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SUMMARY

Characteristic formulations for boundary conditions have demonstrated their effectiveness to handle

inlets and outlets, especially to avoid acoustic wave reflections. At walls, however, most authors use

simple Dirichlet or Neumann boundary conditions, where the normal velocity (or pressure gradient)

is set to zero. This paper demonstrates that there are significant differences between characteristic

and Dirichlet methods at a wall and that simulations are more stable when using walls modelled with

a characteristic wave decomposition. The derivation of characteristic methods yields an additional

boundary term in the continuity equation, which explains their increased stability. This term also

allows to handle the two acoustic waves going towards and away from the wall in a consistent manner.

Those observations are first confirmed by one-dimensional simulations and stability matrix analysis of

acoustic modes in cavities. Finally, a two-dimensional test case shows the validity of the demonstration

in multi-dimensional configurations. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many aspects of turbulent compressible flows can be simulated with the help of Large Eddy

Simulation (LES), which solves the filtered unsteady Navier-Stokes (NS) equations [1, 2, 3, 4].

The increasing available computational power allows to carry out LES in more and more

complex flows and geometries [6, 7, 8, 9, 10]. One of the key issues to ensure the quality of

the resolution is the accuracy of the numerical scheme used to discretize the convective terms

[11, 12, 13, 14]. Families of discretizations - such as compact schemes [15, 16, 17] or finite

differences with summation-by-parts (SBP) properties [18] on structured grids, or Taylor-

Galerkin (TG) schemes [12, 19] on unstructured meshes - have demonstrated their abilities

to give satisfactory results. The treatment of the boundary conditions (BC) has also been a

subject of intense research [20, 21, 22, 23, 24, 25] since it can dramatically deteriorate both

the accuracy and robustness of the calculations. Non-reflecting BC based on characteristic

treatment (wave analysis at boundaries) have been developed and are now commonly used to

model inlets and outlets of the computational domain and their influence on acoustics is now

well identified [26, 27, 28, 29]. Despite the proven effectiveness of characteristic formulations,

walls are still often represented with Dirichlet BC, where the velocity is set to zero and density

at the wall is obtained either using the continuity equation without characteristic treatment

or specifying a zero pressure gradient. The behaviour of wall BC is a critical issue to study

acoustic damping in cavities (such as combustion chambers) and controlling the dissipation
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STABILITY OF WALL BOUNDARY CONDITIONS 3

and dispersion of acoustic waves at walls is required in many present research fields such as

combustion instability studies [14, 30, 31]. This paper presents an analysis of wall BC using

both Dirichlet and characteristic methods. Despite the apparent simplicity of specifying a wall

BC, results show that characteristic methods differ from Dirichlet techniques at walls and

provide more stable schemes. This is confirmed by a linear stability analysis incorporating

wall BC. Throughout the article, wall means any rigid obstacle in the computational domain

(on the sides or inside the domain).

The formalism used for characteristic BC is first recalled (section 2) and compared to

Dirichlet BC in the case of a solid wall (section 3). Characteristic formulations lead to the

introduction of an additional BC term (called the ABC term), supposed to be zero in the

continuous problem but not in its discretized counterpart. This term increases the stability

of the scheme, while not degrading its accuracy. A simple test case (one-dimensional acoustic

cavity) is then used to study the influence of the additional term (section 4). Simulations and

matrix analyses confirm the theoretical observations, showing the importance of considering

characteristic treatment for the hyperbolic part of wall BC (section 5). Finally, both wall

BC are used to simulate a longitudinal / transversal 2D acoustic mode in an infinite duct to

demonstrate the conclusions are also valid in multidimensional applications (section 6).

2. CHARACTERISTIC BOUNDARY CONDITIONS

The present description uses the Navier Stokes Characteristic Boundary Conditions (NSCBC)

method [21, 32, 33] as a prototype for characteristic methods but the results below hold for

most characteristic BC. The NSCBC method is a standard technique for compressible flows,

which enables to correctly handle the hyperbolic part of the NS equations [20, 21, 24, 34]. The
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4 N. LAMARQUE ET AL.

NS equations are first recast, in a new direct orthonormal basis (~n,~t1,~t2), in the quasi-linear

form with primitive variables: V = (ρ, ux, uy, uz, p)T with ρ the density, (ux, uy, uz) the x,

y and z velocity components and p the pressure. The ~n corresponds to the outward normal

vector on boundaries ∂Ω. The new set of equations is written:

∂V

∂t
+
(

~AV · ~n
) ∂V

∂n
= T, (1)

where ~AV is the Jacobian tensor of the primitive variables and T represents all other

contributions (tangential, diffusion and source terms). Matrix ~AV · ~n is diagonalizable and

(1) is strictly hyperbolic. If W are the characteristic variables, then :

∂W

∂t
+ Λ

∂W

∂n
= TW, (2)

and:

