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Abstract

An eddy-viscosity based, subgrid-scale model for Large Eddy Simulations is derived from the

analysis of the singular values of the resolved velocity gradient tensor. The proposed σ-model

has by construction the property to automatically vanish as soon as the resolved field is either

two-dimensional or two-component, including the pure shear and solid rotation cases. In addition,

the model generates no subgrid-scale viscosity when the resolved scales are in pure axisymmetric

or isotropic contraction/expansion. At last, it is shown analytically that it has the appropriate

cubic behavior in the vicinity of solid boundaries without requiring any ad-hoc treatment. Results

for two classical test cases (decaying isotropic turbulence and periodic channel flow) obtained from

three different solvers with a variety of numerics (finite elements, finite differences or spectral

methods) are presented to illustrate the potential of this model. The results obtained with the

proposed model are systematically equivalent or slightly better than the results from the Dynamic

Smagorinsky model. Still, the σ-model has a low computational cost, is easy to implement and

does not require any homogeneous direction in space or time. It is thus anticipated that it has a

high potential for the computation of non-homogeneous, wall-bounded flows.

PACS numbers: 47.10.ad, 47.27.ep, 47.27.em, 47.27.N-

∗ Corresponding author. Electronic address: franck.nicoud@univ-montp2.fr
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I. INTRODUCTION

When dealing with Large Eddy Simulations (LES), the eddy-viscosity assumption is by

far the most used because it reduces the modeling effort considerably. In this view, the

subgrid-scale (SGS) tensor is written as (the implicit summation rule for repeated indices is

used throughout this paper):

τSGS
ij − 1

3
τSGS
kk δij = 2 ρ νSGS

(
S̃ij −

1

3
S̃kkδij

)
, (1)

where S̃ij =
1
2
(g̃ij + g̃ji) and g̃ij = ∂ũi/∂xj are respectively the strain and velocity gradient

tensors of the resolved scales. Note that the low pass filter used to define the resolved scales

from the total field, denoted by f and used to define the mass weighted filter f̃ = ρf/ρ, will

be omitted throughout this paper for simplicity. Equation 1 then reduces to:

τSGS
ij − 1

3
τSGS
kk δij = 2 ρ νSGS

(
Sij −

1

3
Skkδij

)
. (2)

From a simple dimensional analysis, it is natural to model the subgrid-scale viscosity as

νSGS = (Cm∆)2Dm(u), (3)

where Cm is the model constant, ∆ is the subgrid characteristic length scale (in practice the

size of the mesh), and Dm is a differential operator associated with the model, homogeneous

to a frequency and acting on the resolved velocity field u = (ui). The most classical operator

is by far the strain rate; this leads to the Smagorinsky model [1] for which Dm = Ds =
√

2SijSij and Cm = Cs ≈ 0.18. This operator is known for not vanishing in near-wall

regions. In the past, this major drawback motivated the use of damping functions [2],

the development of the dynamic procedure [3] and other improvements such as the shear-

improved Smagorinsky model [4] where the magnitude of the mean shear is assessed and

removed from the local shear. It is actually possible to build invariants which do not have this

drawback. Examples of such operators are used in the WALE (Wall Adapting Local Eddy

viscosity) [5] and Vreman’s models [6]. For these formulations, the differential operators

read respectively:

Dm = Dw =

(
Sd
ijSd

ij

)3/2

(SijSij)
5/2 +

(
Sd
ijSd

ij

)5/4 (4)

and

Dm = Dv =

√
G11G22 −G2

12 +G11G33 −G2
13 +G22G33 −G2

23

gijgij
, (5)
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where Gij = gkigkj and Sd
ij is the traceless symmetric part of the square of the velocity

gradient tensor:

Sd
ij =

1

2

(
g2ij + g2ji

)
− 1

3
g2kkδij , with g2ij = gikgkj.

Note that g is not symmetric so that G (of component gkigkj) and g2 (of component gikgkj)

are two distinct tensors. The interesting common property shared by these two operators

is that they generate zero SGS viscosity in the case of a pure shear. However, they both

do not vanish in the particular case of a solid rotation (see discussion in section IID). The

situation is the opposite for the Smagorinsky model which vanishes for pure rotation but

not for pure shear. Thus, none of these models is satisfying since one could expect that a

proper model generates zero SGS viscosity for both the pure shear and the solid rotation

cases.

Independently on the properties of the underlying differential operator, all the models

based on the eddy-viscosity assumption, Eq. (3), share the drawback that the model con-

stant Cm must be adapted to the mesh refinement so that the proper amount of energy is

drained from the resolved scales. This issue is well addressed by the introduction of the

dynamic procedure [3] that can automatically adapt the model constant. Besides, because

the existing static eddy-viscosity based models miss some desirable properties, many treat-

ments (connected or not to the dynamic procedure) have been proposed over the years in

order to improve their performances : one can cite among many others Porté-Agel et al.

[7] who proposed a double filtering procedure for removing the scale-invariance assumption

usually made for computing the model constant from the dynamic procedure; Hughes et al.

[8] who proposed the Variational Multi-Scale (VMS) methodology where only the smallest

resolved scales are directly affected by the SGS viscosity; Jeanmart and Winckelmans [9]

who proposed a regularized version of the VMS approach for use in the physical space and

Bricteux et al. [10] who subsequently used the WALE operator in order to obtain a Regular-

ized Variational Multiscale model with the proper near-wall behavior (RVM-WALE model);

Shi et al. [11] who added a constraint on the modeled SGS energy flux to better represent

the overall dissipation; Lodato et al. [12] who developed a scale similarity [13] version of the

WALE model, using ideas introduced originally to improve the Smagorisnky model [14].

