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ABSTRACT

Interactive buckling of an elastically restrained truss structure is investi-
gated by using an improved version of the Byskov—Hutchinson perturba-
tion analysis. The mechanical model consists of two horizontal beams
connected by rigid diagonals, whose out-of-plane displacements are
prevented by a continuous distribution of linear springs. When the two
horizontal beams are compressed, three buckling modes are possible: one
overall in-plane mode and two local (lateral and torsional) modes which,
for a particular choice of the geometry of the structure, may occur nearly
simultaneously. Three nonlinear equilibrium equations are derived in the
amplitudes of the three buckling modes and solved numerically for given
initial imperfections.

1 INTRODUCTION

The phenomenon of nonlinear buckling mode interaction has recently
stimulated much interest in the literature. This is due to the fact that
the post-critical behaviour of mechanical systems is strongly influenced



by the occurrence of simultaneous or nearly simultaneous buckling
loads. Indeed, in such situations, structures are sensitive to initial
imperfections and exhibit limit loads that are sometimes well below the
bifurcation load.

This problem was first treated by Koiter' and subsequently has been
investigated by many authors® >®7* '* who have solved a number of
problems of technical interest by using a perturbation method. This
method is particularly effective whenever several critical loads are coin-
cident. in that it easily permits description of multiple bifurcations. If the
critical loads are nearly coincident, the method is usually laborious'* and
sometimes even inapplicable in that it requires, for a correct description of
the structure behaviour, the analysis of successive bifurcations along
nonlinear post-critical paths. It is therefore often necessary to neglect
small differences between buckling loads by making them coincident.

On the other hand. the Byskov—Hutchinson method.” extensively
applied in the literature to the analysis of interactive buckling of thin-
walled members, permits study of both simultaneous and nearly simulta-
neous buckling problems by furnishing the equilibrium paths of the
systems directly. This method requires the solution of a sequence of
constrained variational problems which furnish displacements of various
orders as a function of the load; the load—displacement law is established
at the end of the procedure through the solution of a system of nonlinear
equations in the amplitude of interacting modes and loads. In this way.
nonlinearities of the problem (quadratic, cubic, etc.) appear together in
the final equilibrium equations, and not spread out at the various levels of
perturbation analysis as in the Budiansky method. In the original version.
however, this method requires the use of an iterative procedure related to
the choice of the value of the 4, load, by correspondence with which the
perturbation equations are solved.

In this paper. the post-critical behaviour of a truss structure is analysed
by using an improved version of the Byskov-Hutchinson method
previously developed” which permits avoidance of the iterative procedure.
The structure consists of two horizontal beams connected by rigid diag-
onals, whose out-of-plane displacements are prevented by a continuous
distribution of linear springs. When the two beams are subjected to
compressive forces, three buckling modes are possible which may occur
nearly simultaneously and then interact in the post-critical range.

After determining the second-order displacement- fields in closed form,
three nonlinear equilibrium equations are derived in the amplitudes of the
three buckling modes, accounting also for initial imperfections. By
numerically solving these equations, the post-buckling equilibrium paths
are obtained, and the influence of 4, on the solution is investigated.



2 STRUCTURAL MODEL AND PERTURBATION ANALYSIS

The system we wish to analyse in this section is illustrated in Fig. 1 and
consists of two horizontal beams lying in the x—y plane, connected by rigid
diagonals, whose out-of-plane displacements are prevented by a contin-
uous distribution of linear springs. The following assumptions are made:

(i) the torsional rigidity of beams is negligible;
(ii) the flexural curvatures of beams are linearised;
(iii) the torsional curvature of beams is negligible;
(iv) the axial strain in the beams is nonlinear;
(v) the kinematic constraints due to diagonal beams are linearised.

