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Optima on Hierarchies of Partitions

Jean Serra and B. Ravi Kiran

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, A3SI, ESIEE
{j.serra, kiranr,} @esiee.fr

Abstract. A new approach is proposed for finding optimal cuts in
hierarchies of partitions by energy minimization. It rests on the notion
of h-increasingness, allows to find best(optimal) cuts in one pass, and
to obtain nice ”climbing” scale space operators. The ways to construct
h-increasing energies, and to combine them are studied, and illustrated
by two examples on color and on textures.

1 Introduction

A hierarchy, or pyramid, of image segmentations is as a series of progressive
simplified versions of an initial image, which result in increasing partitions
of the space. We propose to reduce such pyramids to some best or optimal
segmentation 1. We shall not focus on the methods for obtaining the pyramids,
and consider rather the whole hierarchies as starting points. Now, a multi-scale
image description can rarely be considered as an end in itself. It often requires
to be completed by some energy function ω that allows us to formalize optima.
More precisely, three pieces of information interact, namely a pyramid H of
partitions of the space E (possibly segmentations of an input image), some
energetic function f on E which may be the initial image, or another one, and
an energy ω over the partial partitions D(E), and which depends of f . Three
questions arise then, namely:

1. Given a hierarchy H of partitions and a energy ω, how to obtain a
new partition that minimizes ω, without getting bogged down in the
combinatorial complexity?

2. How a family {ωj , j ∈ J} can be a scale space operator, and generate a
sequence of optimal partitions that increase with j?

3. Most of the segmentations involve several features (colour, shape, size,
etc.), that one can handle with different energies ω. How to combine them,
according to which grammar?

These questions, which are treated below in this order, have been taken up by
several authors, for many years, and by various methods. Some of them [10], [6]
simplify the combinatorial complexity by assuming that the energy of a partition

1 This work received funding from the Agence Nationale de la Recherche through
contract ANR-2010-BLAN-0205-03 KIDIKO.



Fig. 1. Example of a dendrogram, with the corresponding partitions.

equals the sum of the energies of its classes, which permits the treat the above
questions 1) and 3). However, one can wonder whether additivity is the very
underlying cause, since alternative approaches [12] replace the sums by suprema
and obtain similar properties. In fact, the corner stone for a method which
aims to solve questions 1) to 3) is the notion of h−increasingness introduced in
[11], which encompasses all above particular assumptions. This following sections
demonstrate this.

2 Hierarchies and cuts (reminder)

2.1 Hierarchies of partial partitions

We denote by E a 2-D topological space, such as a subset of R2 or Z2. A partition
π(S) associated with a set S ∈ P(E) is called partial partition of E of support
S [9]. The partial partition of S in the single class S is denoted by {S}. The
family of all partial partitions of set E is denoted by D(E), or simply by D. A
hierarchy H is a chain of partitions πi, i.e.

H = {πi, 0 ≤ i ≤ n | i ≤ k ≤ n⇒ πi ≤ πk}, (1)

where πn is the partition {E} of E in a single class, called the root. The classes
of the finest partition π0 are called the leaves. The intermediary classes are also
called nodes. The number of leaves is supposed to be finite, so that n, the number
of levels is also finite.

Let Si(x) be the class of partition πi of H at point x ∈ E. Expression (1)
means that at each point x ∈ E the family {Si(x), x ∈ E, 0 ≤ i ≤ n} of those
classes Si(x) that contain x forms a finite chain of nested elements from the leaf
S0(x) to E.

According to a classical result, a family {Si(x), x ∈ E, 0 ≤ i ≤ n} of indexed
sets generates the classes of a hierarchy iff i ≤ j and x, y ∈ E implies

Si(x) ⊆ Sj(y) or Si(x) ⊇ Sj(y) or Si(x) ∩ Sj(y) = ∅. (2)



Fig. 2. Hierachical increasingness.