Following the framework of Lilly [15], the model constant from the dynamic procedure is
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computed resorting to a least squares approach as :

(Cm∆)2 = − LijMij

2MijMij
, (6)

where Lij = ûi uj − ûi ûj is the (modified) Leonard term based on the grid-based filter

(which is omitted for clarity, ui = ũi) and test filter ·̂. In addition, Mij is directly related to

the differential operator of the underlying eddy-viscosity model and reads:

Mij =
∆̂2

∆2
D̂mŜij − D̂m Sij,

where ∆̂ stands for the test filter width. Unfortunately, the original dynamic procedure most

often requires some averaging in order to reduce the constant variability over space and time.

Several improved versions of the dynamic Smagorinsky model were proposed in order to make

it more robust and suitable for complex configurations where no homogeneous directions are

present [16, 17]. Still, a common practice when dealing with complex geometries is to apply

the least mean square formula over a small volume surrounding the current grid point and

to clip the remaining negative values of the dynamically computed constant. This means

replacing Eq. (6) by

(Cm∆)2 = max

[
− 〈LijMij〉loc
2 〈MijMij〉loc

, 0

]
, (7)

where 〈·〉loc stands for an integral taken over a small volume (typically a few grid cells)

surrounding the current grid point. Note that the model constant then depends on both

space and time.

The main motivation of the local dynamic procedure was to adapt the constant to com-

pensate the non-vanishing behavior of the Smagorinsky model in near-wall regions. Recently,

Ghorbaniasl & Lacor [18] proposed to extend the dynamic procedure to the WALE model.

However, Baya Toda et al. [19] reported that the combination of the classical dynamic pro-

cedure with any SGS model that has the proper near-wall cubic behavior leads to a paradox:

the underlying differential operator rapidly goes to zero near solid boundaries, which favors

unstable computations. For the sake of robustness while keeping an adaptation of the model

coefficient to the grid resolution and numerical errors, two concepts of global dynamic pro-

cedure emerged from the properties of the Vreman’s model. The first one is based on the

global equilibrium hypothesis [20] and was proposed by Park et al. [21] and later improved
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by You & Moin [22]. The second one, based on the Germano identity, was also proposed

in [21] and recently proved to be better suited for transient flows [23]. This global dynamic

procedure amounts to change Eq. (6) to:

(Cm∆)2 = − 〈LijMij〉dom
2 〈MijMij〉dom

, (8)

where 〈·〉dom stands for an averaging over the whole computational domain; the model con-

stant is then uniform over space by construction. It has the advantage of producing mostly

positive values for the dynamic constant, thus avoiding the clipping issue. The price to pay

is that the differential operator Dm must behave appropriately in basic flow configurations

because no compensation from the dynamic procedure can be expected (the constant of the

model is uniform over space). For example, such procedure is not expected to provide good

results if applied to the Smagorinsky model since the eddy-viscosity would then not vanish

near solid walls. The differential operators used in the WALE and Vreman models are not

very appropriate either. For example, it can be shown analytically that the latter is linear

with respect to the distance to solid boundaries instead of having a cubic behavior in near-

wall regions. Also, they both produce non zero eddy-viscosity in simple flow configurations

such as solid rotation.

From the previous discussion, Large Eddy Simulations of complex flows would benefit

from the knowledge of a static SGS model with better intrinsic properties than existing

formulations. Such model could be used either directly or as a first step for subsequent

improvements based on the scale similarity concept, the Variational Multi-Scale framework

or a (global) dynamic procedure. The objective of this paper is to propose such a static,

eddy-viscosity model with improved properties. The differential operator which is used to

define this model is described in section II where analytical developments are provided in

order to establish the unique properties met by the proposed static SGS model. Numerical

results for decaying isotropic turbulence and a periodic channel flow are shown in section

III in order to illustrate the potential of the model.

II. A SINGULAR VALUES BASED MODEL

It would be a difficult task to establish a definite list of the desirable properties that an

improved differential operator should meet. One can however draw up a set of properties
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based on basic practical/physical considerations. Similar to the Smagorinsky, WALE and

Vreman’s models, the operator should be defined locally, involving only local gradients of

the resolved velocity field. Such property is useful both in terms of implementation in

general purpose LES solvers and in terms of physical interpretation of the results. Any non-

local effect would most probably require the computation of two-point correlations which

are not easy to compute in complex flows. Moreover, it is desirable that the differential

operator generates only positive values. Although negative values can be justified from a

physical point of view by referring to the backscatter phenomenon, positiveness is required

in this study for stability reasons. This choice was made after the observation that the local

dynamic procedure, which may lead to negative SGS viscosity, Eq. (6), suffers from stability

issues in complex flow configurations where averaging over homogeneous directions is not

an option. Besides, it is commonly accepted that the main objective of any (eddy-viscosity

based) SGS model is to drain the proper overall amount of kinetic energy from the resolved

velocity scales. To this end, a positive eddy-viscosity is most probably appropriate. In what

follows, positiveness and locality will be collectively referred to as Property P0.

Similar to the WALE and Vreman’s models, the differential operator should tend to zero

in near-wall regions in order to mimic the turbulence damping due to the no-slip condition.

It can be shown that the turbulent stress, thus the eddy-viscosity and the differential oper-

ator, should decay as the distance to the solid boundary to the third power [24] [Property

P1]. At the same time, it should vanish in the case of a flow in solid rotation, like the

Smagorinsky model, and in the case of a pure shear, like the WALE and Vreman models.