Λ = diag(λ+, λ−, λt1 , λt2 , λS) = diag(un + c, un − c, un, un, un). (3)

where Λ is the diagonal matrix containing the velocities of the characteristic waves ∂W, while

TW contains the other contributions. We will use in the following the notation L of [21] for

the wave amplitude variations:

Λ
∂W

∂n
=



















L+

L−

Lt1

Lt2

LS



















=



















(un + c)
(

∂un

∂n
+ 1

ρc
∂p
∂n

)

(un − c)
(

∂un

∂n
− 1

ρc
∂p
∂n

)

un
∂ut1

∂n

un
∂ut2

∂n

un

(

− 1
c2

∂p
∂n

+ ∂ρ
∂n

)



















, (4)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6

Prepared using fldauth.cls



STABILITY OF WALL BOUNDARY CONDITIONS 5

where un, ut1 and ut2 are the components of the velocity in (~n, ~t1, ~t2) and c is the local speed

of sound.

At the boundaries ∂Ω, ingoing and outgoing waves are identified. The outgoing waves come

from the inner domain Ω. Thus, they are not to be modified. On the other hand, ingoing waves

supply information from the outside and enable the imposition of BC for the problem to be

solved. The NSCBC method is based on the use of the LODI (for Local One-Dimensional

Inviscid) relations [21]. LODI relations allow to formulate the incoming wave amplitudes,

depending on the BC. One should note that characteristic methods are better suited for linear

small perturbations (such as acoustic or entropy waves) and have sometimes difficulties with

non-linear phenomena [35]. At a wall (Figure 1), the entropy wave and the shear waves are

zero: LS = Lt1 = Lt2 . The LODI relation for velocity shows that the ingoing wave L+ must be

such that: L+ = + L−. Note that the wave L+ enters the domain and should not be evaluated

with data obtained within the domain.

A complete set of BC is described in [21, 25, 32, 36, 29] and generalization to multi-component

flows is given, for instance, in [33, 37]. The clear superiority of characteristic methods to model

partially or non-reflecting inlets or outlets is a theme vastly treated in the literature [21, 34].

Here, we focus on the special case of solid walls (Figure 1), for which many authors use simpler

methods such as Dirichlet BC.

Of course, both Dirichlet and characteristic methods eventually impose a zero velocity at

the wall. The differences between methods come from the evaluation of pressure, density and

temperature at the wall. Table I summarizes the two methods for an adiabatic wall.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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6 N. LAMARQUE ET AL.

Figure 1. Characteristic waves at a wall.

Dirichlet NSCBC

Velocity un = 0 L− = L+ ⇒ ∂tun = 0 ⇒ un = 0

Density obtained from full continuity obtained from full continuity equation

equation with un = 0 AFTER ingoing wave modification

Pressure obtained from full continuity and obtained from pressure equation

energy equations with un = 0 AFTER ingoing wave modification

Temperature deduced from state equation obtained from temperature equation

AFTER ingoing wave modification

Table I. Differences between Dirichlet and NSCBC methods

3. WALL TREATMENT

To illustrate the differences between Dirichlet and characteristic BC, it is sufficient to consider

isentropic cases. Therefore the following analysis focuses on isentropic flows surrounded by

adiabatic walls. The conclusions are the same for non-isentropic flows.

3.1. Linearized Euler equations

The differences between Dirichlet and characteristic formulations for the walls are now

brought into focus. In the following, we consider one-dimensional flow to simplify the analysis.

Therefore, the existing waves are the acoustic waves L+ and L− (Figure 1). To understand

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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STABILITY OF WALL BOUNDARY CONDITIONS 7

how a full NS solver using Dirichlet or characteristic BC will perform, it is useful to linearize

the Euler equations around the state: (ρ, u)T = (ρ̄, 0)T :

∂ρ′

∂t
+

∂

∂x
(ρ̄u′) = 0, (5)

∂ρ̄u′

∂t
+

∂p′

∂x
= 0. (6)

The primed values refer to fluctuations around the mean state noted with an overbar. As the

flow is isentropic: p′ = ρ′c2 and the system of Eqs (5)-(6) can be recast:

∂

∂t







ρ′

u′







+







0 ρ̄

c2

ρ̄
0







∂

∂x







ρ′

u′







=







0

0







. (7)

or in matrix form:

∂U

∂t
+ A

∂U

∂x
= 0, (8)

where A is the flux Jacobian matrix.

3.2. Walls with Dirichlet formulation

Solid walls are usually treated with Dirichlet BC:

~u · ~n = un = 0, (9)

with ~u the velocity vector and ~n the outward pointing normal. At the wall, the continuity

equation becomes:

∂ρ

∂t
= −

(

un

∂ρ

∂n
︸ ︷︷ ︸

=0

+ρ
∂un

∂n

)

= −ρ
∂un

∂n
. (10)

Eq (10) is then used to obtain the density value at the walls. This is the value predicted by

the scheme at the wall.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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8 N. LAMARQUE ET AL.

