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Abstract

The Dirichlet Laplacian between two parallel hypersurfaces in Euclidean
spaces of any dimension in the presence of a magnetic field is considered
in the limit when the distance between the hypersurfaces tends to zero.
We show that the Laplacian converges in a norm-resolvent sense to a
Schrödinger operator on the limiting hypersurface whose electromagnetic
potential is expressed in terms of principal curvatures and the projection
of the ambient vector potential to the hypersurface. As an application,
we obtain an effective approximation of bound-state energies and eigen-
functions in thin quantum layers.
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1 Introduction

Given a hypersurface Σ in the Euclidean space Rd with d ≥ 2, consider a charged
quantum particle constrained to a tubular neighbourhood

Ωε :=
{

x+ t n ∈ R
d
∣

∣ (x, t) ∈ Σ× (−ε, ε)
}

, (1)

where n denotes a unit normal vector field of Σ. This paper is inspired by
the following questions: What is the effective dynamics on the hypersurface
approximating the constrained motion when ε → 0? How does the former
depend on the geometry of Σ? To what extent can one recover the geometry
of Σ from the energy spectrum? What is the role of dimension d? What is the
effect of interaction with an ambient magnetic field B = ∗dA?

In this paper we model the constrained quantum Hamiltonian by the mag-
netic Laplacian

(−i∇+A)2 on L2(Ωε) , (2)

subject to Dirichlet boundary conditions on ∂Ωε, and tackle the questions by
developing a singular perturbation theory for a self-adjoint realization of the
operator that we concisely denote by −∆Ωε

D,A. Our main result says that

−∆Ωε

D,A −
( π

2ε

)2

−−−→
ε→0

heff := −∆Σ
D,Aeff

+ Veff (3)

in a norm-resolvent sense under some additional assumptions on Σ and A (see
Theorem 7.1 for the precise formulation). Here the kinetic part of the effec-
tive Hamiltonian heff is the magnetic Laplace-Beltrami operator on Σ, subject
to Dirichlet boundary conditions on ∂Σ if the hypersurface is not complete,
with Aeff being just the projection of A on Σ. The geometric potential Veff
depends explicitly on principal curvatures of Σ, cf (19). The subtraction of the
diverging coefficient in (3) is needed in order to “filter out” the transverse oscil-
lations due to the approaching Dirichlet boundaries. It follows that the limiting
operator heff and its spectrum contain information about both the intrinsic and
extrinsic geometry of the hypersurface Σ. The role of Aeff is best visualized for
d = 3 where Beff := curlAeff = n · B, i.e. only the projection of the ambient
magnetic field to the normal bundle of Σ plays a role in the limit.

Except for the inclusion of magnetic field – which is a primary motivation
for us to write this paper – the aforementioned questions have been considered
by several authors during the last two decades, in various settings and with
different methods. Indeed, we dare to say that the schematic result (3) for
A = 0, especially the presence of the geometric potential Veff in the limit,
belongs now to an almost common knowledge among spectral geometers and
mathematical physicists. Within the range of numerous papers on the subject,
let us point out just a few contributions, closest to the present setting, [13, 2,
3, 33, 4, 26, 11, 10, 36, 34, 35, 18, 16].

Despite of the extensive literature, there does not seem to be any work deal-
ing with (3) in the complete setting of the present paper. More specifically, we
are not aware of any work establishing (3) through the norm-resolvent conver-
gence, for arbitrary hypersurfaces (bounded or unbounded), in any dimension
and notably with the presence of magnetic field. Furthermore, in this paper
we propose a remarkably simple method how to establish the norm-resolvent
convergence as a consequence of certain operator inequalities, which we believe
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is of independent interest. Finally, our technique provides an explicit bound on
the decay rate of the limit (3).

For d = 2, 3 the result (3) has applications in mesoscopic physics [24, 12].
It can be used to approximate two- or three-dimensional quantum dynamics in
long thin nanostructures by the one- or two-dimensional effective Hamiltonian,
respectively. Probably the most spectacular phenomenon here is the existence of
curvature-induced bound states in unbounded quantum waveguides (d = 2) [9, 4,
15] and quantum layers (d = 3) [5, 1, 22, 21, 23, 25]. The purely quantum effect
can be well understood from (3): since the geometric potential Veff is always
non-positive for d = 2, 3, cf (19), it represents an attractive interaction and
therefore generates discrete eigenvalues below the essential spectrum of −∆Ωε

D,0.
Our new result involving the magnetic field gives a recipe how to possibly

eliminate the disturbing bound states: just embed the device in an ambient
magnetic field and employ the repulsive (diamagnetic) feature of the latter [19].
For d = 2 and ε fixed, the repulsive nature of the magnetic field in the waveguide
context was previously studied in [7]. In higher dimensions (d ≥ 4), no robust
results about the existence of discrete eigenvalues can be expected, which can
be again seen from (3): in addition to different threshold properties of −∆Σ

D,0,
Veff may be repulsive.