More generally, the improved differential operator should be zero for any two-dimensional

(2D) and/or two-component (2C) flows, where no subgrid scale activity is expected to occur

[Property P2]. Indeed, although two-dimensional turbulence has been evidenced exper-

imentally and numerically [25], it is a phenomenon of fundamental interest that “might

[...] be viewed as just a toy model” [26]. Given that two- and three-dimensional turbu-

lence are fundamentally different because of the absence of the vortex-stretching term in

the former, it seems appropriate to make sure that any SGS model for three-dimensional

turbulence switches off in the two-dimensional case. The alternative would be to switch to

a SGS model appropriate for two-dimensional turbulence. Still, given the very little prob-

ability that a three-dimensional computation of a two-dimensional turbulent flow remains

two-dimensional without any external action to maintain its two-dimensionality, this choice
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Property name Short Description

P0 a positive quantity which involves only locally defined velocity gradients

P1 cubic behavior near solid boundaries

P2 zero for any two-component or two-dimensional flows

P3 zero for axisymmetric or isotropic expansion/contraction

TABLE I. Desirable properties for an improved SGS viscosity model. In the case of a static model,

these properties should be met by the differential operator (Dm) the model is based on.

is not made in this paper. Another way to justify property P2 is to argue that 2D or 2C

resolved scales are not compatible with a subgrid-scale activity. Indeed, since the smallest

resolved scales interact with subgrid scales which are presumably random-like and 3D/3C,

they cannot remain 2D or 2C in the long run. The same reasoning leads to the conclusion

that the SGS viscosity should be zero in the case where the resolved scales are either in

pure axisymmetric or isotropic expansion (or contraction) [Property P3]. The former case

corresponds to the situation of a laminar round jet impinging on a solid plate for which tur-

bulent effect should indeed not be present. The latter is representative of the velocity field

near an acoustic monopole or a spherical premixed flame, which again are not phenomena

of turbulent nature. The desirable properties are recalled in Table I. Since they do not

come from any mathematical theory of turbulence or fluid mechanics, we do not claim that

they constitute a set of necessary and sufficient conditions that any SGS model should meet.

Still, they seem desirable from a physical/numerical point of view as discussed above.

A. Meeting Properties P2-P3

Analyzing the spectral content of the velocity gradient tensor proves to be a proper

framework to investigate how these properties can be met by a single differential operator.

For example, the fact that one of the eigenvalues of g is zero would indicate that the flow

is locally either 2D or 2C. Note, however, that the eigenvalues of g can be complex-valued

in number of flow configurations (in the case of a solid rotation, for example). Using these

quantities directly to build the differential operator Dm would thus not be very convenient.

One way to avoid this difficulty is to consider the strain rate tensor instead of g. In this
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case, the three eigenvalues are real-valued, although their sign is not known a priori. This

route was explored recently [27, 28]. In the present study, one relies on the singular values

of g to build an improved differential operator for the SGS eddy viscosity. Specifically, let

us introduce σ1 ≥ σ2 ≥ σ3 ≥ 0, the three singular values of g = (gij). As discussed in the

appendix, these quantities can be computed at moderate computational cost by different

means. By definition, these values are always positive and equal the square root of the

eigenvalues of the matrix G = gtg, where the superscript t denotes matrix transposition

(these eigenvalues are always positive because G is symmetric semi-definite positive). The

smallest singular value, σ3, is null if and only if one row or column of g is zero up to a

rotation of the coordinate system. In other words, σ3 = 0 is a marker for two-dimensional

and/or two-component flows, and any operator proportional to this singular value would

meet property P2. Similarly, the knowledge of the singular values of g helps to detect the

case where the resolved velocity field is in axisymmetric contraction or expansion. Indeed,

an appropriate rotation of the coordinate system then makes the velocity gradient tensor

diagonal:

g = diag (β,−α,−α), (9)

where α is positive for a contraction and negative for an expansion. Depending on the

relative values of the parameters α and β, the singular values of g read either σ1 = |β| >
σ2 = σ3 = |α| or σ3 = |β| < σ1 = σ2 = |α|. In other words, the marker for such flow

situations is either σ2 = σ3 or σ1 = σ2. Thus, any differential operator proportional to

(σ1 − σ2)(σ2 − σ3) would be zero as soon as the resolved velocity field is in axisymmetric

contraction/expansion. The same operator would also be zero for any isotropic configuration

since this situation corresponds to σ1 = σ2 = σ3. At the end, such operator would meet

property P3. Note that the divergence-free assumption was not made to obtain the above

results (β not necessarily equal to 2α).

B. Near wall behavior

From the above analysis, a differential operator proportional to σ3(σ1−σ2)(σ2−σ3) would

meet both properties P2 and P3. It is now time to investigate whether property P1 is also

met. This requires analyzing the asymptotic behavior of the singular values in the vicinity

of a solid boundary. Without loss of generality, one may decide that this boundary is located
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within the (x1, x3)=(x, z) plane; the normal direction to this boundary then coincides with

the x2 = y direction. Using Taylor expansions of the resolved velocity components (recall

ui must be understood as ũi):

u1 = ay +O(y2),

u2 = by2 +O(y3), (10)

u3 = cy +O(y2)

leads to the following expression for the velocity gradient tensor:

g =




axy +O(y2) a +O(y) azy +O(y2)

bxy
2 +O(y3) 2by +O(y2) bzy

2 +O(y3)

cxy +O(y2) c+O(y) czy +O(y2)


 (11)

In these expressions, O(yp) denotes a term of order p which behaves like yp when the distance

to the solid boundary vanishes, y −→ 0. Moreover, subscripts denote partial derivatives (e.g.:

ax = ∂a/∂x). For sake of simplicity, the first order term in the expansion of the wall normal

velocity component has been zeroed. From the continuity equation, the coefficient of the

neglected linear term equals
1

ρ

∂ρ

∂t

∣∣∣∣
y=0

since the no-slip condition imposes ∂u1/∂x = ∂u3/∂z = 0 at y = 0. This writing is thus

strictly valid in the incompressible case and most probably well justified for flows bounded

by walls submitted to stationary isothermal conditions and/or for compressible flows in the

low subsonic regime.

By definition, the singular values of g are the square roots of the eigenvalues of G = gtg.