It should be noted here that the same set of equations would have been obtained by imposing a

zero normal pressure gradient ∂p
∂n

= 0 (Neumann condition), instead of a zero normal velocity.

Indeed, using this BC, the initial condition at the wall (un(t = 0) = 0) and Eq (6) yields:

∂p

∂n
= 0 and un(t = 0) = 0 =⇒ un = 0, (11)

which is Eq (9). Then, as un = 0 and ∂p/∂n = 0, Eq (5) becomes Eq (10). Therefore, Dirichlet

BC or zero pressure gradient BC are equivalent on an adiabatic wall.

3.3. Walls with characteristic formulation

The characteristic formulation of NSCBC (Figure 1) makes use of the following LODI relations

for normal velocity and density:

∂un

∂t
+

1

2
(L+ − L−) = 0, (12)

∂ρ

∂t
+

ρ

2c
(L+ + L−) + LS = 0, (13)

From an acoustic point of view, a solid wall is a totally reflecting solid surface (zero admittance)

that imposes: L+ = L− and LS = 0 (isentropic flow).

It is interesting to compare Eqs (9)-(10) with Eqs (12)-(13). Equation (12) with L+ = L−

entails:

un(t) = un(t = 0) = 0, (14)

which is equivalent to equation (9), as long as the initial condition is un(t = 0) = 0 at the

wall.

On the other hand, using relations (4), equation (13) leads to :

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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STABILITY OF WALL BOUNDARY CONDITIONS 9

∂ρ

∂t
+

(

ρ
∂un

∂n
+

1

c

∂p

∂n

)

= 0. (15)

Physically, a zero admittance implies ∂p/∂n = 0 on a wall. Therefore, Eqs (10) and (15) should

be physically equivalent at the wall. From a discrete point of view however, derivatives (∂/∂n)

are replaced by differences (δ/δn). A simple consequence is that, most often:

δp

δn

∣
∣
∣
∣
∂Ω

6= 0, (16)

where δ/δn is the discrete first-order derivative operator. Thus, the discrete counterparts of

Eqs (10) and (13) are not equivalent (Table II). We will see later that the added term δp/δn|∂Ω

(called here Additional Boundary Condition (ABC) term) has an important stabilization role.

Dirichlet NSCBC

Velocity un = 0 L− = L+ ⇒ ∂tun = 0 ⇒ un = 0

Density obtained from ∂ρ

∂t
= −ρ ∂u

∂n
obtained from ∂ρ

∂t
= −ρ ∂u

∂n
− c

∂ρ

∂n
|{z}

ABC term

Table II. Equations used to advance wall values in Dirichlet and NSCBC methods

4. A SIMPLE TEST FOR WALL BOUNDARY CONDITIONS

This section presents a simple one-dimensional numerical setup which allows to verify the

stability and dissipation of BC formulations at walls.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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10 N. LAMARQUE ET AL.

4.1. Numerical setup

Consider an acoustic eigenmode between two walls in a one-dimensional cavity. Figure 2 gives

a simple sketch of the problem. The mean state is such that: (ρ̄, 0)T = cst and A = cst in

Eq (8).

Figure 2. Sketch of the one dimensional cavity problem. Left: instantaneous velocity at t = kT . Right:

instantaneous pressure at t = 3T/2 + kT , with k ∈ N.

The initial conditions of the problem are:







p′(x, t = 0) = ρ′(x, t = 0) = 0,

u′(x, t = 0) = p0

ρ̄c
sin

(
πx
L

)
,

(17)

with L = 1 m and p0 = p̄
100 . All values are non-dimensionalized and the mode period is

T = 2L/c. The exact solution for pressure in absence of viscous dissipation is then:

p′(x, t) = −p0 cos
(πx

L

)

sin

(
πct

L

)

. (18)

4.2. Taylor-Galerkin discretization

The chosen numerical scheme in this study belongs to the Taylor-Galerkin family of

discretizations, as they are often chosen to carry out LES in complex geometries with

unstructured meshes [3, 14]. Those schemes have been developed adapting the ideas of Lax and

Wendroff in the context of finite elements [19]. The classical Galerkin centred-in-space scheme

has very good dispersion properties but is also unconditionally unstable, when associated

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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STABILITY OF WALL BOUNDARY CONDITIONS 11

explicit Euler time marching method [19]. Therefore, stabilization is needed and obtained by

reaching higher-order time accuracy. To do this, the solution is first expanded with Taylor series

in time and time derivatives are replaced by space ones. Then, Galerkin space discretization is

used [19]. The resulting full discretizations are often cheaper, more accurate and more stable

than classical centred schemes with explicit Runge-Kutta or semi-implicit Crank-Nicolson time

marching methods in the context of turbulent flows in complex geometries.