The partitions of a hierarchy may be represented by their classes, or by
the saliency map of the edges, or again by a dendrogram where each node of
bifurcation is a class S, as depicted in Figure 1. The classes of πi−1 at level i− 1
which are included in class Si(x) are said to be the sons of Si(x). Denote by S(H)
the set of all classes S of all partitions involved in H. Clearly, the descendants
of each S form in turn a hierarchy H(S) of root S, which is included in the
complete hierarchy H = H(E).

2.2 Cuts in a hierarchy

Any partition π of E whose classes are taken in S defines a cut π in a hierarchy
H. The set of all cuts of E is denoted by Π(E) = Π. Every ”horizontal” section
πi(H) at level i is obviously a cut, but several levels can cooperate in a same cut,
such as π(S1) and π(S2), drawn with thick dotted lines in Figure 1. Similarly,
the partition π(S1)t π(S2) generates a cut of H(E). The symbol t is used here
for expressing that groups of classes are concatenated, i.e.

S = S1 t S2 ⇔ S = S1 ∪ S2 and S1 ∩ S2 = ∅

One can also define cuts inside any sub-hierarchy H(S) of summit S, and
similarly, Π(S) stands for the family of all cuts of H(S).

3 Optimization and hierarchical increasingness

3.1 Energies and optimization

The family of all p.p. of the leaves is denoted by D. An energy on D is a non
negative function ω : D →[0,∞]. In the following, D will be provided with several
energies ω, which may satisfy the two following axioms (for the existence of nice
optimal cuts, and for their unicity):

i) ω is h-increasing, i.e.

ω(π1) ≤ ω(π2) ⇒ ω(π1 t π0) ≤ ω(π2 t π0). (3)



where π1 and π2 are two p.p. of same support S, and π0 a p.p. of support S0

disjoint of S [11]. The geometrical meaning of Rel.(3) is depicted in Figure 2.
ii) ω is singular, when the energy ω({S}) of class S is differs from that of

any p.p. of S, i.e.

π(S) p.p. of {S} ⇒ ω({S}) 6= ω(π(S)). (4)

The optimization problem involves three entities:

1. A pyramid H of partitions of E which segment an input image,
2. An energy ω on the family D(E) of all partial partitions of E,
3. An ”energetic” function f on E which may be the initial image, or another

one, which parametrizes energy ω.

These three pieces of information are independent, and aim to determine the
cuts that minimizes ω, i.e. such that ω(π∗) = inf{ω(π) | π ∈ Π(E)}. They are
called below the optimal cuts.

3.2 Optimal cut characterization

Though the hierarchies are discrete, the number of their possible cuts explodes
combinatorially: a small hierarchy of 200 leaves and 10 levels generates billions
of cuts! How to find out the best one? By means of which vital lead? The h-
increasingness (3) turns out to be too demanding and too general, since it does
not take into account that we are dealing with hierarchies. We are thus lead to
replace it by the following weaker but more adapted version of h-increasingness.
We have to introduce the set H of all finite hierarchies of partitions of E.

Definition 1. An energy ω on D(E) is weakly h-increasing when for any
hierarchy H ∈ H, any disjoint nodes S and S0 of H, and any partition π0
of S0, we have

ω(π∗) = inf{ω(π), π ∈ Π(S)} ⇒ ω(π∗ t π0) ≤ inf{ω(π t π0), π ∈ Π(S)} (5)

where Π(S) stands for the finite set of all partitions of node S involved in
hierarchy H.

Clearly, h-increasingness implies weak h-increasingness, i.e. Rel.(3) ⇒
Rel.(5). More precisely, Rel.(3) has been weakened just enough to obtain the
theorem of optimal cut working in both senses. Indeed, we now have

Theorem 1. Let H ∈ H be a finite hierarchy, and ω an energy on D(E), and S
be a node of H of sons T1..Tp . If π∗1 , ..π

∗
p are cuts of optimal energies of T1..Tp

respectively, then
π∗1 t π∗2 .. t π∗p, (6)

is an optimal cut of Π(S) \ {S}, for any H ∈ H and any T1..Tp in H, if and
only if ω is weakly h-increasing.