The paper is organized as follows. In the forthcoming Section 2 we recall
elements of geometry of hypersurfaces and introduce a natural parametrization
of Ωε. Basic information about the magnetic field in arbitrary dimension and
curvilinear coordinates are summarized in Section 3. In Section 4 we introduce
the magnetic Laplacian −∆Ωε

D,A and a unitarily equivalent operator H on an
ε-independent Hilbert space, in terms of which the convergence result (3) will
be stated. Section 5 is devoted to various two-sided estimates of H; here the
geometric potential Veff and the effective Hamiltonian heff are encountered for
the first time in the present analysis. The main idea how to deduce the norm-
resolvent convergence from the estimates is contained in Section 6, where we also
establish the main result of this paper (Theorem 6.3). An alternative version
of the result (Theorem 7.1), which is more closer in its spirit to the schematic
limit (3), is proved in Section 7 by means of an orthogonal decomposition of
the Hilbert space. In Subsection 7.1 we make the general results more explicit
for the physically interesting situations of d = 2, 3. Finally, in Section 8 we
show how the theorems can be used to deduce a convergence of eigenvalues and
eigenfunctions (Corollary 8.1).

2 Geometric preliminaries

Let Σ be a connected orientable C3 hypersurface (compact or non-compact)
in R

d, with d ≥ 2, equipped with the Riemannian metric g induced by the
embedding. The orientation is specified by a globally defined unit normal vector
field n : Σ → Sd−1. Without loss of generality, we assume that Σ has the same
orientation as the ambient Euclidean space R

d.
For any x ∈ Σ, we introduce the Weingarten map

L : TxΣ → TxΣ :
{

ξ 7→ −dn(ξ)
}

.

Denoting (a bit confusingly) by x1, . . . , xd−1 a local coordinate system of Σ,
L can be identified with a (1, 1) mixed tensor having the matrix representa-
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tion Lµ
ν with respect to the coordinate basis (∂x1 , . . . , ∂xd−1). Here and in the

sequel, we abbreviate ∂xµ := ∂/∂xµ and assume the range of Greek indices be-
ing 1, . . . , d−1. The relationship of L with the second fundamental form h of Σ
is through the formula Lµ

ν = gµρhρν , where, as usual, gµν denote the entries of
the inverse matrix (gµν)

−1 and the Einstein summation convention is employed.
For more details on the geometry of hypersurfaces, we refer for instance to [30,
Chap. 1].

The eigenvalues of L are called principal curvatures κ1 . . . κd−1 of Σ. It will
be convenient to introduce the quantity

̺m :=
(

max
{

‖κ1‖∞, . . . , ‖κd−1‖∞
})−1

,

with the convention that ̺m = ∞ if all κµ are identically equal to zero, and
̺m = 0 if one of them is unbounded. With help of the principal curvatures, we
can construct d− 1 invariants of L:

Kµ :=

(

d− 1

µ

)−1
∑

α1<...<αµ

κα1
. . . καµ

called µ-th mean curvatures [17].
Given I := (−1, 1) and ε > 0, we define a layer Ωε of width 2ε along Σ as

the image of the mapping

L : Σ× I → R
d :

{

(x, u) 7→ x+ εun
}

, (4)

i.e., Ωε := L (Σ × I). We always assume that Ωε does not overlap itself, i.e.,
more precisely,

ε < ̺m and L is injective. (5)

Since ε is a small parameter in our setting, the former will be always satisfied
provided that the principal curvatures are bounded, while the latter contains a
non-trivial hypothesis about the global geometry of Σ.

The relevance of our basic hypothesis (5) can be seen as follows. The met-
ric G induced by (4) has a block form

G = g ◦ (Id− εuL)2 + ε2 du2 ,

where Id denotes the identity map on TxΣ. In particular,

|G| := det(G) = ε2|g|
[

det (1− εuL)
]2

= ε2|g|
d−1
∏

µ=1

(1− εuκµ)
2

= ε2|g|

[

1 +

d−1
∑

µ=1

(−εu)µ
(

d− 1

µ

)

Kµ

]2

,

with |g| := det(g). The formula implies that G is non-singular under the first
condition in (5). Consequently, by the inverse function theorem, L : Σ × I →
Ωε is a local diffeomorphism, excluding thus “local self-intersections”. It will
turn into a global diffeomorphism under the additional injectivity hypothesis.
It then follows that, under the hypothesis (5), Ωε has indeed the geometrical
meaning of the set of points in R

d squeezed between two parallel hypersurfaces
at the distance ε from Σ, cf (1). Furthermore, Ωε can be identified with the
Riemannian manifold (Σ× I,G).
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Remark 2.1 (On the injectivity assumption). It is possible to consider (Σ ×
I,G) as an abstract Riemannian manifold where only the hypersurface Σ is
embedded (or even just immersed) in R

d. Then we do not need to assume the
second part of hypothesis (5).