Denoting by λ1 ≥ λ2 ≥ λ3 ≥ 0 these eigenvalues, they are the roots of the characteristic

polynomial of G:

P (λ) = −λ3 + I1λ
2 − I2λ+ I3, (12)

where the coefficients read:

I1 = tr(G),

I2 =
1

2

(
tr(G)2 − tr(G2)

)
, (13)

I3 = det(G),
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with tr() and det() denoting the trace and the determinant of a tensor. A classical result

of linear algebra is that the coefficients of Eq. (12) are tensorial invariants (they keep the

same values in every coordinate system). In particular, they can be assessed either in the

(x, y, z) coordinate system where G reads:

G =




(a2x + c2x)y
2 +O(y3) (aax + ccx)y +O(y2) (axaz + cxcz)y

2 +O(y3)

(aax + ccx)y +O(y2) (a2 + c2) +O(y) (aaz + ccz)y +O(y2)

(axaz + cxcz)y
2 +O(y3) (aaz + ccz)y +O(y2) (a2z + c2z)y

2 +O(y3)


 (14)

or in the principal axis where G is simply:.

G =




λ1

λ2

λ3


 (15)

In this latter case, the invariants are given by:

I1 = λ1 + λ2 + λ3,

I2 = λ1λ2 + λ1λ3 + λ2λ3, (16)

I3 = λ1λ2λ3.

Then, using Eq. (13) to calculate the same invariants from Eq. (14) allows obtaining the

following estimates:

λ1 + λ2 + λ3 = O(y0),

λ1λ2 + λ1λ3 + λ2λ3 = O(y2), (17)

λ1λ2λ3 = O(y6).

A rapid examination of Eq. (14) may lead to the erroneous conclusion that the determinant

of G should be of order y4 instead of y6 as reported in Eq. (17). Actually, it can readily be

shown that the y4 and y5 terms in the Taylor expansion of det(G) are exactly zero. Since

G = gtg and det(G) = det(g)× det(g), the 6th order behavior reported in Eq. (17) is also

consistent with the estimate det(g) = O(y3) which comes directly from Eq. (11). With the

convention λ1 ≥ λ2 ≥ λ3, the first equality in Eq. (17) imposes that λ1 = O(y0) and the

second and third rows imply:

λ2 + λ3 + λ2λ3 = O(y2),

λ2λ3 = O(y6). (18)
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Injecting the second row of Eq. (18) into the first implies λ2 + λ3 = O(y2) which imposes

λ2 = O(y2) since λ2 ≥ λ3 by convention. At last, the second row of Eq. (18) then leads to

λ3 = O(y4). Eventually, since the singular values of g are the square roots of the λ’s, one

obtains the following estimates in the near wall region:

σ1 = O(y0),

σ2 = O(y1), (19)

σ3 = O(y2)

C. The σ-model

Eqs. 19 indicate that the product σ3(σ1 − σ2)(σ2 − σ3) selected to meet properties P2

and P3 is of order O(y3) near solid boundaries and thus meets property P1. The derivation

of the differential operator is finished by choosing a scaling factor so that a frequency scale

is obtained. A natural choice is the use of the largest singular value σ1, which is nothing

but the norm of g, and which would not change the asymptotic behavior of the ratio since

of order y0. Finally, the proposed differential operator and related SGS model read

Dσ =
σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

,

(20)

νSGS = (Cσ∆)2Dσ

Since the three singular values are ordered such that σ1 ≥ σ2 ≥ σ3 ≥ 0, this model is

positive by construction. Besides, it involves only combinations of the locally defined velocity

gradient tensor and thus meets property P0. It will be referred to as the σ-model in the

remaining of this paper.

D. Discussion

Table II summarizes the properties of different differential operators and associated mod-

els. From Eqs. 5 and 13, one may note that the Vreman’s model is proportional to
√
I2.

Recalling that I2, the second invariant of G, is quadratic in y (see Eq. 17), the asymptotic

behavior of the Vreman’s model is linear in y instead of being cubic. Thus, only the WALE

and σ models comply with property P1 (as well as any model based on the corresponding
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differential operator, e.g. the RVM-WALE model of [10]). Note however that the first order

behavior of the Vreman’s model is enough to make it more suitable for wall-bounded flows

than the Smagorinsky model for which the eddy-viscosity does not tend to zero because

Ds = O(y0). Table II also shows that the σ-model meets properties P2-P3, contrary to

the other formulations which all fail at some point. It also shares with the three other

models the property to involve only locally defined velocity gradients and is thus easy to

implement in any general purpose LES solver. For the Smagorinsky model, it is possible

to obtain an asymptotic value of the Cs constant by assuming an isotropic homogeneous

turbulence at infinite Reynolds number and a grid-cutoff lying into the inertial range. Lilly

[29] then found Cs = (2/3CK)
3/4 /π which leads to Cs ≈ 0.165 if assuming the CK ≈ 1.6

for the Kolmogorov constant. Unfortunately, such theoretical analysis cannot be conducted

for the other SGS models and the model constants are usually obtained from numerical

experiments. The value reported for the model constant, Cσ ≈ 1.35, is a rough assessment

generated by equating the averaged SGS dissipation obtained by feeding the Smagorinsky

model and Eq. (20) with a large sample of random velocity gradient tensors. Interestingly,

this crude random procedure used to provide a first assessment of Cσ leads to fair estimates

of the WALE and Vreman’s constants [Cw ≈ 0.57 and Cv ≈ 0.26, to be compared with the

values recommended by Nicoud and Ducros [5] and Vreman [6] and reported in Table II].

Besides, computations of decaying isotropic turbulence confirm this value, as discussed in

section III.