Proof for theorem 1 is given in [7].
When the h-increasing energy ω is also singular, then theorem 1 leads to the

following key consequence

Corollary 1. Let ω be h-increasing and singular energy. Then for any H ∈ H
and any node S of H with p sons T1..Tp of optimal cuts π∗1 , ..π

∗
p, there exists a

unique optimal cut of the sub-hierarchy of root S. It is either the cut π∗1tπ∗2 ..tπ∗p,
or the one class partition {S} itself:

ω(π∗(S)) = min{ω({S}), ω(π∗1 t π∗2 .. t π∗p)} (7)

Corollary 1 is essential. It governs the choices of models for energies, and
their implementations:

Firstly, the obtained optimal cut π∗(E) is indeed globally less energetic than
any other cut in H, but, moreover, each class S ∈ π∗(E) is less energetic than
any p.p. of S into classes of H, and also less energetic than any p.p. composed
of classes of H and containing S. This is a strong property of regional minimum.

Secondly, the condition (3) of h-increasingness for an energy being a notion
independent of any hierarchy, one can use a different ω for each of the n levels
of hierarchy H.

Thirdly, dealing with h-increasingness is sufficient. Fortunately so, because
it is incomparably easier to check the h-increasingness of an energy than its
possible weak h-increasingness.

Fourthly, the optimal cut coincides with the min-cut in the sense of the max-
flow methods on graphs when one takes for source the set of leaves, and for sink
the whole space E.

Finally one can always impose unicity, for example by taking systematically
{S} and not π∗(S) in case of equal energies at node S. This technique of choice
makes h-increasingness and sigularity compatible [7].

3.3 Generation of h-increasing energies

An easy way to obtain a h-increasing energy consists in defining it, firstly, over
all sets S ∈ P(E), considered as one class partial partitions {S}, and then
in extending it to partial partitions by some law of composition. Then, the h-
increasingness is introduced by the law of composition, and not by ω[P(E)]. The
first two modes of composition which come to mind are, of course, addition and
supremum, and indeed we can state

Proposition 1. Let E be a set and ω : P(E)→ R+ an arbitrary energy defined
on P(E), and let π ∈ D(E) be a partial partition of classes {Si, 1 ≤ i ≤ n}.
Then the two extensions of ω to the partial partitions D(E) by addition and by
supremum

ω(π) =
∑
{ω(Si), 1 ≤ i ≤ n} and ω(π) = ∨{ω(Si), 1 ≤ i ≤ n}

are h-increasing energies. Moreover, if {αj , j ∈ J} stands for a family of non
negative weights, then the weighed sum

∑
αjωj and supremum

∨
αjωj of h-

increasing energies turn out to be h−increasing.



(Easy proof). A number of other laws are compatible with h-increasingness.
One can also make ω depend on more than one class, on the proximity of the
edges, on another hierarchy, etc..

4 Scale increasingness and climbing energies

The usual energies are often given by finite sequences {ωλ, λ ∈ Λ} that depend
on a real positive index, or parameter, λ which takes p different values, p <∞.
Therefore, the processing of hierarchy H results in a sequence of p optimal cuts
πλ∗, of labels λ ∈ Λ. A priori, the πλ∗ are not ordered, but if they were, then we
should obtain a nice progressive simplification of the optimal cuts. For getting
it, we need to combine h-increasingness with the supplementary axiom (8) of
scale increasingness, which results in the following climbing energies.

Definition 2. We call climbing energy any family {ωλ, λ ∈ Λ} of energies
over D which satisfies the three following axioms, valid for each ωλ and for
all π ∈ Π(S), S ∈ S.
i) each ωλ, λ ∈ Λ, is h-increasing,
ii) each ωλ, λ ∈ Λ, is singular,
iii) the {ωλ, λ ∈ Λ} are scale increasing, i.e. for λ ≤ µ , each support S ∈ S and
each partition π ∈ Π(S), we have

λ ≤ µ and ωλ(S) ≤ ωλ(π(S))⇒ ωµ(S) ≤ ωµ(π(S)), π ∈ Π(S), S ∈ S. (8)

Axiom i) compares the same energy at two different levels, whereas axiom
iii) compares two different energies at the same level. The relation (8) means
that, as λ increases, the ωλ preserve the sense of energetic differences between
the nodes of hierarchy H and their partial partitions. In particular when ω0 is
h-increasing and singular, and when family {ωλ, λ ∈ Λ} is climbing, then the
two families {λω}, and {ωλ + ω0, λ ∈ Λ} are climbing.