The following kinematic relationships follow from hypothesis (v):

u(x) = u(x) — hv'(x) wi(x) = w(x) + ho(x)

up(X) = u(x) + hv'(x)  wy(x) = w(x) — h8(x) (M
vi(x) = vp(x) = ¥(x)

where the symbols are illustrated in Fig. 1. The total potential energy of
the system is then
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Fig. 1. Structural model.
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In eqn (2), EA and EI are the axial and bending stiffnesses of the beams,
respectively, & is the stiffness per unit length of the springs, AN, is the axial
load applied to the horizontal beams and a dash denotes differentiation
with respect to x. By requesting the stationarity of eqn (2), the nonlinear
equilibrium equations are obtained, which admit the following (nonuni-
que) solution (fundamental path)

ug(x) = ~%§9 X
(3)

vo(x) = wo(x) = Op(x) = 0

Let us now define the vector u = {u, v, w,0} and introduce the sliding
variables @ defined by u = uy + @; then, accounting for eqn (3), we can
write the equilibrium equations in the new variables as

! 1 2 1 2 12/2/
2w B0
EA(u +2v +2n +2h 0

1 1 1 '
EARY" + INgY' — EA Ku’ +3 y? 4 3 w2+ 3 h29’2> v'}

—EARO'w"' =0

1 1 3,5\ )
EIw™ + INgw" + kw — EA {(u’ + 7 v 4 3 w'? 4 3 h29'“> W } 4)

+EAR(0Y =0

1 ., 3 , 1 '
EI0" + AN, + k8 — EA Ku + 3 v 4 3 w'? 4 3 hZH’Z)H’}

+EARG'WY =0

with the boundary conditions



u@)=0 v(U)=0 w)=0  vl)=0
wW)=0 wl)=0 6()=0

1 1 1
EA u’+—v’2+—w'2+—h20’2] =0 (5)
2 2 2 -

EARD" — 0wl o, =0
Elfw "]x=0,1 =0 EI [9”])(:0‘[ =

where the tilde has been omitted.
The linear terms in eqns (4) furnish a linear eigenvalue problem which is
assumed to admit m nearly coincident eigenvalues A; with the associated

eigenvectors u; (i=1, ..., m). To study the nonlinear problem it is
convenient to introduce the series expansion

u=Eui+ Cluy + S up + .. (L jk=1,...,m) (6)
where higher order displacement fields u;;, u;%, . . . depend upon 4. Under

suitable regularity conditions they can be expanded as

uijzuj}—k(/l—ia)u*,}&%—... )

uijk = ug-k + (/1 - la)ug-k + ...
around a starting point 4 = 4,. The numerical implications of the choice
of 1, will be discussed in the analysis of the results. By combining eqns (6)
and (7), and substituting into eqns (4) and (5) and equating to zero terms
with the same power of £, we obtain the following perturbation equations:
First order perturbation equations (eigenvalue problem)

EAu! =0
EARY]" + ANgV! =0

1" 1" (8)
EIWI' + A,N()Wi + kW,' = 0
EI0)" + ANO! + k0, =0
with the boundary conditions
ui(0) =0 u(l)="0
vi(0) =v(l)=0 vi(0) =vi()=0
®

wi0) =wi()=0 w0 =w/()=0
0:(0) = 6,(1) =0 07(0) = 0/(1)) =0



Second order perturbation equations

EA
EAUZ = — T (V:»v; + w:.w; + hZH:g;)/
7

A EAR . E4
EARY]]' + A, Novjj = —— (0w + Ow))" + ES (v + uivyy

EA (10
EIwi" + 2,Nowjj + kw; = 5 Wiw; + ujw), — !0, — R0}
EI0] + 3,Nobj + k,; = % w0} + 10 — viw; — vy
with the associated boundary conditions
u;(0) =0
EA [2uy + vV + wiw} + 12000 _, =0
vi{0) =0 vi{l) =0
EAR[2vj — (0w + 0wl = 0 "
w;(0y = wi(1) =0 wil0) = wi(l) =0
0;(0)=0,(/) =0 03(0) = 03(1) = 0
Mixed second order perturbation equations
EAuZ-;. =0
EARV, + A, Novij; = —Novj;
(12)

EIWjj; + A, Nowjj; + kwy; = —Nowj,
El ;;7 + }uaN()gg;‘ -+ k@,;,; = _NOHZ
with homogeneous boundary conditions identical to eqn (9).