Writing xd := u and ∂xd := ∂/∂u with u ∈ I, (∂x1 , . . . , ∂xd) represents
a natural coordinate frame for Ωε. We thus extend our index convention by
assuming the range of Latin indices being 1, . . . , d. Then the metric G can be
written in the following matrix representation

(Gij) =

(

(Gµν) 0
0 ε2

)

, Gµν = gµρ(δ
ρ
σ − εuLρ

σ)(δ
σ
ν − εuLσ

ν) . (6)

We also introduce (Gij) := (Gij)
−1 and the volume element

dΩε := |G|1/2 dΣ ∧ du ,

where dΣ := |g|1/2 dx1 ∧ · · · ∧dxd−1. The reader is warned that, in order not to
additionally burden the index notation, we do not make the dependence of G
on ε explicit in this letter, and similarly for several other quantities appearing
in the text. We have

C−(gµν) ≤ (Gµν) ≤ C+(gµν) with C± := (1± ε̺−1
m )2 = 1 +O(ε) (7)

as ε→ 0.

3 Magnetic field in curvilinear coordinates

The identification of Ωε with (Σ × I,G) can be understood as expressing the
former in suitable (local) curvilinear coordinates, namely x ≡ (x1, . . . , xd). The
aim of this section is to introduce a covariant framework for dealing with the
magnetic field in these coordinates.

In any dimension, we introduce the “magnetic field” through its vector po-
tential. Let A ≡ (A1, . . . , Ad) : Rd → R

d be a C1-smooth function and let
us call it a vector potential expressed in Cartesian coordinates y ≡ (y1, . . . , yd)
of Rd. It gives rise to a 1-form

α = Ai dy
i . (8)

Passing locally to other coordinates

y = Φ(x) , (9)

then using the pull-back, the form transforms as follows

Φ∗α = Ãi dx
i with Ã := (DΦ)TA ◦ Φ ,

just because dyi = ∂yi

∂xj dx
j . This is the way how we express A in local coordi-

nates of (Σ× I,G), using particular charts of Σ.
The magnetic field is then introduced as the antisymmetric 2-form

β := dα . (10)

Remark that we have some freedom in the choice of α to get the same β, which
is the well known choice of gauge. Indeed, if φ stands for a differentiable scalar
function, then d(α + dφ) = dα = β. In the Cartesian coordinates y, we have
βij = ∂yiAj − ∂yjAi, and similarly for any (curvilinear) coordinates x.
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3.1 Physical realizations

Now we explain how the general framework is related to the physical notion of
magnetic field in low-dimensional Euclidean spaces.

3.1.1 Case of d = 3

The physical object is the magnetic field (magnetic induction) which we identify
with the 1-form B = Bi dy

i = B̃i dx
i. It obeys the second Maxwell equation

(Gauss’ law for magnetism) that reads

∗d ∗B = 0 , i.e. d ∗B = 0 , (11)

where ∗ stands for the Hodge star operator. Recall that on a three-dimensional
Riemannian manifold with a metric tensor G, we have

∗dxi =
1

2
|G|1/2Gil δ123lkm dxk ∧ dxm , ∗(dxi ∧ dxj) = |G|1/2GilGjk δ123lkm dxm ,

where δ123lkm is the generalized Kronecker symbol [27]. For manifolds equipped
with the flat metric, d, ∗d∗, and ∗d correspond to the usual grad, div, and curl
operators, respectively.

We construct from B a 2-form β := ∗B. It follows from (11) that β is closed,
i.e. dβ = 0. Since the ambient space is a Euclidean space, it follows from the
Poincaré lemma [31, Chap. 7] that β is in fact exact. That is, (10) holds with
some 1-form α. Given a 2-form (10), the magnetic field B can be reconstructed
by the formula B = ∗β = ∗dα = curlA, employing the fact that ∗∗ is an identity
in the present case.

In the Cartesian coordinates, we have

β = β23 dy
2 ∧ dy3 + β31 dy

3 ∧ dy1 + β12 dy
1 ∧ dy2 . (12)

The triple (not a vector!)
γ := (β23, β31, β12)

transforms under the change of coordinates (9) as follows

γ̃ := (β̃23, β̃31, β̃12) = det (DΦ) (DΦ)−1 γ . (13)

3.1.2 Case of d = 2

In the planar case, we have dα = β̃12 dx
1 ∧ dx2 and

B̃ := ∗dα = β̃12 |G|
1/2G1j G2k δ12jk = β̃12 |G|

−1/2, (14)

gives the magnitude of the magnetic field in the direction perpendicular to the
plane.