4.1 Ordering and computation of the optimal cuts:

The climbing energies satisfy the very nice property to order the optimal cuts
with respect to the parameter λ [7]:

Theorem 2. Let {ωλ, λ ∈ Λ} be a family of climbing energies, and let πλ∗ (resp.
πµ∗) denote the optimal cut of hierarchy H according to the energy ωλ (resp. ωµ).
Then the family {πλ∗,λ ∈ Λ} of the optimal cuts generates a hierarchy H∗ of
partitions, i.e.

λ ≤ µ ⇒ πλ∗ ≤ πµ∗, λ, µ ∈ Λ. (9)

Computationally, the h-increasing condition (3) allows us to reach the
optimal cut in one ascending pass, by the following Guigues’algorithm [6]:

– Scan in one pass all nodes of H in ascending lexicographic order.



– Determine at each node S a temporary optimal cut of H by comparing the
energy of S to that of the concatenation of the temporary optimal cuts of
the (already scanned) sons Tk of S.

In addition, the scale increasingness allows us to obtain the whole family of
the optimal cuts in one ascending pass followed by a descending one [7] [6].

We will now review two families of climbing energies. The first one focuses
on the additivity of the classes and the second on their supremum.

5 Additive energies

The additive h-increasing mode was introduced and studied by L. Guigues et Al.
under the name of separable energies [6], for partitions with connected classes.
For the aim of scale increasingness, the energy ωλ(S) is written as a linear
function of λ:

ωλ(S) = ωϕ(S) + λω∂(S) S ∈ S. (10)

The additive family {ωϕ + λω∂} is climbing iff the term ω∂ is sub-additive for
union, i.e.

ω∂(
⋃

1≤u≤q

Tu) ≤
∑

1≤u≤q

ω∂(Tu) (11)

The climbing family {ωλ} of Rel. (10) admits a nice lagragian interpretation if
we view the term ω∂ as a constraint on the functional ωϕ to minimize. According
to Lagrange formalism, given one constraint ω∂ , the optimum is reached by
means of a system of partial derivatives. Now remarkably the current approach
replaces that by a unique climbing. As the term ω∂(π) decreases as λj increases,
we can climb the pyramid of the optimal cuts and stop (thus optimal λ) when
the constraint is satisfied.

The most popular climbing additive energy was proposed by Mumford and
Shah [8] and evolved under various forms. Let π(S) be the partition of a summit
S into its q sons {Tu, 1 ≤ u ≤ q} i.e. π(S) = T1 t ..Tu.. t Tq. The energy ωϕ,
called fidelity term, sums up the quadratic differences between f and its average
m(Tu) in the various Tu, and the energy ω∂ , called regularity term weights by
λj the lengths ∂T i of the frontiers of all Tu, i.e.

ωj(π(S)) =
∑

1≤u≤q

∫
x∈Tu

‖ f(x)−m(Tu) ‖2 +λj
∑

1≤u≤q

(∂Tu) = ωϕ(π) + λjω∂(π)

(12)
where the weight λj is a numerical increasing function of the level number j.

The two terms of Rel.(12) are far from being the only possible ones. The
second example of Section 8 below brings textures into play via inter-class
variances. In [7], the convexity of S is introduced by comparing the positive and
negative curvatures of ∂S. In [13], the quadratic differences of ωϕ, in Rel.(12),
are replaced by two intergrals of f in the outer and inner parts of the dilate
∂S ⊕B of ∂S by a disc B, etc..



