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Abstract. A hierarchy of segmentations(partitions) is a multiscale
set representation of the image. This paper introduces a new set of
scale space operators or transformations on the space of hierarchies of
partitions. An ordering of hierarchies is proposed which is endowed by
an ω-ordering based on a global energy over the classes of the hierarchy.
A class of Matheron semigroups are shown to exists in this ordering of
hierarchies. A second contribution is the saliency transformation which
fuses a saliency function corresponding to a hierarchy, with an external
function, rendering a new or transformed saliency function. The results
are demonstrated on the Berkeley dataset.

1 Introduction

This paper addresses the questions of synthesizing and improving hierarchies
of segmentations by means of scale space operators. A hierarchy of partitions
has been previously obtained, and is given. It provides a stack of coarser and
coarser segmentations of the scene under study. Some external information, or
”ground truth” composed of sets, drawings, auxiliary numerical functions, etc.. ,
may come, or not, with the hierarchy. The problem is thus twofold, and suggests
to separate the situations with no external information form those with ground
truth. They lead indeed to two rather different approaches

The first one -no outside information- is based on already known techniques
which extract an optimal cut form the hierarchy by minimizing some energy
ω. The most often, the energy ω depends on a positive parameter [11] [4] [13]
[5]. Under which conditions this parameter can be understood as a space scaler,
leading to an improved hierarchy and to scale space semi-groups? This will be
the matter of section 3, which is preceded by a reminder on optimal cuts in
hierarchies.

The second situation involves disparate data. For answering the question
”How to enrich the hierarchy with ground truths?” we have to find a common
basis to express them, and from this basis, to build up a few laws of composition.
The scale spacing will then intervene as distance functions associated with the
ground-truths. These questions will be treated in sections 4.



Fig. 1. Top: Dendrogram representation of hierarchy, Input 25098 Image, Bottom:
Topographic view of UCM, Inverted (and contrasted for better view) Ultrametric
contour Map(UCM) where the edges with strongest saliency values are the darkest,
and the weakest values are the lowest, while zeros are white(background).

2 Optima cuts and hierarchies (reminder)

The definitions and prerequisites needed in understanding the rest of the paper
are given in this section [5], [12]. The usual distinction between continuous and
digital spaces is not appropriate for the general theory developed in sections 2
to 4. What is actually needed reduces to the two following assumptions

i) the space E to partition is topological, like R2,Z2, or others,

ii) the smallest partition π0 taken into account has a finite number of classes.

The first assumption allows us to speak of frontiers between classes, or edges.
The second one aims to avoid things like fractal sets.

2.1 Partitions, partial partitions

Intuitively, a partition of E is a division of this set into classes, i.e. regions that
do not overlap, and whose union gives E. Below, the symbols S, T stand for



classes, and π for partitions. Partition π1 is smaller than partition π2 when each
class of π1 is included in a class of π2. This condition provides an ordering on
the partitions, called refinement, which in turn induces a complete lattice.

Let S be a subset of E. Following Ch. Ronse [10], any partition π(S) of S
is called partial partition of support S (in short p.p.). In particular, the partial
partition of S into a single class is denoted by {S}. If the q classes of the partition
π(S) are {Tu, 1 ≤ u ≤ q}, one writes

π(S) = T1 t ..Tu.. t Tq,

where the symbol t indicates that the classes are concatenated. The set of all
partial partitions of E is denoted by D.

An energy on D is a numerical function ω : D →[0,∞]. In the following, D
will be provided with several energies ω, which may satisfy two axioms

i) ω is h-increasing, i.e.

ω(π1) ≤ ω(π2) ⇒ ω(π1 t π0) ≤ ω(π2 t π0). (1)

where π1 and π2 are two partial partitions of same support, and π0 a partial
partition disjoint from π1 and π2 ,

ii) ω is singular, when the energy ω({S}) of class S is differs from that of
any p.p. of S, i.e.

π(S) p.p. of {S} ⇒ ω({S}) 6= ω(π(S)). (2)

The geometrical meaning of Rel.(1) is depicted in Figure 2.

2.2 Hierarchies of partitions

A hierarchy H is a chain of ordered partitions πi, i.e.

H = {πi, 0 ≤ i ≤ n | i ≤ k ≤ n⇒ πi ≤ πk}, (3)

where πn is the partition {E} of E in a single class called the root. The classes
of the finest partition π0 are called the leaves, and the intermediary classes are
the nodes.

Let Si(x) be the class of partition πi of H at point x ∈ E. Denote by S the
set of all classes Si(x) of H, i.e. S = {Si(x), x ∈ E, 0 ≤ i ≤ n}. Expression (3)
means that at each leaf x the family of those classes Si(x) of S that contain x
forms a finite chain Sx in P(E), of nested elements from S0(x) to E :

Sx = {Si(x), 0 ≤ i ≤ n}.