4 The magnetic Laplacian

Assume A ∈ C1(Rd;Rd). Recall that Ωε is an open subset of Rd as a consequence
of (5). The quadratic form

Q[ψ] :=
∥

∥(−i∇+A)ψ
∥

∥

2

L2(Ωε)
(15)
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initially defined on C∞
0 (Ωε) is closable; let us denote by the same symbol Q its

closure. For bounded A, it is easy to see that Dom(Q) = H1
0 (Ωε). In general,

however, we only have ψ ∈ Dom(Q) ⇒ |ψ| ∈ H1
0 (Ωε), which is a consequence of

the diamagnetic inequality [20, Thm. 7.21]. We define the magnetic Laplacian
−∆Ωε

D,A as the unique self-adjoint operator associated with the closure Q via the
first representation theorem [14, Thm. VI.2.6].

Remark 4.1 (On the regularity of A). For the definition of −∆Ωε

D,A via the
quadratic form (15), it is enough to assume A ∈ L2

loc(R
d;Rd). Our smoothness

hypothesis will be needed later, cf (21).

As explained in Section 3, let us denote by Ã the components of the vector
potential expressed in the curvilinear coordinates induced by the embedding (4).
Moreover, assume

Ãd = 0 . (16)

This may be always achieved by using an appropriate gauge transform, namely,

Ã 7→ Ã−∇

∫ u

0

Ãd(x
µ, t) dt .

Note that after this gauge transform, Ã is continuous and it has a continuous
derivative in the variable u.

Employing the diffeomorphism L : Σ×I → Ωε, we may thus identify −∆Ωε

D,A

with an operator Ĥ on L2(Σ× I, dΩε) that acts, in the form sense, as

Ĥ = |G|−1/2(−i∂xµ + Ãµ)|G|
1/2Gµν(−i∂xν + Ãν)− ε−2|G|−1/2∂u|G|

1/2∂u .

More precisely, Ĥ is the operator associated on L2(Σ×I, dΩε) with the quadratic
form ĥ[ψ] := Q[Û−1ψ], Dom(ĥ) := Û [Dom(Q)], where Ûψ := ψ ◦ L .

For our purposes, it will be more convenient to work with a unitarily equiv-
alent operator on a Hilbert space independent of ε. Let us define

J :=
1

4
ln

|G|

|g|
=

1

2

d−1
∑

µ=1

ln(1− εuκµ) =
1

2
ln

[

1 +

d−1
∑

µ=1

(−εu)µ
(

d− 1

µ

)

Kµ

]

.

Using the unitary transform

U : L2(Σ× I, dΩε) → L2(Σ× I, dΣ ∧ du) :
{

ψ 7→ eJψ
}

,

we arrive at the unitarily equivalent operator

H := UĤU−1 = |g|−1/2(−i∂xµ + Ãµ)|g|
1/2Gµν(−i∂xν + Ãν)− ε−2∂2u + V ,

where
V := |g|−1/2 ∂xi

(

|g|1/2Gij(∂xjJ)
)

+ (∂xiJ)Gij(∂xjJ) .

Again, the expressions should be understood in the sense of forms. H is the
operator associated on L2(Σ × I, dΣ ∧ du) with the quadratic form h[ψ] :=

ĥ[U−1ψ], Dom(h) := U [Dom(ĥ)]. Summing up,

H = UÛ(−∆Ωε

D,A)Û
−1U−1 .
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Remark 4.2 (On the regularity of Σ). Note that while Ĥ can be introduced
under the conventional C2 smoothness assumption about Σ, it is because of the
operator H why we actually require C3. Indeed, we need to differentiate the
principal curvatures of Σ appearing in J in order to define H, even if this is
understood as an operator associated with the quadratic form h. To proceed
without the additional regularity, one can apply the recent idea of refined ε-
dependent smoothing of curvatures [16], but the overall analysis would become
much more cumbersome.

Henceforth, we work in the ε-independent Hilbert space L2(Σ × I, dΣ ∧
du), the norm and inner product of which will be denoted by ‖ · ‖ and 〈·, ·〉,
respectively. The norm and inner product in L2(Σ, dΣ) will be denoted by ‖ · ‖g
and 〈·, ·〉g, respectively.

5 Comparison operators

Applying (7) to
〈

(∂xµJ)ψ− (∂xµ + iAµ)ψ,G
µν [(∂xνJ)ψ− (∂xν + iAν)ψ]

〉

, with
ψ ∈ C1

0 (Σ× I), we obtain crucial bounds

H− ≤ H ≤ H+ , (17)

in the form sense, with the comparison operators

H± := C−1
∓

(

|g|−1/2(−i∂xµ + Ãµ)|g|
1/2gµν(−i∂xν + Ãν) + v1

)

− ε−2∂2u + V2 ,

where

v1 := ∆gJ + |∇gJ |
2
g =

1

2

∆gf

1 + f
−

1

4

|∇gf |
2
g

(1 + f)2
, f :=

d−1
∑

µ=1

(−εu)µ
(

d− 1

µ

)

Kµ ,

V2 := ε−2
[

∂2uJ + (∂uJ)
2
]

= −
1

2

d−1
∑

µ=1

κ2µ
(1− εuκµ)2

+
1

4

(

d−1
∑

µ=1

κµ
1− εuκµ

)2

.