4.2.1. Inner Domain The domain Ω = [0, 1] is spatially discretized in N regular cells and h is

the step in space. System (7) is discretized using the second-order TG scheme [19, 38, 39] with

P1 linear elements, which is a classical numerical scheme used with unstructured grids, second-

order in space and time. The mass matrix is lumped to simplify the study. The application of

the lumped TG scheme (noted TG2 throughout the paper) to equation (7) yields:

(
U

n+1
I −U

n+1
I

)
h = −∆t

∫

Ω

A
dUh

dx

∣
∣
∣
∣

n

NI dx +
∆t2

2

∫

Ω

A
d

dx

(

A
dUh

dx

∣
∣
∣
∣

n)

NI dx (19)

where:

U
n
h(x) =

∑

J

U
n
JNJ(x),

and NI is the hat shape function associated with node I. Eq (19) gives with classical finite

differences operators:

ρn+1
I = ρn

I −
ρ̄∆t

h
∆0u

n
I +

1

2

c2∆t2

h2
δ2ρn

I , (20)

un+1
I = un

I −
c2

ρ̄

∆t

h
∆0ρ

n
I +

1

2

c2∆t2

h2
δ2un

I , (21)

where:

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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12 N. LAMARQUE ET AL.

∆0u
n
I =

1

2

(
un

I+1 − un
I−1

)
and δ2un

I = un
I+1 − 2un

I + un
I−1 (22)

As the computational grid is regular here, a more classical Lax-Wendroff finite difference

scheme [40] would have also given Eqs (20) and (21) for the inner domain.

4.2.2. Numerical boundary schemes - First derivative On the boundaries, differences are not

centred anymore. The simplest and most usual approximations of the first derivatives are

therefore†:

∂U

∂x

∣
∣
∣
∣
0

≈
1

h
δ+

U0 =
1

h
(U1 −U0) and

∂U

∂n

∣
∣
∣
∣
0

= −
∂U

∂x

∣
∣
∣
∣
0

(23)

∂U

∂x

∣
∣
∣
∣
N

≈
1

h
δ−UN =

1

h
(UN −UN−1) and

∂U

∂n

∣
∣
∣
∣
N

= +
∂U

∂x

∣
∣
∣
∣
N

(24)

and U0 and UN can be imposed as boundary conditions.

4.2.3. Numerical boundary schemes - Second derivative The case of the second derivative is

more complicated. Integration by parts of the last term of Eq (19) yields at node I:

LLI(U
n) =

∫

Ω

d

dx

(

c2 dUh

dx

∣
∣
∣
∣

n)

NI dx =

[

c2 dUh

dx

∣
∣
∣
∣

n

NI

]x=L

x=0
︸ ︷︷ ︸

BTI(Un)

−

∫

Ω

c2 dUh

dx

∣
∣
∣
∣

n
dNI

dx
dx

︸ ︷︷ ︸

LLin

I
(Un)

, (25)

If I ∈ Ω \ ∂Ω, then BTI(U
n) = 0 and LLI(U

n) = c2

h
δ2

U
n
I , which corresponds to the second

terms of the right hand sides of Eq (20) and (21). On the other hand, if I ∈ ∂Ω, which gives

†Higher-order evaluations of derivatives can be constructed using larger stencils but this is difficult and

expensive on unstructured meshes.
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STABILITY OF WALL BOUNDARY CONDITIONS 13

I = 0 or I = N , then BTI(U
n) has to be calculated. The case of inviscid flows arises a

difficulty, as there is no natural boundary conditions for dUh

dx

∣
∣
∂Ω

to express BTI(U
n), as for

parabolic or elliptic problems. As we deal with linear elements, first derivatives are constant

inside an element. The choice is then to consider that dUh

dx

∣
∣
∂Ω

is equal to dUh

dx
inside the

element adjacent to the boundary. Therefore, using Eq (25), this is equivalent to set LL0 and

LLN to zero, which is equivalent to use first-order explicit Euler time marching instead of

Lax-Wendroff method for the temporal integration at the boundaries. For instance, at node 0,

using Eq (25), the numerical boundary scheme is:

LL0(U
n) = BT0(U

n) + LLin
0 (Un) (26)

= −
c2

2h
(Un

1 −U
n
0 )−

c2

2h
(Un

1 −U
n
0 )
−1

h
h (27)

= 0 (28)

4.2.4. Boundary conditions For Dirichlet boundary condition, the discretization at the

boundaries is then:

ρn+1
0 = ρn

0 −
ρ̄∆t

h
(un

1 − un
0 ) (29)

ρn+1
N = ρn

N −
ρ̄∆t

h
(un

N − un
N−1) (30)

u0 and uN are imposed to be zero.

For characteristic BC, the discretizations of Eqs (14)-(15) are:

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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14 N. LAMARQUE ET AL.

