





The goal

e We have a family of partitions that segment an image.
e How to combine them in order to obtain the best possible segmentation?

e (lassically, one associates an energy w with each partition and one takes
the partition with smallest energy (e.g. Mumford-Shah).

What does this mean really?
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Unicity problem

e For example, let us take a small 5x5 picture and an energy whose dynamic
range is 1000.

o As there are 4.61018 different partitions of the 5x5 square, one finds on
average :

4,600,000,000,000,000 partitions by energy !

i.e. 30 billions times the distance to the moon in kilometres :)

e The methods which work well introduce additional implicit assumptions
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How to get out ?

We keep down the number of possible partitions by restricting them to
the cuts of a hierarchy.

We structure these cuts in a lattice which depends on the energy w, which
ensures a unique minimum.

We must find a way for reaching easily this minimum.

When there are several energies, or an energy which depends on a positive
parameter, we must find out how to combine them.

that will be the plan of the talk ..



Plan

Hierarchies
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Hierarchy, or pyramid, of partitions

e A hierarchy of partitions is a chain of partitions

H={m,0<i<n}withi<j=m <7

e The partitions are ordered by refinement

e The assumption: 7y has a finite number of classes, called leaves.

<
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Hierarchy, or pyramid, of partitions

e Associate with hierarchy H the family S of all classes S;(z) for all parti-
tions.

S ={Si(z),z € E,0<i<p}

e BEvery family § of indexed sets induces a hierarchy iff for ¢« < j
v,y € E = Si(x) € Sj(y) or Si(x) 2 5;(y) or Si(x) N S;(y) =0

A relation equivalent to an ultra-metric on the classes of S .



Representation of a hierarchy

T2 (E) m3(E)

Sub-hierarchy
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Energy and pyramid

The search for an optimal cut rests on three independent entities:

e a pyramid H of partitions of space E

e a function f on E

( f may have been used, or not, to generate the pyramid),
e an energy w i.e. a non negative function

w:D—=RT

of the set D of the partial partitions of E into R™.
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Plan

Singular energies and lattices
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Energetic ordering on cuts

Cut 7y is said to be less energetic than mo when, in each class S of m = 71 Vo
we have

w(m MNS) <w(myMS)

(i.e. the restriction of 71 to S has less energy than that of w5 to .5).

One writes m <, 79
®=06 o=10
|

| m,
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Energetic ordering and singular energy

Energy w is singular when
e cither w(S) > Vw(w(9))
o or w(S) < Vw(w(S))

m (1) ;i (T) {5}

Proposition: The relation m; <, mo defines an ordering which is energetic,
iff energy w is singular
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Energetic Lattice

The energetic ordering induces a lattice where, in each class of m; V my the
most energetic partial partition is chosen.

w =0 w = 10

I | | | I I 79
w=3 w =12

| | | TV T2

I || | I | | I 1 Vi T2
w =06 w =12
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Energetic Lattice

The energetic lattice ( <, V., ) answers the unicity question, since:

when energy is singular then one cut only has a minimum energy.

In this optimal cut, each class S is less energetic than all possible partial

partition of support S.

Such a minimum is thus stronger than the usual energetic minima since

it is both local and global.

It just remains to find out how to get it :)
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Plan

Optimal cuts and hierarchical increasingness
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Hierarchical increasingness

e How to reach the cut of minimal energy 7

e Introduce the hierarchical increasingness (h-increasingness) axiom between
fathers and sons, as the implication:

7T1(S) 7'{'2(8) Wl(S)uﬂ'O WQ(S)H'J’TO

w(m(S)) < w(m(S)) w(m(S) Umg) < w(me(S) U mg)
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Climbing energies

Energy is said to be climbing when it is both

e Singular (unique optimal cut), and

e h-increasing (tractable access to the optimal cut).

e Proposition: When energy w is climbing then the optimal cut of the
sub-hierarchy H(S) is

either w(T7) Un(Ty) Un(T3) or S itself

e The optimal cut for the whole space E is then obtained by progressively
climbing from the leaves level to the root.
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Hierarchical increasingness

e The energies holding on partial partitions are far from being always h-
Increasing.
e Consider the partial partitions of support S.
w(m(S)) =1 when 7(S) has atmost two components,

w(m(S)) = 0 when 7(S) when not.

The energy w above is obviously not h-increasing:
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How to construct a climbing energy?

e To get an h-increasing energy, it suffices to start from an arbitrary energy

on S
T3

Children
T\ UT, Ty

S

Parent

T,

Ty

e and to extend it to the partial partitions of support S and of classes
T, 15, T3 by admissible composition rules, e.g.

w(m) =w(Ty) + w(Tz) + w(T3) or w(n) = w(Ty) Vw(Ty) Vw(T3)
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How to construct a climbing energy?

e Examples of h-increasing energies:

Addition: Mumford-Shah: Salembier, Guigues
Supremum: Soille-Grazzini, Akcay-Aksoy, Wavelets.

e When w is h-increasing, and when
W(Tl L] T2 L Tg) = W(S)

e then we generate a climbing energy by taking either the father or the sons
by any external constraint independent of w

e For example, by taking always the father, or choosing according to the
number of sons (e.g. textures).
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Sum generated energies
(Salembier-Guigues)

e The value w(S) at node S is compared to the sum ) |, w(7}) of the energies
of the sons:

o if w(S) <), w(Tk) , one keeps the class S,

e if not replace by its sons

The optimal cut is then thesvittiorirof:the remaining classes. 22
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An example : Mumford-Shah

with wy,(T) = [, |[f(x) = w(T)||” fidelity term.
and wy(T') = |0T| regularity term