Here we have introduced coordinate-free notations

∆gf := |g|−1/2∂xµ(|g|1/2gµν∂xνf) , |∇gf |g :=
√

(∂xµf)gµν(∂xνf) .

In order to give a meaning to the Laplacian of curvatures in the definition of
the potential v1, we need to strengthen our regularity assumptions about Σ.
Henceforth, we assume

|∇gκµ|g , ∆gκµ ∈ L∞(Σ), (18)

which is equivalent to |∇gKµ|g,∆gKµ,∈ L∞(Σ). Recall that the assumption
κµ ∈ L∞(Σ) is implicit in the first condition of (5). Under the hypotheses, we
have

v1 = O(ε) , V2 = Veff +O(ε)

uniformly as ε→ 0, where

Veff := −
1

2

d−1
∑

µ=1

κ2µ +
1

4

(

d−1
∑

µ=1

κµ

)2

. (19)
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From (17) we deduce cruder bounds

H− ≤ H ≤ H+ (20)

with

H± := C−1
∓

(

|g|−1/2(−i∂xµ + Ãµ)|g|
1/2gµν(−i∂xν + Ãν) + Veff

)

− ε−2∂2u ± C0 ,

where C0 is a positive constant such that C0 = O(ε) as ε → 0. Remark that
this result was obtained earlier in [5, 8] for the special case d = 3 and A = 0.

If Ãµ is independent of the “transverse” coordinate u, then H± are decoupled
on L2(Σ, dΣ) ⊗ L2(I, du). Our next aim will be to find decoupled comparison
operators in the general case. To this purpose define an ε-independent quantity
Â(x, t) := Ã(x, t/ε) and expand it in the last variable into the Taylor series,

Ã(x, u) = Â(x, εu) = Â(x, 0) + εu ∂dÂ(x, ξ(x, u)) =: Ã(x, 0) + εA′(x, u) , (21)

with some ξ(x, u) ∈ (−ε, ε). It is important to stress that A′ depends on ε only
through ξ, which measures the actual distance from Σ in R

d.
For any trial function ψ ∈ C1

0 (Σ× I), we have
〈

(−i∂xµ + Ãµ)ψ, g
µν(−i∂xν + Ãν)ψ

〉

g

=
〈

(

− i∂xµ + Ãµ(·, 0)
)

ψ, gµν
(

− i∂xν + Ãν(·, 0)
)

ψ
〉

g

+ 2εℜ
〈

A′
µψ, g

µν
(

− i∂xν + Ãν(·, 0)
)

ψ
〉

g
+ ε2

〈

A′
µψ, g

µνA′
νψ
〉

g
.

By the Cauchy-Schwarz and the Young inequalities,
∣

∣

∣

∣

〈

A′
µψ, g

µν(−i∂xν + Ãν(., 0))ψ
〉

g

∣

∣

∣

∣

≤
1

2

〈

A′
µψ, g

µνA′
νψ
〉

g
+
1

2

〈

(

− i∂xµ + Ãµ(., 0)
)

ψ, gµν
(

− i∂xν + Ãν(., 0)
)

ψ
〉

g
.

Consequently,

h− ≤ |g|−1/2(−i∂xµ + Ãµ)|g|
1/2gµν(−i∂xν + Ãν) ≤ h+ ,

where

h± := (1±ε)|g|−1/2
(

−i∂xµ+Ãµ(., 0)
)

|g|1/2gµν
(

−i∂xν+Ãν(., 0)
)

+(±ε+ε2)A′
µg

µνA′
ν .

Putting this into (20), we arrive at the following result.

Proposition 5.1. In addition to (5) and (18), let us assume

A′
µ g

µνA′
ν ∈ L∞

(

Σ× (−̺m, ̺m)
)

, (22)

where A′
µ is introduced in (21). Then

H−
0 ≤ H ≤ H+

0 (23)

with

H±
0 := C±

(

|g|−1/2
(

− i∂xµ + Ãµ(., 0)
)

|g|1/2gµν
(

− i∂xν + Ãν(., 0)
)

+ Veff

)

− ε−2∂2u ± C0 ,

where C± := (1± ε)C−1
∓ = 1 +O(ε) and C0 = O(ε) as ε→ 0.
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Remark 5.2. If d = 3, then B̃µ ∈ L∞(Σ×I) implies A′
µ ∈ L∞(Σ×(−̺m, ̺m)).