Equations (10) and (12) represent a sequence of linear, ill-conditioned
variational problems for 4, near to the m eigenvalues A; by correspon-
dence with which the stiffness operator becomes singular. To eliminate
this, it is necessary to introduce m auxiliary constraint conditions

Tu;u!yzo,...,Tu/u(,-;V:O ..... Tu/5u=0(l: 1,...,]’}’!) (13)



where £ 1S a suitably choseén posiiive acnnite operator. in our analysis we

take
!

Tuu, = 2N, J (VVy + wiwh + h20,65) dx (14)
0

and use the technique of the Lagrangian multipliers to enforce eqns (13).
Once the higher-order displacements have been determined, the nonlin-

ear equilibrium equations in the displacements amplitude &; have to be

established. This can be accomplished by replacing eqns (6) into the

virtual work principle ®6u + ¥'6u = 0 where ¥ is the additional contri-

bution to the energy deriving from initial imperfections. We then have

Ao+ A&+ AguliEile + Cli =0 (i kI =1,...,m) (15)

where the coefficients 4, C; will be specified later and &, are the initial
imperfection amplitudes.

3 THREE-MODE INTERACTION
The solution to differential equations (8), (10) and (12), and the evaluation
of the coefficients of eqns (15), are performed in this section by assuming
that three buckling modes may interact.
3.1 Displacement fields
When the structure is subjected to compressive forces AN, it buckles in

three possible ways. The first consists of one half-wave deflection in the
x—y plane (overall buckling), defined by

m() =0, m)=asin=, wE=0, 6()=0 (16)
The associated critical load is
EAW 7*
Iy = —
1 YNE (17)

whence A, = 1 if Ny = EA W*r? / /. The second and third buckling modes
consist of a multi-half-wave lateral and torsional deflection, respectively
(local buckling). They are described by

() =0, vs(x) =0, wa(x)=aysin @ . 0,0 =0 (18)

w3(x) =0, vi(x)=0, wi(x)=0, #1(x) = a3 sin g (19)



The associated (unique) buckling load multiplier is

. 2. 1\ VKEI

Ary = <}’l u +;1'2—lu§) ‘]v”” (20)
where u = (n/l)y/El/k. By normalizing according to

Tu' = e (21)

where, for convenience, we take e = Nyn*n’h’ /I, we obtain
a; = l’lh, ar = h, ds == 1 (22)
Consequently, from eqn (6), to within a first-order approximation, we get

g = V1 max
, =
nh

The higher-order displacement fields u;, u;; are determined by solving
the differential equations (10) and (12), respectively, with the associated
boundary conditions. For the sake of brevity we do not show them here,
since some of them have a cumbersome expression; we may state,
however, that most of the components vanish except the following: u,(x).
u(x), uz3(x), va3(x), wiz(x), 012(x), vazi(x), wis(x), 612;(x).

o W2 max
L2 — L)
h

53 = ()3 max (23)

3.2 Nonlinear equilibrium equations

We are now in a position to write explicit expressions for the coefficients
of the nonlinear equilibrium equations (15). By assuming m = 3, they are

Ai=elli—7) (i=1,23) (no sum with respect to i) (24)

/
Ay = —EAW j viwyf3dx  (symmetric with respect to indices) (25)
0

ol {
Viwsb, dx + (4 — 2,) J Viws 6, dx} (26)

A = Ay = —4EAN “
0

0

/ ol
A3 = Ay33 = —4EAW U "11/93‘”/13 dx + (4 — 4,) ‘ V’]’ /3“’/13;_(1»’(] (27)
0 Jo

/
Axzzr = Ay = EAW’ U Qw07 — 4wh0ivyy) dx

0

/
— 44— 4y) J w/QHSV'z'y_dx] (28)

0

Ci = —el; (i=1,2,3) (no sum with respect to f) (29)



all other coefficients vanishing. Dividing through by e, we have the
nonlinear equilibrium equations in the form

(A — A& + bEEs + & &5 + enéi& = -h§
(A — W)&y + bE &y + enn&iE, + enbr8s = —h&,
(A= A3)&3 + bE &y + e13E1E; + en&3Ey = — A&

where the following identifications have been made: b= A4y/e,
cin = Aini/e, c13 = Aizzi/e, 3 = Amn/e. For given imperfection ampli-
tudes &,, eqns (30) are solved numerically.

