The risk of this technique is denoted E[Tx(n)] − topt where



topt =
∑n

i=1 t
∗
i .

When selecting a unique algorithm, we might have a probability of p for
selecting the right algorithm. For each instance i, let us denote by t1i , . . . , t

k
i the

time required to solve it respectively by A1, A2, . . . , Ak. Let us also assume that
we have an equiprobability of having any algorithm as the wrong selected ones.
The mean time for solving n instances by selection of a single algorithm is then
E[S(n)] =

∑n
i=1 p.t

∗
i + (1− p)(t∗i +

1
k

∑k
u=1(t

u
i − t∗i )).

For solving all instances with a multi-selection of k algorithms, we can expect
a time of E[M(n)] ≤

∑n
i=1 αit

∗
i (since we execute all algorithms concurrently)

where αi depends on the resource sharing 6. When isolating the optimal resolu-

tion time topt =
∑n

i=1 t
∗
i , we have E[S(n)] = topt +

(1−p)
k

∑n

i=1[
∑k

u=1(t
u
i − t∗i )]

and E[M(n)] ≤ topt +
∑n

i=1(αi − 1)t∗i .
It is reasonable to bound the value of αi with, for example, the number

of resources if there is a linear parallelism, and we have less algorithms than
resources k ≤ m. We will then have αi ≤ m. Thus the risk in offline multi-
selection can be bounded at a fixed distance factor to the optimal solution while

the quantity (1−p)
k

∑n

i=1[
∑k

u=1(t
u
i −t∗i )] can be arbitrarily large. This means that

the selection of a unique algorithm is more risky than the multiple selection in
the offline mode.

Smart values of αi could be proposed to minimize M(n). In particular, we
can share resources to algorithms in order to tolerate, an important overhead on
instances whose execution time is small for all algorithms. This is the key point
of heuristics for optimizing resource sharing in AMF.

The bigger the value of p, the smaller the risk in unique selection. This is
the main interest for an online multi-selection. Indeed, if it is possible to detect
with high probability what is the optimal algorithm, then, it might be possible
to have a process that can choose for each instance i a subset of ki algorithms
(ki ≤ k and

∑n

i=1 ki < nk) such that the best algorithms on the instance is
included on the subset with a probability of 1. Thus, the expected time for the
portfolio will be E[M(n)] ≤

∑n

i=1 βit
∗
i and since ki ≤ k, we have less algorithms

executed concurrently and we could expect that
∑n

i=1(βi−1)t∗i ≤
∑n

i=1(αi−1)t∗i .

b)Algorithm portfolio vs algorithm ranking: In algorithm ranking, the selected
algorithms are not executed concurrently. A fixed amount of time or cutoff and
a ranking between algorithms is decided. Then each algorithm is executed on
the instance to solve during the cutoff time decided and following the decided
ranking. The executions is stopped when a solution is found.

This model of execution is certainly a good alternative to algorithm portfolio.
One advantage is that there is no need to compute a resource sharing since each
algorithms is executed with all resources. Algorithm ranking has been used with
interesting results in [20].

In algorithm ranking it is important to fix a cutoff time. This is not easy since
if the cutoff is two small, then on some instances, it might be impossible to have
a solution under it. Let us suppose that the cutoff has a value of t and that there

6 We suppose that all algorithms stop immediately when a solution is found



is at most one algorithm that can solve each instance under this cutoff. Given
a ranking of algorithms, an instance will be solved by the first algorithms or if
not, the second and if not the third etc. We suppose that any instance has an
equiprobability p to be solved at each rank. Thus, the time for solving n instances
will be E[R(n)] ≥

∑n

i=1(pt
∗
i + p(t+ t∗i ) + p(2t+ t∗i ) + · · ·+ p((k − 1)t+ t∗i )). In

isolating the optimal resolution time, we have E[R(n)] ≥ topt+p
∑n

i=1
k(k−1)

2 (t∗i+
(t− t∗i )). The risk again depends on the cutoff factor. In order to guarantee that
each instance will be solved under the cutoff, this value must be in general big,
we find the algorithm portfolio approach less risky.
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Fig. 8.: Example of execution pattern in algorithm portfolio and algorithm rank-
ing. In the case of portfolio, all algorithms are executed concurrently to solve
the instance while they are executed given a rank and under a time limit (here
t). In both cases, we have useless executions (dashed in the figure).

The multi-selection technique is a less risky approach when there is an impor-
tant difference between execution of algorithm. This is in particular of heuristics
solving hard computational problem.