6 Sup-generated energies

Just as the sum-generated ones, the ∨-generated energies on the partial
partitions are defined from an energy ω on P(E), followed by a law of
composition, which is now the supremum

ω(π) = ω(T1 t ... t Tn) = ∨{ω(Ti)}. (13)

6.1 Binary ∨-generated energies

These energies are proposed by P.Soille [12], with several variants. For example,
a numerical function f is associated with the hierarchy H. The range of variation
δ(S) = max{f(x), x ∈ S} − min{f(x), x ∈ S} of f inside set S defines the h-
increasing binary energy ωk(〈S〉) = 0 when δ(S) ≤ k, and ωk(〈S〉) = 1 when
not. The energy ωk is extended to partial partitions by supremum, so that the
class of the optimal cut at point x ∈ E is the larger class of H whose range of
variation is ≤ j. When the energy ωk of a father equals that of its sons, one
keeps the father when ωk = 0, and the sons when not.

6.2 Ordered energies

When they are not binary, some ∨-generated energies are presented via an
ordering condition. As previously, an energy is still associated with each subset S
of E. The axiom (3) of h−increasingness does not require we know the energy of
all partial partitions. In particular, when the comparison of the partial partitions
π1 and π2 reduces to that of their classes, then a law of composition becomes
useless.

Definition 3. An energy ω on D is said to be ordered when for all pairs π1,
π2 ∈ D we have ω(π1) ≤ ω(π2) iff
-Both π1 and π2 admit the same support Supp,
-For all points x ∈ Supp, for classes S1(x) and S2(x) in π1 and π2 respectively,
the inequality ω[{S1(x)}] ≤ ω[{S2(x)}] holds.

An ordered energy ω is always h-increasing. When S is the support of the
partition π = tTi, then ω(S) ≤ ω(π) iff ω(S) ≤ ∨ω(Ti), and we find again the
∨-composition.

Here is an example of ordered energy due to H.G.Akcay and S. Aksoy [1]
who study airborne multi-band images and introduce (up to a small change)
µ(S) =Area (S)× (mean of all standard deviations of all bands in S).They work
with energy maximization. Allocate a non negative measure µ(S) to each node
of a hierarchy H, where µ takes its values in a partially ordered set M , such as
a color space. The energy ω is ordered by the two conditions

ω(S) ≤ ω(S′) ⇔ S ⊇ S′ and µ(S) ≥ µ(S′) S , S′ ∈ P(E), µ ∈M . (14)



Fig. 3. Comparison of three laws of composition, a) by addition, b) by supremum, c)
by ordering. The energies ω are indicated in the discs.

The node S∗ of the optimal cut at point x is the highest more energetic
than all its descendants. The best cut π∗ is obtained in one pass, by Guigues’
algorithm [6].

Figure 6.2 summarizes the three major laws of composition. In a) the additive
mode chooses the father S, when ω(S) ≤

∑
ω(Tj). In b) the mode by supremum

chooses the S, when ω(S) ≤ ∨ ω(Tj). Finally, in c) one takes the largest node
which is more energetic than all its descendants(maximization of ω).

6.3 Composition of ∨-generated energies

Though the weighted supremeum of ∨-generated energies is h-increasing
(eqn.13), the infimum is not. In practice, this half-result is nevertheless useful,
since the ∨, paradoxically, expresses the intersection of criteria. For example,
when the function f to optimize is colour, one can take for energies:
- ω1(S) = 0 when δLum(S) < k1, and ω1(S) = 1 when not,
- ω2(S) = 0 when δSat(S) < k2, and ω2(S) = 1 when not.
Then the h-increasing energy ω1(S) ∨ ω2(S) = 0 when S is constant enough for
both luminance and saturation.

7 Partial optimizations

Covering the whole space with some optimal partition is not always an aim.
Some studies require doing it, but in others ones the regions of interest are
limited, and clearly marked out by the context. Moreover, the leave partition
often includes a good many classes due to noise. And thirdly, the hierarchies
generated by connected filters may comprise a large number of singleton classes.
For example, Figure 4 b) and c) depict the flat zones obtained by an alternating
filter by reconstruction acting on the 25098 image a). All black pixels indicate
the singleton flat zones. When climbing the hierarchy, most of these point classes
are covered by extended classes, which are more significant. Therefore we can
just ignore the singletons when the classes of H are given an energy.