3.3 Improved equilibrium equations

The coefficients of the nonlinear equilibrium equations appearing in eqns
(15) are linear functions of A because of the series expansion (7) of the
higher-order displacement fields. This is apparent from their explicit
expressions in the three-mode interaction problem (eqns (26)—(28)) just
analysed. Such a dependence can be improved if higher-order displace-
ments are more accurately evaluated as functions of A without employing
the linear approximation (7). To achieve this, the differential equations
(10) have to be solved where 4, is replaced by the generic A.

If this procedure is applied to the truss-problem analysis performed in
the previous section, the coefficients of eqns (26)—(28) have to be evaluated
by taking the first integral only on the right-hand member, where the
second-order displacements are now functions of A.

4 NUMERICAL RESULTS

Numerical analysis has been performed on the truss beam having the
following mechanical and geometrical properties: E = 2-06 10’ N/cm?,
A=10cm? I=100cm®, k =5-886N/cm?, | =2500cm, # = 25cm. By
selecting for N, the value of the overall critical load Ny = 2-03310° N,
A; = 1.0 follows. Since the local critical loads depend upon the number of
half-waves n, we obtain from eqn (20) 4,3 = 1-133 for n = 5, 4,3 = 1-085
for n =6 and 4,3 = 1-158 for n = 7. The lowest critical load is therefore
that corresponding to n=6. In the present analysis the interaction
between local buckling modes associated with » = 6 and the overall mode
are considered; interactions with neighbouring buckling modes corre-
sponding to n = 5 and n = 7 are ignored.

By solving eqns (10) and (12), higher-order displacements have been
calculated. In particular, the displacement components v,3, va3;, W3, Wi3;



have been plotted in Fig. 2. The #,, and 0,,, components are not shown
since they are proportional to w3 and w,3;, respectively, according to
()]2(,\‘) = WU(X)/h, ()12,1(,\') = 1’1']3;‘(.‘C)//‘l. Slmllarly the U;; (i = 1, 2, 3)
components are not represented, since they have been eliminated in the
definition of the coefficients of eqns (25)-(28). Second-order displacement
fields in Fig. 2 have been calculated by correspondence with different
values of 4,. It is apparent that whereas the dependence of v,; on #,, is very
weak, in contrast such a dependence is notable for wi;. The explanation
can be found in the analysis of the third of eqns (10) where we can see
that, by putting i = I and j = 3, the only nonvanishing known term (v/03)’
is proportional to the sum of two sinusoids with wave-numbers # + 1 and
n — 1, respectively. Now. if we choose for #, the values of the critical load
associated with n =7 or n =35, the solution diverges since the known
terms are proportional to the solution of the homogeneous equation.

15.00 2.00
10.00
1.00
5.00 A
0.00 - &
2 £ 0.00 4
> -5.004
-10.00
-1.00
-15.00
~20.00 A———t————— T 20—
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x/! x/|
200.0 600.0
100.0
<
" 0.0 i
2 ES
-100.0
-200.0 +—+——F—T—T— 17— —600.0 ————p————7
0.0 0.2 0.4 0.6 a8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x/) x/

Fig. 2. Second-order and mixed second-order displacement fields for different values of 7,



Consequently w3 increases unboundedly when A, approaches one of these
critical values.

It should be noted, in addition, that the dependence of w3 upon 4, is
strongly nonlinear, as can be argued by the presence of a nonunique ws;
curve. This implies that the linear approximations (26)—(28) for the coef-
ficients of eqns (30) may not be sufficiently accurate.