Proposition 5.1 suggests that for small values of ε, H behaves like

H0 = heff − ε−2∂2u ≃ heff ⊗ 1 + 1⊗ (−ε−2∂2u) (24)

on L2(Σ× I, dΣ ∧ du) ≃ L2(Σ, dΣ)⊗ L2(I, du) with the effective Hamiltonian

heff := |g|−1/2
(

− i∂xµ + Ãµ(., 0)
)

|g|1/2gµν
(

− i∂xν + Ãν(., 0)
)

+ Veff . (25)

In particular, applying the minimax principle to (23), one can show that any
eigenvalue of H that lies below the essential spectrum is well approximated by
an eigenvalue of H0 for ε small enough. To say more about the convergence of
the spectrum and the eigenfunctions, we need the norm resolvent convergence
of the respective operators, which we establish in the next section.

6 The norm-resolvent convergence

As ε→ 0, the second term of H0 diverges and consequently the spectrum of H±
0

explodes. To renormalize it, let us introduce Em as the m-th eigenvalue of −∂2u
on L2(I), subject to Dirichlet boundary condition, i.e. Em = (mπ/2)2 with
m ∈ N, and subtract ε−2E1 from both H±

0 and H:

Hren := H − ε−2E1 , H0,ren := H0 − ε−2E1 .

With this renormalization, (23) reads

C−heff − ε−2(∂2u + E1)− C0 ≤ Hren ≤ C+heff − ε−2(∂2u + E1) + C0 . (26)

Next, choose a constant k large enough that for all ε smaller than some ε0 > 0,

heff + k ≥ 1 and C−heff − C0 + k ≥ 1 .

Such k always exists, since Veff is bounded. Consequently, ‖(Hren + k)−1‖ ≤ 1
and ‖(H0,ren + k)−1‖ ≤ 1.

Using [14, Thm. VI.2.21], we deduce from (26) the resolvent bounds

[C+heff − ε−2(∂2u + E1) + C0 + k]−1 − (H0,ren + k)−1

≤ (Hren + k)−1 − (H0,ren + k)−1 ≤

[C−heff − ε−2(∂2u + E1)− C0 + k]−1 − (H0,ren + k)−1 . (27)

Our next strategy is to apply the following pair of observations:

Lemma 6.1. Let T be a positive self-adjoint operator and let S stands for a
symmetric operator that is relatively form bounded by T with the relative bound
a < 1 and the other constant b = 0. Then T−1/2ST−1/2 (as a quadratic form)
corresponds to a bounded operator L. Moreover ‖L‖ < 1 and

(T ∔ S)−1 = T−1/2(1 + L)−1T−1/2 .

This immediately implies

‖(T ∔ S)−1 − T−1‖ ≤
‖T−1‖‖L‖

1− ‖L‖
. (28)
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Lemma 6.2. Let {Ln}, {L
±
n } be sequences of bounded self-adjoint operators and

L−
n ≤ Ln ≤ L+

n .

Then ‖Ln‖ ≤ max{‖L+
n ‖, ‖L

−
n ‖}. In particular, if limn→∞ ‖L±

n ‖ = 0, then also
limn→∞ ‖Ln‖ = 0.

Lemma 6.1 is just a special case of [32, Thm. 6.25] (see also [29] for similar ma-
nipulations), while Lemma 6.2 is a direct consequence of the minimax principle.

In Lemma 6.1 put

T := H0,ren + k , S := H−
0 −H0 = (C− − 1)heff − C0

(here we view heff as heff ⊗ 1 on L2(Σ, dΣ) ⊗ L2(I, du)). Then for all ψ ∈
Dom(T 1/2), we have

|〈ψ, Sψ〉| = |〈ψ, [(C− − 1)(heff + k) + (1− C−)k − C0]ψ〉|

≤ |C− − 1|〈ψ, (heff + k)ψ〉+ |(1− C−)k − C0|〈ψ,ψ〉

≤
(

1− C− + |(1− C−)k − C0|‖T
−1‖
)

〈ψ, Tψ〉 .

Here 〈ψ, Sψ〉 is understood as the action on ψ of the quadratic form associated
with S and similarly for the other operators. In the second inequality we have
used that heff ≤ H0,ren. Since

a− := 1− C− + |(1− C−)k − C0|‖(H0,ren + k)−1‖ = O(ε) as ε→ 0 ,

we see that a− < 1 for ε small enough, and from (28) we infer that

∥

∥

∥

(

C−heff − ε−2(∂2u + E1)− C0 + k
)−1

− (H0,ren + k)−1
∥

∥

∥ ≤
‖(H0,ren + k)−1‖ a−

1− a−
.