In other situations, some classes may be considered as non relevant because
they are too small, or too large, or too far from the zone of interest, or of a
non wanted hue, etc...In all cases, they are clearly identified, so that some label



Fig. 4. a) image 25098 from Berkeley database b) and c) alternating filters of a), of
sizes 1 and 5.

can indicate that they have not to intervene when computing the optimal cut.
Denote by W(E) ⊆ P(E) the set of all these undesirable classes. The energies
ω must satisfy the condition that, for all families {Si} ⊆ P(E) and all families
{Wj} ∈ W(E) such that (∪iSi) ∩ (∪jWj) = ∅, we have

ω((tiSi) t (tjWj)) = ω(tiSi).

The energy of the partial partition of classes {Si} must not change when
outside {Wj} classes are added. It means that ω(W ) = 0 when the law of
composition invoved in ω is the sum or the supremum, and that ω(W ) = ∞
when it is the infimum. When ω is h-increasing, the computation of the optimal
cut is unchanged, but now results in a partition which may contain W classes.

8 Two examples

We now develop two examples of additive energies which aim to show how the
choice of the energies governs the extraction of specific features (color, textures).
We start from the energy proposed in [10], and change it by adding new terms.
A hierarchy H of Uppsala ducks has been obtained by previous segmentations
of the luminance l = (r + g + b)/3 based on [5]. We want to find the best cut
for a compression rate of 20. In each class S of H, the simplification consists
in replacing the function f by its colour mean (mean over all 3 channels)

l(S) = Σx∈SI(x)
card(S) . In a first experiment the energy ωlum(S) has for fidelity term

ωϕ(S) the quadratic error, while the regularity term ω∂(S) is the coding cost of
class S, by taking 2 bits for each frontier element, and 24 bits assigned to code
m(S):

ωlum(S) =
∑
x∈S
‖ l(x)− l(S) ‖2 +λ(24+ | ∂S |) (15)



Fig. 5. a) Inititial Uppsala ducks; Optimal cuts b) by Luminance c) by Chrominance

The cost ω∂(π∗) of the best cut decreases as λj increases, therefore we can
climb the pyramid of the best cuts and stop when ω∂(π) ' pixels number/20.
It results in Fig. 5b, where we see that the female duck is not nicely simplified.
In the second experiment, we just replace the luminance l, in Rel.(15) by the
chrominance c, i.e. by the projection of (r, g, b) on the plane orthogonal to the
main axis (1, 1, 1). This simplifies the image while keeping partitions which
minimize the variance of the chrominance vector c. The new optimal cut is
depicted in Fig 5c. Both ducks are better separated from the foreground of the
herbs, and from the background of the river.

ωtextures(S) = ωchrom(S) +
∑

S′∈sons(S)

K

σ2(Area(S′))
(16)

The second example addresses to the recognition of textures in the trees,
in the walls and in the water of the Uppsala river of Fig. 6a. The new energy
ωtextures of Rel.(16) keeps the first two terms of the previous experiment.

Fig. 6. a) Uppsala river; b) and c) best cut of a) according to energy (16), for λ = 100,
and for K = 1012 (in b)), and K = 1014 (in c)).

The third term of (16) introduces the textures via the variances of the sons. It
decreases more drastically when the areas of the sons of S have similar sizes. Fig.
6b and c depict the best cuts for two values of the parameters. Intuitively, texture



features are formulated into this multi-scale framework where the optimal scale
parameter combines the effect of chrominance and structure of texture into one
global energy function, thus showing the flexibility of the framework.

9 Conclusion

The primary contributions of this theoretical paper were:
- Hierarchical optimizations based on h-increasingness, while also giving the
conditions for general classes to be h-increasing.
- Defining non negative global climbing energies that allow to perform sequences
of increasing optimizations over a hierarchy of segmentations.
- Demonstrating how to formulate multiple constraint functions over the image
space in order to lead to different optimal segmentations. Two examples, one
with colour image segmentation and one with texture enhancement were shown.
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