ρn+1
0 = ρn

0 −
ρ̄∆t

h
(un

1 − un
0 ) +

c∆t

h
(ρn

1 − ρn
0 ) (31)

un+1
0 = un

0 (32)

ρn+1
N = ρn

N −
ρ̄∆t

h
(un

N − un
N−1)−

c∆t

h
(ρn

N − ρn
N−1) (33)

un+1
N = un

N (34)

As u0
0 = 0 and u0

N = 0, the only differences between Eqs (29)-(30) and Eqs (31)-(34) are the

ABC terms in the continuity equation for characteristic BC.

5. RESULTS

In this section, the influence of the ABC terms is studied using two methods: (1) comparison

of amplification matrices and (2) comparison of simulation results. For both methods, the test

case is the 1D acoustic eigenmode of Figure 2.

5.1. Amplification matrices

Let U be the solution vector containing the degrees of freedom of the problem (the velocity

and pressure at all grid points). The amplification matrix Q is defined by [41]:

U
n+1 = QU

n (35)

and‡ U
n = (ρn

0 , un
0 , . . . , ρn

N , un
N )T . For the present problem, appendix A gives all terms of the

matrix for both methods (Dirichlet and characteristic). To be stable, it is necessary for the

‡It should be noted that un
0 and un

N do not belong to Q in the case of Dirichlet BC, as they are fixed.
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STABILITY OF WALL BOUNDARY CONDITIONS 15

spectral radius ρ(Q) to be less than or equal§ to 1 [41]. Indeed the initial solution can be

decomposed in a sum of eigenvectors Vi:

U
0 =

N∑

i=0

αiVi (36)

Then, solution vector at time t = (n + 1)∆t is:

U
n+1 = QU

0 =

N∑

i=0

λn
i αiVi ∝ λn

KαKVK + O.T (37)

where λi is the eigenvalue associated with Vi and K is the index of the eigenvalue, which has

the greater modulus (except if |λK | = 1). O.T contains all the other terms, including those

with λi = 1 (corresponding to the steady state part of solution). Eq (37) simply shows that

the long term behaviour of U is similar to λn
KαKVK and will lead to instability if |λK | > 1 .

Figures 3 and 4 show the spectra in complex plane, obtained with Dirichlet and characteristic

BC. The mesh contains 15 points. Stability domain is represented by the unit circle centered

around origin. If an eigenvalue lies outside it, then the method is unstable. Moreover, one

should expect that for big enough n, |λK |
n

gives the damping / amplification factor of the

signal. It also implies that the closer to the unit circle the eigenvalues are, the less dissipative

the discretization is.

In the studied cases (with TG2 scheme), the complete discretization is unconditionally unstable

when using Dirichlet BC, as there are some eigenvalues with a modulus greater than one, for

all CFL values. On the other hand, it is conditionally stable with characteristic BC and the

stability limit is given by the CFL number: ν = c∆t/h ≤ 1. Besides, the eigenvalues also

§The condition for Lax-Richtmeyer stability is: ρ(Q) ≤ 1 + ε/N (ε strictly positive and not depending on N)

[42], but in the cases studied here, it is enough to use the condition ρ(Q) ≤ 1.
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16 N. LAMARQUE ET AL.

globally lie further from the unit circle than those obtained with Dirichlet BC. Consequently,

as expected, the ABC terms have a stabilizing effect.

Figure 3. Left: complete spectrum of amplification matrix Q for Dirichlet BC and 15 mesh nodes.

Right: zoom on unstable eigenvalues corresponding to the box of the left figure. CFL number: 0.5 .

Figure 4. Left: complete spectrum of amplification matrix Q for NSCBC and 15 mesh nodes. Right:

zoom on unstable eigenvalues corresponding to the box of the left figure. CFL number: 0.5 .
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STABILITY OF WALL BOUNDARY CONDITIONS 17

5.2. Simulations

The test case of figure 2 is now run in a DNS code using TG2 scheme and both BC are

compared. Figure 5 first presents the temporal variation of pressure fluctuation for Dirichlet

BC, while figure 6 gives the same results for characteristic BC at the probe indicated on figure 2

on two different meshes¶. As predicted by the amplification matrix analysis of section 5.1, the

pressure signal diverges when using Dirichlet BC, whereas it is damped with NSCBC, hence

ensuring the stability of the problem. It is also evident that refining the mesh limits the

damping effect due to NSCBC. It should also be added that, as suggested by the matrix

analysis, the largest eigenvalue controls the envelope of the pressure fluctuation: the signal

U
n behaves like λn

KαKVK as shown by Eq (37). This simple numerical simulation case thus

confirms the stabilization induced by the added pressure term.

! "! #!! #"! $!!

%&'()*+

!,"

!,-

!,.

!,/

!,0

%
'&
+
+
1
'&

Figure 5. Pressure fluctuations at the probe of Fig. 2. Dirichlet BC with 15 mesh nodes. (Plain line:

simulation, dash line: prediction (Eq.(37)) with |λK |). CFL number: 0.5 .