III. NUMERICAL EXPERIMENTS

Two academic configurations were considered in order to test the capability of the pro-

posed SGS model, namely the decaying isotropic turbulence case and the periodic channel

flow. In each case, LES results are compared to either experimental or Direct Numerical

Simulation (DNS) data. For the channel flow case, the σ-model was also benchmarked

against the dynamic Smagorinsky model. At last, in order to make sure that the conclu-

sions drawn in terms of SGS model potential do not depend on a specific numerical method,

different solvers were used during the course of this study. The three solvers considered are

the following:
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Model Smagorinsky WALE Vreman σ-model

[1] [5] [6] Present

Operator
√

2SijSij Eq. (4) Eq. (5) Eq. (20)

Model constant Cs ≈ 0.165 Cw ≈ 0.50 Cv ≈ 0.28 Cσ ≈ 1.35

P0 YES YES YES YES

Asymptotic O(y0) O(y3) O(y) O(y3)

P1 NO YES NO YES

Solid rotation 0 ≈ 0.90 ≈ 0.71 0

Pure shear 1 0 0 0

P2 NO NO NO YES

Axisymmetric ≈ 3.46 ≈ 0.15 ≈ 1.22 0

Isotropic ≈ 2.45 0 1 0

P3 NO NO NO YES

TABLE II. Properties of the SGS models considered. Labels Axisymmetric and Isotropic refer to

axisymmetric and isotropic contraction/expansion respectively. The numerical entries in the P2

and P3 blocks are the values taken by the differential operators when all the velocity derivatives

are zero except: Solid rotation: du1/dx2 = −1 and du2/dx1 = 1; Pure shear: du1/dx2 = 1;

Axisymmetric: du1/dx1 = ±2, du2/dx2 = ∓1, du3/dx3 = ∓1; Isotropic: du1/dx1 = ±1, du2/dx2 =

±1, du3/dx3 = ±1

• Solver A: The general purpose AVBP code developed at CERFACS and IFP Energies

Nouvelles solves the compressible Navier-Stokes equations. It is based on a cell-vertex

formulation and embeds a set of finite element/ finite volume schemes for unstruc-

tured meshes [30, 31]; its efficiency and accuracy have been widely demonstrated for

flow configurations with [32] or without [33] chemical reaction. In the present study a

centered Galerkin finite element method (4th order in space) with a 3rd order Runge-

Kutta temporal integration is retained for the investigation of two configurations: the

decaying isotropic turbulence from the Comte-Bellot & Corrsin[34] (CBC) experiment

and a periodic turbulent channel flow at low subsonic Mach number. These flows

were computed with the Dynamic Smagorinsky model and the present static σ-model.
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The dynamic procedure was applied locally, without averaging over homogeneous di-

rections. Negative values of the dynamically tuned constant were clipped to ensure

stability (see Eq. 7).

• Solver B: a finite difference code dedicated to the computation of turbulent channels

and developed at the Center for Turbulence Research. It is based on a kinetic energy

conserving, 4th order scheme in space as proposed by Morinishi et al. (1998)[35]. A

3rd order Runge-Kutta scheme is used for the time integration, except for the diffusion

terms in the direction normal to the wall that are integrated thanks to an Crank-

Nicholson scheme. The divergence-free condition is met by a projection scheme. It

was used to compute a periodic turbulent channel flow case with both the dynamic

Smagorinsky model and the present static σ-model. Note that contrary to the imple-

mentation used in the general purpose AVBP solver, the dynamic procedure is not

applied locally in this case. Instead, the Smagorinsky constant is computed as

(Cs∆)2 = −
〈LijMij〉plane
2 〈MijMij〉plane

, (21)

where 〈·〉plane stands for an integral taken over homogeneous planes parallel to the

walls of the channel. This avoids clipping while keeping the favorable dependence of

the model constant on the distance to the solid boundaries.

• Solver C: a dealiased spectral code developed at Seoul National University [23]. It

is based on a 2nd order semi-implicit scheme for time integration: diffusion terms are

treated implicitly using the Crank-Nicolson method, and a 3rd order Runge-Kutta

scheme is applied to convection terms. The decaying isotropic turbulence from the

Comte-Bellot & Corrsin [34] and the Kang et al.[36] experiments were computed with

a dynamic version of the σ-model. The Germano-based global dynamic procedure

[21, 23] was used (see Eq. 8), meaning that a single-model constant was computed for

the whole domain at each time step. The divergence-free initial field was generated

using an appropriate re-scaling method [36].

Note that the σ-model was implemented in other solvers [37], including another general

purpose LES solver developed at the CORIA lab (Rouen, France) and a pseudo-spectral

solver developed at the LEGI lab (Grenoble, France). Only results from the three solvers

15



Solver A Solver B Solver C

Key reference [30, 31] [35] [23]

Spatial

scheme

- Fourth-order Galerkin

- finite element/finite

volume

- Fourth-order

- kinetic energy

conserving

- finite differences

- Dealiased spectral

Time

integration

- RK - RK

- CN for diffusion

(wall normal)

- RK

- CN for diffusion

Dynamic

procedure

- local averaging

- clipping required

- Eq. (7)

- plane averaging

- clipping optional

- Eq. (21)

- global averaging

- no clipping

- Eq. (8)

TABLE III. Properties of the solvers A, B and C used to compute the academic cases considered.

RK: Third-order Runge-Kutta. CN: Second-order Crank-Nicolson

A-C described above are shown in this paper for sake of simplicity and because the same

trends were observed independently on the numerical tools. The main characteristics of the

solvers used in the following are gathered in Table III.

A. Isotropic decaying turbulence

We first validate the behavior of the σ-model for the simple case of a freely decaying

isotropic homogeneous turbulence. The experiment by Comte-Bellot & Corrsin [34] on

decaying turbulence behind a grid is simulated first, where the mesh size of the grid tur-

bulence is M = 5.08 × 10−2 m and the free-stream velocity is U0 = 10 m/s. The Taylor

micro-scale Reynolds number is Rλ = urmsλ/ν = 71.6 at time tU0/M = 42 and decreases

to 60.6 at tU0/M = 171. In a reference frame moving with the average flow velocity the
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problem can be thought of as freely decaying isotropic turbulence. We model this by con-

sidering the fluid to be inside a cube-shaped box with periodic boundary conditions and

size (11M)3. The flow was first computed with the general purpose code AVBP (Solver A),

where the static σ-model was implemented. Several values of the model constant were tested,

Cσ = 1.3; 1.4; 1.5; 1.6; 1.7, for two grid resolutions, namely 483 and 643. The corresponding

computational mesh size-to-Kolmogorov length scale ratio ∆/η are 40 and 30 respectively.