According to a classical result, a family {Si(x), x ∈ E, 0 ≤ i ≤ n} of indexed
sets generates the classes of a hierarchy iff

x, y ∈ E ⇒ Si(x) ⊆ Sj(y) or Si(x) ⊇ Sj(y) or Si(x) ∩ Sj(y) = ∅. (4)



Fig. 2. h-increasingness

The partitions of a hierarchy may be represented by their classes, or by
the saliency map of the edges, or again by a dendrogram where each node of
bifurcation is a class S, as depicted in Figure 1. The classes of πi−1 at level
i− 1 which are included in class Si(x) are said to be the sons of Si(x). The set
of all classes S of all partitions involved in H is denoted by S(H). Clearly, the
descendants of each S form in turn a hierarchy H(S) of root S, which is included
in the complete hierarchy H = H(E).

2.3 Cuts in a hierarchy

Any partition π of E whose classes are taken in S defines a cut π in a hierarchy
H. The set of all cuts of E is denoted by Π(E) = Π. Every ”horizontal” section
πi(H) at level i is obviously a cut, but several levels can cooperate in a same cut,
such as π(S1) and π(S2), drawn with thick dotted lines in Figure 1. Similarly,
the partition π(S1) t π(S2) of the figure generates a cut of H(E).

Given an energy ω over the set D(E) of the partial partitions of E, an optimal
cut π∗ ∈ Π(E) is a cut that minimizes ω, i.e. such that ω(π∗) = inf{ω(π) |
π ∈ Π(E)}. Now, though the hierarchies are discrete, the number of their
possible cuts becomes rapidly huge: a small hierarchy of 200 leaves and 10 levels
generates billions of cuts! How to find out the best one? The following two
theorems answer the question

Theorem 1. Let H be a hierarchy and ω be a h-increasing and singular energy.
Energy ω induces an ordering on the set Π(E) of all cuts of H. Given two cuts
π, π′ ∈ Π(E), cut π is said to be less energetic than cut π′ w.r.t. ω, and one
writes π ≤ω π′, when in each class S of the refinement supremum π∨π′ the p.p.
of π inside S is less energetic than that of π′inside S. The energetic ordering
induces the ω-lattice (∧ω, ∨ω).

In the notation, we distinguish the refinement lattice from the ω-lattice by
using for the former the three symbols ≤,∨, and ∧, without ω subscript. The
meaning of the energetic lattice (∧ω, ∨ω) is clear: it associates energetic minimum
and maximum with each class of π ∨ π′, and not globally only.

Theorem 2. Let ω be h-increasing and singular energy. Then for any H ∈ H
and any node S of H with p sons T1..Tp of optimal cuts π∗1 , ..π

∗
p, there exists a



Fig. 3. The leaves are the four classes of a. The three levels of the hierarchy H1 are
[a b d] and those H2) are [a c d], and d is the whole space. The indicated energies ω
show that H1 ≤ω H2.

unique optimal cut of the sub-hierarchy of root S. It is either the cut π∗1tπ∗2 ..tπ∗p,
or the one class partition {S} itself:

ω(π∗(S)) = min{ω({S}), ω(π∗1 t π∗2 .. t π∗p)} (5)

Theorem 2 governs the choices of models for energies, and their implemen-
tations:

Firstly, the dynamic programming Rel.(5) allows us to find the optimal cut
of H in one ascending pass. The nodes of H above the leaves have to be visited
according to an order which respects the inclusions. One then compares the
energy of each node with that of the p.p. of its sons, and the less energetic of
the two is kept for continuing the ascending pass, and so on until the top node
E is reached [4], [5].

Secondly, the obtained optimal cut π∗(E) is indeed globally less energetic
than any other cut inH, but, moreover, if we compare π∗ with any other partition
π of E, then in each class S of the refinement supremum π∗ ∨ π the energy of
π∗ is smaller than that of π.

3 Openings on H(S)

Studies on hierarchies often hold on the family of all hierarchies whose nodes are
taken among the set S of nodes of some initial hierarchy H, a family denoted
by H(S) below. Now, optimal cutting is an operation which maps hierarchies on
partitions. If we wish to insert it in a series of transformations on hierarchies,
this optimal cutting must be interpreted differently.

We observe firstly that both energetic and refinement orderings on partial
partitions induce orderings on the set H(S) of hierarchies, for which H1 ≤ H2

when at any level i, π1(i) ≤ π2(i) (resp.π1(i) ≤ω π2(i)). For the refinement one,
the optimal element is the cylindric hierarchy whose all horizontal sections are
the leaves partition, and the maximal one is obtained by taking the one class
partition {E} at all levels, leaves level excepted. In the ω-lattice, the two extreme
elements are the two cylinders H∗ and H∗∗ whose all sections above the leaves
level are the optimal cut, or the maximal one.