¶As the simulations always diverge with Dirichlet BC, only one case is presented.
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Figure 6. Pressure fluctuations at the probe of Fig. 2. NSCBC with 15 (left) and 31 (right) mesh

nodes. (Plain line: simulation, dash line: prediction (Eq.(37)) with |λK |). CFL number: 0.5 .

5.3. Further analysis

Accuracy of ABC terms It is interesting to focus now on the ABC terms and highlight why

they stabilize the calculations. A first reason is that these terms are clearly generated when a

characteristic analysis is used in the momentum equation. Using simply the continuity equation

and failing to identify waves as done in the Dirichlet method means that the acoustic wave

entering the domain through the wall (L+ in Eq (4)) is computed using downwind differencing

which is intrinsically unstable. Sections 5.1 and 5.2 essentially recover this expected unstable

behaviour. A second reason can be provided by expanding the ABC terms as follows:

−c
δρ

δn

∣
∣
∣
∣
x=0

= c
∂ρ

∂x

∣
∣
∣
∣
x=0

+
1

2
ch

∂2ρ

∂x2

∣
∣
∣
∣
x=0

+O(h2) (38)

−c
δρ

δn

∣
∣
∣
∣
x=L

= −c
∂ρ

∂x

∣
∣
∣
∣
x=L

+
1

2
ch

∂2ρ

∂x2

∣
∣
∣
∣
x=L

+O(h2) (39)

Eqs (38) and (39) shows that using these non-centered differences to express characteristic

waves L implies the addition of a diffusive term 1
2ch ∂2ρ

∂x2 in the continuity equation. This also

explains the origin of the stabilization induced by NSCBC.

The inner local order of accuracy is 2. Theoretically, even though boundary derivatives are
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STABILITY OF WALL BOUNDARY CONDITIONS 19

first-order accurate, the global convergence rate remains second-order [43]. The question is

then whether this additional term deteriorates the global accuracy of the calculation, as it is

also first-order accurate. Simulations, using 9, 11, 15, 31, 45 and 61 mesh nodes, have been

carried out to measure the global error on density:

L2(ǫρ) =

N∑

i=0

∣
∣ρi − ρexact(xi)

∣
∣
2

(40)

Figure 7 indicates that the L2-norm of the density error is close to 2, proving that the additional

term does not spoil the global accuracy of the scheme while ensuring stability.

!" !""
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./
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Figure 7. NSCBC method: order of convergence of L2-norm density error (40) with respect to space

discretization.

Higher-order boundary conditions A possible method to avoid problems described in the

previous section would be to have second-order accuracy at the boundaries to reduce

dissipation. Moreover, in the case of simulations using higher-order schemes (more than second-

order within the computational domain), the first-order numerical boundary scheme can spoil
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20 N. LAMARQUE ET AL.

the global accuracy of the method, which is not desirable even though robustness is ensured.

Indeed, dissipation introduced by ABC terms is then much too high at the walls and may

destroy the benefits of using a high-order scheme within the domain.

To determine the importance of wall BC versus inner domain scheme accuracy, the test case of

Figure 2 was run again using the same wall BC but a more precise numerical scheme within the

domain. The discretization is now a fourth-order accurate explicit centred scheme with fourth-

order accurate Runge-Kutta time marching method, together with NSCBC formulation and a

first-order numerical boundary scheme at the walls. Except for the numerical scheme, the test

case remains the same. While the inner discretization shows great accuracy, the dissipation of

the pressure signal is quite close to that obtained with TG2 scheme (Figure 6 - left). This test

confirms that the dissipation of the acoustic wave observed in Figure 6 - left or 8 is not due to

the inner scheme but mainly to the wall BC, highlighting the importance of wall treatment.

Figure 8. Pressure fluctuations at the probe of Fig. 2. Inner discretization: 4th-order explicit centred

scheme and NSCBC formulation with 1st-order numerical boundary scheme. CFL number: 0.5

An obvious solution to improve the results of Figure 6 - left or 8 is then to change the numerical
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STABILITY OF WALL BOUNDARY CONDITIONS 21

boundary scheme used for first spatial derivatives. For example, approximations (23) and (24)

can be respectively replaced by:

∂U

∂x

∣
∣
∣
∣
0

≈
1

2h
(−U2 + 4U1 − 3U0) and

∂U

∂n

∣
∣
∣
∣
0

= −
∂U

∂x

∣
∣
∣
∣
0

(41)

∂U

∂x

∣
∣
∣
∣
N

≈
1

2h
(3UN − 4UN−1 + UN−2) and

∂U

∂n

∣
∣
∣
∣
N

= +
∂U

∂x

∣
∣
∣
∣
N

(42)

As expected, the complete scheme is then much less dissipative (eigenvalues with modulus

closer to 1 - see Figure 9). Nevertheless, robustness is also shrunk: CFL number must be less

than 0.1, otherwise eigenvalues with modulus strictly greater than 1 appear in the spectrum

and numerical instabilities appear in the calculation.