The computations are initialized with a synthetic turbulent field whose energy spectrum is

the experimental one at reduced time tU0/M = 42. The time evolutions of the resolved

kinetic energy obtained from the 10 simulations (two grid resolutions and 5 constant values)

are shown in Figure 1. For the 643 grid resolution, the best agreement with experimental

data at times tU0/M = 98 and tU0/M = 171 is obtained for Cσ ≈ 1.5 whereas a larger value,

in the range 1.6−1.7 seems more adequate for the 483 case. Note that the dependency of the

model constant on the grid resolution is a common drawback of all static SGS models (and

to a less extend of dynamic models when using very coarse grids) and is not specific to the

σ-model (see Cocle et al. [38] for a detailed discussion on the dependence of several model

constants on ∆/η). Note also that the increase of the model constant with the increase of

the ∆/η ratio is coherent with previous studies [38, 39]. Figure 2 (top plot) shows that the

computed spectra obtained for Cσ = 1.5 and the 643 grid resolution are in fair agreement

with the experimental data. The biggest differences are obtained for the smallest scales;

they are most probably due the large numerical errors that characterize finite volume/finite

element methods for large wave numbers. To confirm this statement, an additional compu-

tation was performed with the spectral Solver C. As shown in Figure 2 (bottom plot), the

agreement with the experimental spectra is now very good even for the smallest resolved

scales, although the grid resolution was even coarser (323, ∆/η ≈ 60). Note that the global

dynamic σ-model was used in this case, as another mean to establish the appropriate Cσ

value. More precisely, the global dynamic procedure based on the Germano identity and

proposed by Park et al.[21] and Lee et al.[23] was used in order to compute the constant

value (homogeneous in space) at each time step. The time evolution of the dynamically

tuned constant is displayed in Figure 3. Because an appropriate re-scaling method [36] was

used to generate the initial velocity field at time tU0/M = 42, there is no strong variations

of the computed constant during the first instants of the simulation. Moreover, the range of

variation of the constant throughout the computation is roughly 1.4-1.7, consistently with
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the value suggested by the computations performed with Solver A (fig. 1). To further sup-

port this result and make sure that the σ-model can handle demanding LES (with larger ∆/η

ratio and Reynolds number), the isotropic decaying turbulence of Kang et al.[36] was also

simulated. In this case, the mesh size of the experimental grid turbulence is M = 0.152 m

and the free-stream velocity is U0 = 11.2 m/s. The Taylor micro-scale Reynolds number is

Rλ = 716 at location x/M = 20 (or time tU0/M = 20) and decreases to 626 at x/M = 48

(or tU0/M = 48). Solver C was used to solve the flow equations in a computational domain

of size (33.7M)3 at grid resolution 1283; this corresponds to a ∆/η ≈ 360. This computation

is thus substantially more challenging than the 323 Comte-Bellot & Corrsin case in terms of

SGS modeling, with a Reynolds number and ∆/η ratio 10 and 6 times larger respectively.

The corresponding time evolution of the dynamically tuned constant is also displayed in

Figure 3; it is found to be smaller in this case, close to 1.35. Given the large values of

the Reynolds number and ∆/η ratio, it is fair to consider this later value as close to the

asymptotic [38] Cσ value to be used for demanding LES (∆/η > 100) of fully turbulent

flows; as a matter of fact, Cσ ≈ 1.35 is also the value obtained from the random procedure

used in section IID (see Table II).

Despite a larger ∆/η ratio, this value is smaller than the range of values obtained from

the Comte-Bellot & Corrsin case at 323 grid resolution (1.4−1.7). Contrary to what may be

erroneously concluded, this behavior is not contradictory with the expected increase [38, 39]

of the model constant for increasing ∆/η. Instead, the observed decrease is most probably

due to small values taken by the L/∆ ratio, where L = k3/2/ǫ is the integral length scale

based on the total turbulent kinetic energy k and its dissipation ǫ. Recall that the constant

of the Smagorinsky model increases strongly with L/∆ when the latter is in the low range,

L/∆ < 10 say [40, 41]; the same trend is expected to hold for any eddy-viscosity based

subgrid-scale model, although the critical value of L/∆ above which the model constant

becomes independent on this ratio may change from one model to the other. Now, given

that L/∆ is only 2.6 for the 323 Comte-Bellot & Corrsin case while it reaches 13.4 for the case

of Kang et al. with 1283 grid resolution, it is expected that the model constant significantly

varies due to L/∆ when going from the Comte-Bellot & Corrsin to the Kang’s case. In other

words, the observed decrease of Cσ most probably results from the ∆/η effect being offset

by the L/∆ influence.

The computed spectra at time tU0/M = 30, 40 and 48 are shown in figure 4 together
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FIG. 1. Time evolutions of the scaled kinetic energy for the freely decaying isotropic turbulence

corresponding to the Comte-Bellot & Corrsin [34] experiment. All computations performed with

the general purpose solver AVBP (Solver A) and the σ-model with Cσ = 1.3 ( ); Cσ = 1.4

( ); Cσ = 1.5 ( ); Cσ = 1.6 ( ); Cσ = 1.7 ( );. Symbols are experimental

measurements corresponding to the three-dimensionless times tU0/M = 42, 98 and 171. Top: 483

grid resolution. Bottom: 643 grid resolution.

with the experimental data [36]. The overall agreement is again quite good for most of the

wavenumbers. The energy rise near the largest wavenumber is a well-known behavior for

approaches where the same eddy-viscosity is applied to the whole range of scales and has

motivated the development of spectral eddy viscosity [42] and multiscale [8, 9] models. From

all the results presented in this section, it is fair to propose 1.3− 1.5 as a reasonable range

of values for the Cσ constant of the σ-model (Eq. 20).
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FIG. 2. Time evolutions of energy spectra for the freely decaying isotropic turbulence corresponding

to the Comte-Bellot & Corrsin [34] experiment. Symbols are experimental measurements corre-

sponding to the three-dimensionless times tU0/M = 42, 98 and 171. Top: Results from the general

purpose solver AVBP (Solver A) with grid resolution 643 and Cσ = 1.5. Bottom: Results from

a spectral method (Solver C) with grid resolution 323 and a global dynamic procedure applied to

the σ-model.