In order to evaluate the level of the discrepancies between the present
analysis and a more accurate one, we plot the coefficient c¢;3(4)
evaluated as illustrated in Section 3.3 (Fig. 3(a)). It is seen that by
correspondence with 4 = 1-133 (critical load associated with n = 5) and
A=1:158 (n=7), c,3 approaches infinity. This is not true for 4 =1
(n=1) and 4 =1-085 (n=6), since in these cases the orthogonality
conditions (13) have been utilised in determining the higher-order displa-
cement fields. This drawback would obviously disappear if we also inclu-
ded, among interacting modes, those corresponding to n =35 and n = 17.
When this is not done, 4, should be kept far away from these singular
points. Figure 3(b) shows an enlargement of the previous figure around
/A = 0-9 where the exact curve c;3(4) is compared with its linear approx-
imation (eqn (27)).

Equations (30) have been solved numerically for given values of the
initial imperfections. Initial imperfections in the shape of the overall
buckling mode (¢, # 0, &, = &, = 0) have been considered first and results
are represented in Fig. 4(a) and (b) for 4, = 0-70 by taking the coefficients
¢; independent of 4 as in Basu and Akhtar’s” paper. In particular, Fig.
4(a) shows that the truss deflects initially in its own plane, then undergoes
lateral-torsional buckling in which one of the two longitudinal beams

100.0 140
] a) n=1i si 55 57 b)
80.0 1 | [
' M 12.0 4
60.0 - ' Voo
; R 1
40.0 + : : : : 10.0
2 200 1 ' Vo s
(8] 4 [ (8]
T e —
1 1 ] [} 1]
~20.0 : ; W :
1 X v 6.0 1 )
—40.0 i Vo '
| e ;
00 oy ok 0;3 "o 1 12 05 oy ok o;: 10 1 12

Fig. 3. Evaluation of the coefficient ¢;3 (a) as a nonlinear function of 4 and (b) as a linear
approximation around 4, = 0-9.
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Fig. 4. Non-linear equilibrium paths of the truss with global imperfection.

remains in the initial plane. The bifurcation point depends upon the initial
imperfections. In Fig. 4(b) the equilibrium curves A as a function of &, are
shown.

If in addition, initial local imperfections are considered, the equilibrium
paths are modified as shown in Fig. 5(a), where snapping points are
manifested. These curves have been evaluated by considering again the
coefficients c; in eqns (30) independent of Z. It is apparent that for the two
different values of A, considered, the curves change remarkably. This
spreading reduces when the ¢;; coefficients are evaluated as linear func-
tions of A (Fig. 5(b)). If , in particular, attention is focused on the snap-
ping points, we notice that, in the last case, they are nearly coincident.

1.00 1.00

0.80 1 0.80 +

0.60 0.60

< ~<
0.40 + 0.40
‘20.10 coefficients
2=0., 0.001, 0.005 linearly dependent on A
0.20 - ==& 0.20 + ---- Indepsndent of A
a) b)
0.00 T T 0.00 ) T
0.00 0.65 0.10 0.15 0.20 0.00 0A65 0.10 0.15 0.20
él E'

Fig. 5. Non-linear equilibrium paths of the truss with all types of imperfection. (a) Coeffi-
cients independent of 4, (b) coefficients linearly dependent upon 4.



5 CONCLUSIONS

Interactive buckling of an elastically restrained truss structure has been
analysed. Three buckling modes, an overall and two local ones, are
assumed to interact. A Galerkin type of approach has been employed,
where the displacement fields are expressed as a series expansion in the
unknown amplitudes, which includes higher-order displacement compo-
nents. The dependence of these displacement components on the load A is
assumed linear around an appropriately selected starting point. The
implications of this approximation, as well as that of the choice of the
starting point, are discussed in the numerical applications. The system of
three nonlinear equilibrium equations in the buckling mode amplitudes
has been solved numerically for a number of values of initial imperfec-
tions.

The accuracy of the solution is investigated by comparing results
achieved by assuming higher-order displacement fields independent of 4 or
linearly dependent upon A and the improvement of the solution is high-
lighted.
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