In a similar manner we obtain that whenever

a+ := C+ − 1 + |(1− C+)k + C0|‖(H0,ren + k)−1‖ = O(ε) < 1 ,

then
∥

∥

∥

(

C+heff − ε−2(∂2u + E1) + C0 + k
)−1

− (H0,ren + k)−1
∥

∥

∥ ≤
‖(H0,ren + k)−1‖ a+

1− a+
.

Putting these two estimates together with Lemma 6.2 and (27), we arrive at the
key result of this paper:

Theorem 6.3. Assume (5), (18) and (22). Then

‖(Hren + k)−1 − (H0,ren + k)−1‖ ≤ ‖(H0,ren + k)−1‖max

{

a−
1− a−

,
a+

1− a+

}

= O(ε) as ε→ 0 .

Remark 6.4 (Gauge invariance). Recall that we have worked in a special gauge,
namely (16). If we had started with another one that differs by ∇φ for some
real differentiable function φ, we would have obtain

−∆Ωε

D,A+∇φ = (−i∇+A+∇φ)2 = e−iφ(−∆Ωε

D,A) e
iφ .
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This implies that when passing to this new gauge, Ĥ and H must be inter-
changed for e−iφ̃Ĥeiφ̃ and e−iφ̃Heiφ̃, respectively, where φ̃ := φ ◦ L . All the
weak estimates for the comparison operators above may be sandwiched by e∓iφ̃

and they still remain valid. Consequently, we obtain the inequality of Theo-
rem 6.3 for the pair e−iφ̃Hrene

iφ̃ and e−iφ̃H0,rene
iφ̃ with exactly the same upper

bound.

Remark 6.5 (Electric field). If we had started with a full Schrödinger oper-
ator in Ωε, i.e., −∆Ωε

D,A + V , where the scalar potential V that represents an
ambient electric field is such that ∂yjV is bounded on Ω̺m

, we would have ar-
rived at the same convergence result with the effective Hamiltonian (25) merely
modified by adding the projection (V ◦ L )(·, 0). This can be established quite
straightforwardly with the aid of the following Taylor expansion

(V ◦ L )(x, u) = (V ◦ L )(x, 0) + εunj(x)(∂yjV ◦ L )(x, ξ)

that holds for any x ∈ Σ, and where ξ = ξ(x, u) ∈ I.
However, if V is singular on Σ, the situation is much more delicate. For a

model example see [6], where a planar layer with the Coulomb potential and
without any magnetic field was considered.

7 A dimensional reduction

In this section we derive a variant of Theorem 6.3 by replacing H0,ren directly
by the (d−1)-dimensional effective Hamiltonian heff , cf (25). It requires certain
prerequisites and identifications, because Hren and heff act on different Hilbert
spaces.

Let us denote by χm the eigenfunction of −∂2u (subject to Dirichlet boundary
conditions) corresponding to Em In particular, we choose

χ1(u) := cos(πu/2) .

We decompose our Hilbert space into an orthogonal sum

L2(Σ× I, dΣ ∧ du) = H1 ⊕H⊥
1 ,

where the subspace H1 consists of functions of the form

ψ1(x
1, . . . , xd) = ϕ(x1, . . . , xd−1)χ1(x

d) .

Given any ψ ∈ L2(Σ×I, dΣ∧du), we have the decomposition with ψ1 ∈ H1 and
φ ∈ H⊥

1 . More specifically, ψ1 = P1ψ and φ = Qψ, where P1 := χ1 〈χ1, ·〉L2(I)

is the projection on the lowest transverse mode and Q := 1−P1. The mapping
ι : ϕ 7→ ψ1 is an isomorphism of L2(Σ, dΣ) onto H1. Hence, with an abuse of
notations, we may identify any operator h on L2(Σ, dΣ) with the operator ιhι−1

acting on H1 ⊂ L2(Σ × I, dΣ ∧ du). Having this convention in mind, we can
write P1H0,renP1 = heff and have the following decomposition

H0,ren =

(

heff 0
0 QH0,renQ

)

,

(H0,ren + k)−1 =

(

(heff + k)−1 0
0 (QH0,renQ+ k)−1

)

,
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as operators on H1 ⊕H⊥
1 .

Since

Q(H0,ren + k)Q = Q(heff + k)Q− ε−2Q(∂2u + E1)Q ≥ ε−2(E2 − E1) =
3π2

4ε2
,

we obtain

‖(H0,ren + k)−1 − (heff + k)−1 ⊕ 0‖ = ‖(QH0,renQ+ k)−1‖ ≤
4ǫ2

3π2
.

This together with Theorem 6.3 implies

Theorem 7.1. Under the hypotheses of Theorem 6.3,
∥

∥(Hren + k)−1 − (heff + k)−1 ⊕ 0
∥

∥ = O(ε) as ε→ 0 .