B. Turbulent Channel flow

The performance of the static σ-model for wall-bounded flows was investigated by com-

puting LES of turbulent channel flows at friction Reynolds number Rτ = 395 and 590. As

usual, Rτ = uτh/ν with uτ being the friction velocity, h the channel half-height and ν the

molecular kinematic viscosity. Two different solvers were used for studying the channel flow

configuration, namely solvers A and B (see Table III). For sake of simplicity, only results
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FIG. 3. Time evolution of model constant for the freely decaying isotropic turbulence corresponding

to the Comte-Bellot & Corrsin (CBC) [34] and Kang et al.[36] experiments. The computation is

based on a spectral method (Solver C) and a global dynamic version of the σ-model. Grid resolution

is 323 and 1283 respectively.
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FIG. 4. Time evolutions of energy spectra for the freely decaying isotropic turbulence corresponding

to the Kang et al.[36] experiment. Symbols are experimental measurements corresponding to the

three-dimensionless times tU0/M = 20, 30, 40 and 48. Results are from the spectral Solver C with

grid resolution 1283 and a global dynamic procedure applied to the σ-model.

from Solver A at Rτ = 395 and from Solver B at Rτ = 590 are discussed in the following.

Classical values for the size of the computational domain and the grid resolution have been

used, as reported in Table IV. Note however that the grid resolution is only marginal for

the 590 case, especially in the spanwise direction: ∆z+ ≈ 30 while 20 wall units would

be more appropriate for a fair representation of the near-wall elongated structures with a
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Rτ Solver Lx Ly Lz Nx Ny Nz ∆x+ ∆y+ ∆z+

395 A 3.5 2 1.3 30 138 50 48 1− 17 10

590 B 6.3 2 3.1 64 64 64 58 0.7 − 50 29

TABLE IV. Properties of the channel flow cases. Lx, Ly and Lz stand for the size of the com-

putational domain in the streamwise, normalwise and spanwise directions and are scaled by the

channel half-height h; Nx, Ny and Nz are the corresponding number of grid cells. Grid spacings

are given in classical wall units; the mesh is stretched in the y-direction to increase resolution in

the near wall regions. Rτ stands for the friction Reynolds number based on the friction velocity

and channel half-height.

fourth-order scheme as in Solver B. Additional computations with twice finer spanwise res-

olution (∆z+ ≈ 15) with or without refinement in the streamwise direction were performed.

The corresponding results (not shown) confirm the good behavior of the σ-model which will

be illustrated in the remaining of this section. Besides, in order to properly represent the

steep gradients in the viscous and buffer layers, the mesh is stretched in the wall normal

direction by using either a geometric progression with common ratio close to 1.04 (Solver

A) or an hyperbolic tangent law with stretching parameter close to 2.9 (Solver B). At last,

the ∆2 term in the eddy-viscosity, Eq. (3), was computed as the 2/3-power of the local cell

volume. In all cases, statistics were accumulated over more than 10 diffusion times h/uτ and

their convergence was checked by looking at the symmetry of the profiles over the channel

height. In each case, the results from the σ-model with Cσ = 1.5 were compared with the

(filtered) DNS data from Moser et al.[43]. They were also compared to the results from an

implementation of the dynamic Smagorinsky model, as available in each solver (see Table

III).

All the LES mean velocity profiles are in good agreement with the reference data from

the available DNS, as displayed in Fig. 5. The largest difference is obtained for the Rτ = 395

case computed with solver A and the dynamic Smagorinsky model. This is most probably

due to the fact that the Germano identity is applied locally in this general purpose solver

(see Table III). To ensure numerical stability, it is then necessary to clip the negative values

obtained for the SGS viscosity, using Eq. (7). A closer look at this computation shows that

the clipping process is activated for approximately one-third of the constant computations.
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It is then not surprising that the overall quality of the results degrades, as observed in

Figure 5. On the other hand, when the dynamic procedure is applied planewise, accounting

for the homogeneous directions in the channel flow configuration, the clipping operation is

virtually never activated. Consistently, the results from the dynamic Smagorinsky model

as implemented in the dedicated solver B (Rτ = 590 case) are in very good agreement

with the filtered DNS data. Because the σ-model is positive and has the proper near wall

behavior, it requires no clipping and the corresponding results are good in both cases. This

point is confirmed by Figure 6 which displays the velocity fluctuations. Surprisingly, the

situation is opposite to Figure 5, with the overall agreement being better for the Rτ = 395

case. Some kind of modeling/numerical error compensation might be the reason why the

dynamic Smagorinsky implementation of solver A gives better results in terms of rms than

mean velocity. Interactions between different sources of errors are expected to occur in

LES but are out of the scope of this paper. On the other hand, results from the σ-model

(Rτ = 395) are just as good as for the mean velocity profile. As far as the Rτ = 590 case

is concerned, discrepancies with the filtered DNS data are larger, especially for the rms

velocity in the streamwise direction for which the two models considered give equivalent

results. Note however that the σ-model leads to some improvement in the profiles of the

spanwise and wall normal velocity fluctuations. As expected, a clear improvement was also

observed when using a finer mesh in the spanwise direction (∆z+ ≈ 15 instead of 29 in

Fig. 6). The maximum of streamwise rms velocity in then approx. 2.8 wall units, in better

agreement with the DNS data (the maximum is approx. 3.1 for ∆z+ = 29 against 2.7 for

the filtered DNS, see Fig. 6).