Figure 9. Effect of high-order wall BC. Left: zoom on eigenvalues with modulus equal or close to 1.

Right: Predictions with |λK |. CFL number: 0.05

Indeed approximations (41) and (42) are second-order accurate, which implies that the first

diffusive term of the truncation error of ABC terms is now a fourth derivative (which is

proportional to h3). They are still dissipative and stabilizing (which remains an interesting

feature), though far less than approximations (38) - (39). Thus, while increasing the order of
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22 N. LAMARQUE ET AL.

accuracy of the numerical boundary scheme has limited interest for TG2 scheme ‖ , it should

be considered with care for higher-order methods.

6. A SIMPLE MULTIDIMENSIONAL EXAMPLE

In this section, the evolution of a simple 2D longitudinal / transversal acoustic mode in a

duct is presented as a demonstration of the stabilizing effect of the NSCBC method in a

multidimensional configuration.

6.1. Infinite duct

As an illustration, consider a propagating longitudinal acoustic mode (y-direction) with a

transverse structure (x-direction) in a duct, as shown on Figure 10.

Figure 10. Sketch of the two-dimensional duct problem. y-direction is periodic.

‖The gain of accuracy is sensible after a long time, but the scheme is not as stable and in the case of unstructured

grids, the numerical boundary scheme is complicated to express.
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STABILITY OF WALL BOUNDARY CONDITIONS 23

The solution of such an eigenmode is given by [32]:

p′(x, y, t) = p11 cos

(
πx

Lx

)

sin (kyy − ωt), (43)

u′(x, y, t) =
p11π

ρ̄Lxω
sin

(
πx

Lx

)

cos (kyy − ωt), (44)

v′(x, y, t) = −
p11ky

ρ̄ω
cos

(
πx

Lx

)

cos (kyy − ωt), (45)

(46)

with p11 a real constant, Lx the duct width , ky the wave number in direction y and ω = 2π/T

the frequency. Left and right boundaries are solid slipping walls handled with either Dirichlet

or characteristic methods. The computational domain Ω is periodic in direction y (infinite

duct), Ly = 2Lx and ky = kx = π. This choice of a periodic duct rather than a squared

cavity bordered with solid walls is motivated by the will to avoid corners, which could bias the

results and need special treatment [29]. Ω is discretized with regular P1 triangles (15 nodes in

x-direction, 28 in y-direction) and the numerical scheme is still TG2. CFL number is 0.5. The

initial condition is given by Eqs (43)-(45) with t = 0.

6.2. Results
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Figure 11. Pressure fluctuations at the probe of Fig. 10. Left: Dirichlet BC, right: characteristic BC.
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24 N. LAMARQUE ET AL.

Figure 11 gives a comparison between the pressure signal on a wall (Figure 10) for simulations

run with walls treated either with Dirichlet or characteristic BC. It is clear that the pressure

fluctuation diverge when Dirichlet BC are used, while it is damped when walls are handled

with characteristic BC.

Figure 12. Pressure fluctuation magnitude for t = 8T . Left: Dirichlet BC (white: 0, black: 0.93), right:

characteristic BC (white: 0, black: 0.88).

As shown on Figure 12, computations using either Dirichlet or characteristic wall BC give

quite similar pressure fluctuations for short times. The fields are close and there is only a little

difference in amplitude. Moreover, the two calculations fit the exact solution well, aside from

a little small phase error. For longer times, the physical sinusoidal solution is still retrieved

in the simulation with characteristic wall BC (there is obviously some phase error due to the

numerical scheme and spurious damping mainly because of the ABC term - see Figure 13 -
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right) and the computation is stable and safe from numerical instabilities. On the other hand,

the simulation with Dirichlet BC eventually suffer from a non-linear behaviour and strong

numerical instabilities that lead to its crash (Figure 13 - left).
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Figure 13. Pressure fluctuations at the probe of Fig. 10. Left: Dirichlet BC, on a longer span of time,

right: characteristic BC versus exact solution (zoom on the first 20 periods).

To sum things up, the conclusions drawn in the preceding sections with one-dimensional

analyses also holds in multidimensional studies: Dirichlet and characteristic BC are no more

equivalent as soon as the equations are discretized. While the first can provoke strong numerical

instabilities and may lead to the crash of simulations, the second have a stabilizing effect.

7. CONCLUSION

Building boundary conditions at walls in compressible simulation is a difficult topic if one

wants to obtain both robustness and limited dissipation. This paper provides a comparison

between two methods to treat solid walls in compressible flow simulations. The first is based

on Dirichlet (or Neumann) formulation, which consists in imposing a zero normal velocity

(or a zero pressure gradient) at the wall, while the second is based on characteristic wave
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decomposition (NSCBC method). Even though they are supposed to be physically equivalent,

they do not solve the same discretized equations. Theoretical analysis gives rise to additional

pressure terms in the continuity equation in the case of characteristic BC, called here ABC

terms. After discretization, it is shown that ABC terms have a stabilizing effect, which is a very

desirable property in non-linear simulations. Numerical calculations and amplification matrix

eigenvalues confirm the increased robustness of NSCBC formulation.