6 Related Work

The main philosophy that has been considered in the automation of algorithms
combination is the problem specific approach. In such approaches, an adaptive
algorithm that can adapt its execution depending on the machine architecture is
designed for a specific computational problem. Given a computational problem
P, the adaptive algorithms manage a pool of candidate algorithms designed for
P. Depending on the machine architectures and instance of P to solve, it selects
the most appropriate algorithm(s) to obtain good performances. To be able to
make these choices, the adaptive algorithm will learn how to proceed during
its installation on each platform from a finite benchmark of P instances. This
problem specific approach has been applied successfully on many computational
problem such as matrix multiplication [17, 9], Sorting [1, 19, 4], Fast Fourrier
Transform [19, 14], etc..



Let now consider the problem specific approach philosophy in the perspective
of evolution of algorithms and machine architectures. We can say that if only
the machine architectures change, the philosophy of adaptive algorithms suggests
that we might not necessarily need to re-design the problem specific approach
(since the algorithm adapts itself to the platform). However, if the set of known
algorithms for the problem changes, a design of adaptive algorithms is required
in order to include this new algorithm in the suite (otherwise, it is possible that
there exists a more efficient external algorithm than the adaptive algorithm).
However, one cannot anticipate the algorithmics evolution on a computational
problem. Moreover, depending on the utilization context, the set of algorithms
required for solving a problem can change. For example, there is no advantage of
using the quicksort algorithm in a context where there are only a small number
of item to sort [13]. To deal with this, one can observe how parallelization is done
in parallel computation. Parallel programming proposes both problem specific
library (on sorting, searching etc.) and general API like MPI and pthreads for
simplifying the implementation of parallel program. Considering this example,
we can say that the design of automatic combination of algorithms also requires
general API that eases the implementation task without being specific to a par-
ticular computational problem. This point of view has received an increasing
interest over the last decade.

Among the most relevant studies, let us recall the AEOS method [8] used
on Self Adaptive Numerical System [10]. AEOS deals with automatic selection
between multiple implementations of the same algorithm (in changing for ex-
ample the order of the loops in the implementation). AEOS has been used in
particular as a methodology for tuning and selecting kernels on dense and sparse
linear algebra problems.

In [18], a framework is proposed for composing a general parallel algorithm
with sequential algorithms in order to automatically balance the load during
the parallel execution. Such a solution is typically well suited when there are
parallel algorithms based on divide and conquer with few communications. In [6],
a framework (mainly conceptual) for dynamic adaptation of parallel codes (in a
context of computational grid) is proposed.

The works that are certainly the closest to the contribution proposed of this
paper are those done on hyper-heuristics [7]. The idea is to develop generic search
procedures that work on a space of algorithms solving the same problem. Typi-
cally, this search must select the most efficient algorithm solving a computational
problem. This idea has been validated on many case studies like the resolution
of time tabling problem [16].

In this work, we have proposed a framework for developing adaptive and
parallel programs based on automatic combination of algorithms. The proposed
solution is based on the multi-selecttion and can be considered as a first step
towards the development of parallel hyper-heuristics.



7 Conclusion

We presented in this paper a new Framework for the design of adaptive libraries
of algorithms. AMF is based on a collaborative approach allowing the users
to constantly improve their knowledge on the resolution of a target problem.
The adaptation is done through the multi-selection technique. The key point
of this technique is the computation of efficient resource sharing for running
concurrently a set of algorithms on an instance to solve. We described the im-
plementation of this technique in AMF and provided a qualitative assessment
on the Constraint Satisfaction Problem.

For continuing this work, our first envisioned issue is to extend AMF for dis-
tributed contexts. A first step for reaching this objective consists of introducing
in AMF a support for executing algorithms designed based on multiple operating
system processes execution. We believe that the main challenge for this purpose
is in the distributed coordination of concurrent execution of algorithms. For the
moment, we operated the coordination at the algorithmic level throughout a
monitoring. For supporting parallelism at a process level, this variable can be
mapped in a shared memory space accessed by all processes. Another option
is to operate the coordination of execution at the operating system level. In
this case, we will check the state of execution of launched processes and then
stop all processes when one solution is found. A system coordination might also
have the advantage of avoiding the necessity of manipulating synchronization
informations while writing algorithms in the file AMF ALG.cpp.

Another interesting issue is to propose efficient generic selectors for the first
phase of the multi-selection. We showed that for solving an instance under multi-
selection, there is a compromise to make between the number of algorithms
selected and the overhead in the concurrent execution. In employing the recent
techniques of multi-objective optimization, good algorithms selectors can be pro-
posed for the first phase. Finally, we believe that the computation of the plan in
the optimizer may also be improved. Indeed, for instance this problem is closed
to the knapsack problem for which efficient heuristics already exists.
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