It is often accepted that the asymptotic behavior of the SGS viscosity in near wall regions

is an important factor when dealing with wall resolved LES. Thus, the different computa-

tions were post-processed and the resulting behaviors plotted in Fig. 7. The theoretical

behavior of the σ-model near solid boundaries (νSGS = O(y3)) is well retrieved numerically.

Note that the amount of SGS eddy-viscosity is not negligible in front of the molecular vis-

cosity, at least in the core region. This reflects the fact that the grid resolution is far from

what is required to perform DNSs of the same flows (see Table IV). This is illustrated by the

no-model calculation performed in the Rτ = 590 case (see figure 5) which shows measurable

(although not huge) error compared to the σ-model result (the no-model velocity profile

being roughly 5 % smaller than the filtered DNS profile over most of the channel height).
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FIG. 5. Mean velocity profile from the static σ-model ( ) and the dynamic Smagorinsky model

( ). Symbols correspond to the filtered DNS data [43]. Top: Results from the general purpose

solver AVBP (Solver A) at Rτ = 395. Bottom: Results from the channel code (Solver B) at

Rτ = 590. A no-model simulation ( ) is also shown in this latter case.

Another indication of the effectiveness of the SGS contribution is that the no-model com-

putation proved unstable with Solver A which is not kinetic energy conserving, contrary

to Solver B. Figure 7 also illustrates that the proper asymptotic behavior is obtained with

the dynamic Smagorinsky model only when the plane-wise procedure (Eq. 21) is applied,

as for the case Rτ = 590 and Solver B. Recall that this procedure can be used only for

simple cases with homogeneous directions. Conversely, the asymptotic behavior is built in

the σ-model’s differential operator itself and no specific dynamic procedure/homogeneous

directions is required.
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FIG. 6. Velocity fluctuations (rms) from the static σ-model ( ) and the dynamic Smagorinsky

model ( ). Symbols correspond to the filtered DNS data [43]. Top: Results from the general

purpose solver AVBP (Solver A) at Rτ = 395. Bottom: Results from the channel code (Solver B)

at Rτ = 590.

IV. CONCLUSIONS

A differential operator based on the singular values of the velocity gradient tensor is pro-

posed as a basis for an improved SGS eddy-viscosity model. It is shown that the proposed

static σ-model generates zero eddy-viscosity for any two-dimensional or two-component

flows, as well as for axisymmetric and isotropic compressions/expansions. It also has the

proper cubic behavior in near-wall regions. Implemented in three LES solvers with different

numerics, the model gave promising results for two academic configurations. Owing to its

unique properties, ease of implementation and low computational cost, it is anticipated that
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FIG. 7. Scaled SGS eddy-viscosity from the static σ-model ( ) and the dynamic Smagorinsky

model ( ). The dotted lines correspond to the proper y3 asymptotic behavior. Top: Results

from general purpose solver AVBP (Solver A) at Rτ = 395. Bottom: Results from the channel

code (Solver B) at Rτ = 590.

the σ-model could be useful in the current effort to make LES even more suitable for com-

plex flow configurations. Notably, it is well suited for any global dynamic procedure which

adapts the overall model constant to the grid resolution and numerical errors.
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Appendix: Computation of the singular values of g

For each SGS viscosity assessment, the σ-model requires the computation of the three

singular values of the local velocity gradient tensor. It is important that this computation

is performed both efficiently and accurately. The two following methods were used with

success during the course of this study:

• Method A: The first idea is to rely on optimized routines of linear algebra as available

in scientific libraries as LAPACK. The computation of the σ’s is then done in three

steps:

1. build the matrix G = gtg from the resolved velocity gradient. This 3× 3 matrix

is symmetric semi-definite positive and its eigenvalues are thus always positive,

2. compute the eigenvalues of G, for example by using the SSYEV/DSYEV routines

from LAPACK, and order them so that λ1 ≥ λ2 ≥ λ3 ≥ 0,

3. compute the singular values of g from σ1 =
√
λ1, σ2 =

√
λ2 and σ3 =

√
λ3.

• Method B: This method [44] is self-contained and does not require the use of an

external scientific library. It consists in the following steps:

1. build the matrix G = gtg from the resolved velocity gradient,

27



2. compute its invariants as in Eq. (13), namely:

I1 = tr(G),

I2 =
1

2

(
tr(G)2 − tr(G2)

)
,

I3 = det(G),

where the square of G is G2
ij = GikGkj,

3. compute the following angles from the above invariants:

α1 =
I2
1

9
− I2

3
,

α2 =
I3
1

27
− I1I2

6
+

I3

2
,

α3 =
1

3
arccos

α2

α
3/2
1

,

4. compute the singular values as:

σ1 =

(I1

3
+ 2

√
α1 cosα3

)1/2

,

σ2 =

(I1

3
− 2

√
α1 cos

(π
3
+ α3

))1/2

,

σ3 =

(I1

3
− 2

√
α1 cos

(π
3
− α3

))1/2

From the experience gained during this study, the two above methods give virtually

identical results. It is also interested to assess the computational cost related to these

computations. Since the σ-model is proposed as an alternative to perform LES in complex

geometries, Solver A (the general purpose solver, see Table III) was used for this purpose.

Using Method A, the overall computation time required for a 643 decaying turbulence case

with the σ-model was approximately 10 % larger than what is required with the static

Smagorinsky model. Of course, this assessment may depend on the efficiency of the scientific

library available on the target computer. Still, given the number of properties met by the σ-

model compared to the Smagorinsky one, this extra cost is certainly worth being paid. More

interestingly, the extra CPU cost becomes hardly measurable (less than 1 %) when Method

B is used to compute the singular values. This method being moreover self-contained (no

need for specific scientific libraries), it is certainly the best option to compute the required
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singular values.
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