ISMM 2013 Uppsala

24



w(S,A) = Z1gk§p we(Tk) + A Zlgkgp wa(Tk)

with luminance

wWo(T) = [, ep 11(x) — p(T)|I*
fidelity term.
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Luminance-Chrominance

/Luminance axis

Initial 1mage

chromatic
plane

ISMM 2013 Uppsala 26



Optimal Cut: Luminance

ul

with luminance (top right)

we(T) = [oerp li(z) — (D)
fidelity term.
with chrominance(bottom right)

wo(T) =32, [rer llei@) = pa(D)|17

fidelity term.




Another example: color and texture

w(S,A) = Zlgkgp we (1)) + A Z1§k§p wo(Ty) + pw,({Tk })
with chorminance

wo(T) = 5 [ lles() — (1) fidelity torm.

wy(T) = |T'| Regularization term - contour length

w,({T}) =>({|T|} — #({|T']}))* Regularization term - texture regularity
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Initial 1mage

Partition with min variation
n component sizes
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Another exa

-
N AR
SR
3 e -
3

mple: color and texture

e - =

N - TN
‘~»‘~?"t' :.:f; . 5.'\ v‘\;"'
AR

RARE SR et T e
. . .
Initial image

w(S, A) = Zlgkgp we (1) + )\Z1§k§p wo(Tk) + pw,({Tk})

Right: optimal cuts:
top, very uniform textures ( high u )
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Another example: color and texture

Imtlal 1inége

W(S,A) = 2 1<pcpWoTh) + A2 1<k W(k) + pr({Tkz})

Right: optimal cuts:
- top, very uniform textures ( high u )
- bottom (weaker p )
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Suprema generated energies
(Soille-Grazzini)

e The values of w(S) are supposed to increase as going up in the hierarchy.
The value at node S is maz f(S) — minf(.5).

e Node S is kept when w(S) < k. (here k = 20)

The optimal cut is the union of the largest remaining nodes.
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Ground truth Evaluation

In the poster session we have an example that performs composition by
suprema and infima applied to the problem of evaluation of hierarchies by

ground truth.

* Local measures: Each G i
class S in H is assigned 2 [E
radii: wa, 0. WG

e Given a hierarchy H and
ground truth partition G [y e s
find the partition in H i
closest to G.

— Closest fromH ->G

— Closest from G ->H

ISMIM 2013 Uppsala Minimum radius of dilation of the contour
of S to cover GT within S.



4.

5. Climbing families of energies.

Plan
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Climbing families of energies

e The energy often depends on a positive parameter, i.e. {w*, A > 0}. Is it
then possible to order the optimal cuts according to A7

e The family {w?*, A > 0} is said to be climbing when:

each w” is climbing (i.e. singular and h-increasing) for any partial
partition 7w of support S we have

A< pu and w?(S) < w7) = wWH(S) < wh(m)

Proposition: When the family {w?, A > 0} of energies is climbing, then
the optimal cuts increase with A (for the refinement ordering)
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Conclusions

* We replaced the numerical approach

optimal
sy — partition
by the lattice one
enirgy — Lattice of the N optimal
) ) cuts partition
singularity

which adds a local meaning to the global energy o, (similar to
the uniform convergence versus the simple one).
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Conclusions

* We replaced the variational approach by the axiomatics

Singular and h-Increasing energy = climbing energy

which allows the tast computation

climbing energy  ~  optimal cut in one pass

* We introduced the climbing families of energies
Which results 1n

Climbing Hierarchies
families — of
of energies optimal partitions
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.... A study by me
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Additive energies and graph-cuts

The definition of a flow through G requires the data of
— a source: the leaves, with infinite weight,
— a sink: the root,

— and a flow capacity at each node.

The flows of two separated paths are
— 1independent,

— and upper-bounded by the lowest capacity along the path.

When two lines meet at a (father) node, the capacities of the
sons are added and compared to that of the tather. On keeps
the largest.
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min-cut versus optimal cut

Initial hierarchy
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min-cut versus optimal cut

The minimum value on each path is subtracted from each node

in the path, up till the point where we obtain a cut that separates
S and T.
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min-cut versus optimal cut

The minimum value on each path is subtracted from each node

in the path, up till the point where we obtain a cut that separates
S and T.

This separation is exactly
ISMM 2013 Uppsal

the optimal cut.



Composition of theV -generated energies

o Let {w;,i € I} be a family of climbing energies and {)\;,7 € I} A family
of positive weights.

e Then the weighted supremum w = V\;w; defines a climbing energy (but
not the infimum).

e Paradoxically, the supremum can express an intersection of criteria. For
example, if in S
- w1(5) = 0 if the luminance range < k1, and w;(S) = 1 if not,
- w2 (S) = 0 if the saturation range < ks, and wo(S) = 1 if not,
- w3(5) = 0 if the area of S is > k3, and w3(S) = 1 if not,

then the energy Vw;(S) = 0 when S is not too small and rather constant
in luminance and saturation.
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