While it does not seem to be a serious issue, the stabilizing effect can be too strong when

dealing with higher-order methods because of the dissipation induced by ABC terms. In such

a case, higher-order approximations have to be considered, which is not a problem when the

mesh is structured but can be a harder task for unstructured meshes.

In terms of applications, these results show that Dirichlet methods at walls should not be used

in configurations where the acoustic damping of cavities is computed. These methods will lead

to wrong damping coefficients and sometimes to numerical instabilities. Using characteristic

formulation such as NSCBC leads to stable schemes but also to a dissipation level which is

controlled by the order of accuracy used for wall derivatives much more than by the precision

of the numerical scheme within the domain. This means that wall treatments will be very

important in such compressible flows.

APPENDIX

This section presents the terms of matrix Q for Dirichlet and NSCBC formulations. Solution

vector U ∈ R
2N+2 and is written:

U = (ρ0, u0, ρ1, u1, . . . , ρJ , uJ , . . . , ρN−1, uN−1, ρN , uN)T
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Let us decompose the matrix in three parts:

Q = Qc + Ql + Qr

where Qc is a square matrix for the discretization for degrees of freedom (u1, ρ2, . . . , ρN−2, uN−2, uN−1),

Ql and Qr are respectivelly containing the left and right numerical boundary schemes, with

BC.

Dirichlet BC

As u0 and uN are imposed to be zero, they are not degrees of freedom anymore. As

a consequence, the corresponding lines in vector U and matrix Q are suppressed, then

U ∈ R
2N and Q ∈ M2N (R). We give discretization for degrees of freedom (ρ0, ρ1, u1) and

(ρN−1, uN−1, ρN ). The other lines are completed with zeros. Then, using equations (20), (21),

(29) and (30) gives:

Ql =

















1 0 −
ρ̄∆t

h
0 ... ... ... 0

1
2

c2∆t2

h2
1− c2∆t2

h2
0 1

2
c2∆t2

h2
−

ρ̄∆t
2h

0 ... 0

c2

ρ̄
∆t
2h

0 1− c2∆t2

h2
− c2

ρ̄
∆t
2h

1

2

c2∆t2

h2
0 ... 0

0 ... ... ... ... ... ... 0

.. ... ... ... ... ... ... ...

0 ... ... ... ... ... ... 0

















and

Qr =

















0 ... ... ... ... ... ... 0

.. ... ... ... ... ... ... ...

0 ... ... ... ... ... ... 0

0 ... 0 1
2

c2∆t2

h2

ρ̄∆t
2h

1− c2∆t2

h2
0 1

2
c2∆t2

h2

0 ... 0 c2

ρ̄
∆t
2h

1

2

c2∆t2

h2 0 1− c2∆t2

h2 − c2

ρ̄
∆t
2h

0 ... ... ... ... 0 ρ̄∆t
h

1
















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NSCBC

The same method is used for NSCBC formulation. In this case, u0 and uN are given by

relations (32) and (34). Therefore, U ∈ R
2N+2 and Q ∈M2N+2(R). For this formulation, only

discretizations for unknowns (ρ0, u0) and (ρN , uN ) are stored in Ql and Qr. Using (31) and

(33) yields:

Ql =



















1− c∆t
h

ρ̄∆t
h

c∆t
h

− ρ̄∆t
h

0 ... ... ... ... 0

0 1 0 0 0 ... ... ... ... 0

0 ... ... ... ... ... ... ... ... 0

.. ... ... ... ... ... ... ... ... ...

0 ... ... ... ... ... ... ... ... 0



















Qr =



















0 ... ... ... ... ... ... ... ... 0

.. ... ... ... ... ... ... ... ... ...

0 ... ... ... ... ... ... ... ... 0

0 ... ... ... ... 0 c∆t
h

ρ̄∆t
h

1− c∆t
h

− ρ̄∆t
h

0 ... ... ... ... 0 0 0 0 1



















Matrix Qc

Matrix Qc has the size of Ql and Qr and is filled using (20) and (21), except for its first and

last lines∗∗ which contain only zeros (those corresponding to non-zero lines of Ql and Qr).

∗∗Dirichlet BC: the first and last three lines are zero; NSCBC: The first and last two lines are zero.
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Qc =

















0 ... ... ... ... ... ... ... ... 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 0 1
2

c2∆t2

h2

ρ̄∆t
2h

1− c2∆t2

h2
0 1

2
c2∆t2

h2
−

ρ̄∆t
2h

0 . . .

. . . 0 c2

ρ̄
∆t
2h

1
2

c2∆t2

h2
0 1− c2∆t2

h2
− c2

ρ̄
∆t
2h

1
2

c2∆t2

h2
0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 ... ... ... ... ... ... ... ... 0
















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