7.1 Physical realizations

The message of the general result is that the (unitarily transformed and suitably
renormalized) magnetic Laplacian −∆Ωε

D,A in the layer Ωε behaves for small ε as
the effective Hamiltonian heff on the underlying hypersurface. The coefficients
of heff depend on curvatures of Σ and on the ambient vector potential projected
to Σ, cf (25). Let us interpret this dependence in physically interesting sit-
uations of low-dimensional Euclidean spaces. We refer to Section 3.1 for the
notation concerning the magnetic field in our setting.

7.1.1 Case of d = 3

In this case, Veff = K2 − K2
1 = − 1

4 (κ1 − κ2)
2, where K1 = 1

2 (κ1 + κ2) and
K2 = κ1κ2 are the familiar mean and Gauss curvatures of Σ, respectively.
Hence, if Σ is not a part of a plane or a sphere, then Veff always represents
an attractive interaction (i.e. Veff is non-positive and non-trivial). The kinetic
part of heff is the magnetic Laplace-Beltrami operator on the two-dimensional
surface Σ with a vector potential associated with the 1-form

αeff := Ã1(·, 0) dx
1 + Ã2(·, 0) dx

2 .

Consequently, dαeff = β̃12(·, 0) dx
1∧dx2 with β̃12(·, 0) = ∂1Ã2(·, 0)−∂2Ã2(·, 0).

Using the transformation rule (13), we get

β̃12|u=0 = det(DL)|u=0 ((DL)|u=0)
−1
3j Bj |u=0 = |g|1/2 n ·B|u=0 .

Here the second equality is a consequence of a tedious computation which can
be greatly simplified by using the algebraic formula

M−1 =
1

detM





(~m2 × ~m3)
T

(~m3 × ~m1)
T

(~m1 × ~m2)
T



 for M := (~m1, ~m2, ~m3) ,

where ~mi are three-dimensional column vectors. Finally, using (14) for the two-
dimensional metric g, we conclude that the magnetic field associated with αeff

is given by
Beff := ∗dαeff = n ·B|u=0 .

Therefore in the limit ε→ 0, a particle confined to the layer Ωε is affected only
by the projection of the original magnetic field into the direction that is normal
to the underlying surface Σ.
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7.1.2 Case of d = 2

In this case, Veff = − 1
4κ

2
1 is again attractive. Unless Σ is a closed curve

(i.e. homeomorphic to a circle), there is no magnetic effect in the limit ε → 0,
because the presence of Ã1(·, 0) in the one-dimensional kinetic part of heff can
be always gauged out.

8 Spectral consequences

We have obtained the norm-resolvent convergences of Hren to H0,ren or heff ,
respectively, for a special value (namely −k) of the spectral parameter from the
resolvent set. However, for sufficiently small ε (the particular threshold value
depends on the chosen value of the spectral parameter), these results may be
extended to the resolvent sets of H0,ren or heff , respectively, cf [14, Eq. IV.3.10].

Now, let µ be an isolated eigenvalue of heff of finite multiplicity N and
denote by ϕ1, . . . , ϕN the corresponding (orthogonal) eigenfunctions. Let Γ be
a contour in the complex plane of radius smaller than the isolation distance of µ
centered at µ. Then for all sufficiently small ε, every point of Γ lies also in the
resolvent set of Hren. Hence, it makes sense to define the eigenprojections

P := −
1

2πi

∫

Γ

(Hren − ξ)−1dξ , Peff := −
1

2πi

∫

Γ

(heff − ξ)−1dξ .

Using Theorem 7.1, we obtain that ‖P − Peff‖ = O(ε) as ε → 0. In partic-
ular, ‖P − Peff‖ < 1 for ε small enough. We conclude that for these values
of ε, the number of eigenvalues of Hren (counting possible multiplicities) lying
inside Γ coincides with N , cf [14, Thm. I.6.32]. Moreover, ψε

n := P (ϕn ⊗ χ1),
with n = 1, . . . , N , are eigenfunctions of Hren associated with these eigenvalues
of Hren, which we denote by λε1, . . . λ

ε
N (they are not necessarily sorted in a

non-decreasing order, but they are counted according to multiplicities).

Corollary 8.1. Under the hypotheses of Theorem 6.3 and with the above nota-
tion, for every n ∈ {1, . . . , N}, we have

|λεn − µ| = O(ε) and ‖ψε
n − ϕn ⊗ χ1‖ = O(ε) as ε→ 0 .

Note that the eigenvalues of H are just shifted by ε−2E1 with respect to
those of Hren, while the eigenfunctions coincide.

Let us remark at this point that, based on our estimates, it is possible to
give explicit threshold values for the smallness of ε (in terms of the geometry
of Σ, the magnetic field, and the isolation distance of µ). However, we have
preferred this more concise presentation for the sake of readability of the paper.
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