Fig. 4. Minimal pyramid H∗ obtained by replacing non optimal classes in H up till
level of the optimal cut

Consider now the refinement supremum H ∨H∗ of H and of the ω- optimal
cylinder H∗ and view it as an element of the ω-lattice H(S).

Theorem 3. The operation γ∗ω(H) = H∨H∗ from the ω-lattice H(S) into itself
is an opening.

Proof. γ∗ω is anti-extensive, since each class S of H is replaced by a less energetic
class of H∗ when S ≤ S∗ and left unchanged when not. On the other hand
γ∗ω[γω(H)] = H ∨ H∗ ∨ H∗ = γ∗ω(H), which is thus idempotent. Finally, γ∗ω is
also increasing since when H ≤ω H ′ then each class of H ∨ H∗ has an energy
smaller or equal to that of the class of same level in H ∨H ′∗, which achieves the
proof. ut

Introduce the cone S(x) = {Si(x), 1 ≤ i ≤ N} of all classes of H that contain
the leaf x. As x spans π0, the cones { S(x), x ∈ π0} characterize the hierarchy
H. The transform γ∗ω(H) can be described by its characteristic cones S∗(x):

S∗(x) = {S∗j (x) = S∗i (x), 1 ≤ j ≤ i }
S∗(x) = {S∗j (x) = Si(x), i < j ≤ N},

where S∗i (x) denotes the class of the optimal cut at leaf x, and i the level at
which this class is located. In the cone S∗(x) all classes below level i + 1 are
replaced by S∗i (x), and the other ones are those of H itself.

Instead of H ∨ H∗, we can as well start from H ∧ H∗, and consider the
operation ζ∗ω(H) = H ∧H∗, which also turns out to be an opening. In the cone
at leaf x of ζ∗ω(H) all classes above level i + 1 are replaced by S∗i (x), and the
other ones are those of H itself.

3.1 Semi-groups of climbing energies on H(S)

We now consider a climbing family {ω(λ), λ ∈ Λ} of energies, i.e. a family of
h-increasing and single energies, as previously, to which we add the axiom of



scale increasingness [5]. This axiom states that if the energy ω(λ;S) of node is
lesser than the energies ω(λ;π) for all p.p. π of support S, then the inequality
remains true for the energies ω(µ) , λ ≤ µ:

λ ≤ µ and ω(λ;S) ≤ ω(λ;π)⇒ ω(µ;S) ≤ ω(µ;π), S ∈ S. (6)

The climbing family {ω(λ), λ ∈ Λ} generates a semi-group of operators.
Denote by H∗λ and H∗µ the smallest elements of H(S) for the two ω(λ)-lattice and
ω(µ)-lattice respectively. The scale increasingness Rel.(6) implies that H∗λ ≤ H∗µ,
or equivalently:

H∗λ ∨H∗µ = H∗µ H∗λ ∧H∗µ = H∗λ (7)

for the refinement supremum and infimum. It follows that:

γ∗ω(µ)[γ
∗
ω(λ)(H)] = (H ∨H∗λ) ∨H∗µ = γ∗ω(µ)(H).

As the two suprema commute, the optimal cut openings γ∗ω turn out to satisfy
the Matheron semi-group1:

γ∗ω(λ) ◦ γ
∗
ω(µ) = γ∗ω(µ) ◦ γ

∗
ω(λ) = γ∗max{ω(λ),ω(µ)} λ, µ > 0.

Concerning the dual form ζ∗ω one finds similarly/

ζ∗ω(λ) ◦ ζ
∗
ω(µ) = ζ∗ω(µ) ◦ ζ

∗
ω(λ) = ζ∗min{ω(λ),ω(µ)} λ, µ > 0.

This time, the lower energy imposes its law. Finally, the whole collection of
the optimal cuts can appear in the synthetic hierarchy

Hsyn = (...((H ∨ω1 H∗λ1) ∨ω2 H∗λ2)...) ∨ωp H∗λp

which is a succession of the increasing optimal cuts of the energies ω1, ω2, ...ωp.

4 Saliency transformation

We now address the second question set in the introduction: how to merge
hierarchy and ground-truth ? This time, hierarchy H is represented by its
saliency ; i.e. by a weighting function associated with the edges between classes
of H [8]. For a given edge, this function, constant along the edge, is the level of H
when the edge disappears. If we associate also one or more numerical functions
g with the ground-truth, the merging question comes back to that of combining
numerical functions for generating a new saliency.

In order to make saliencies and hierarchies equivalent notions, we consider
the latter as sequences of partitions that appear at different levels, and not

1 There are two broad classifications of scale spaces semigroups based on the
underlying algebraic structure, used in scale space applications. First is the linear
semigroup, based on a vector space. Second is the semigroup of Matheron’s
granulometries [7] which uses an underlying lattice for analysis, and where the most
active transformation imposes its law.



Fig. 5. A set of Optimal cuts form a Matheron semigroup : Three partitions of 25098
Image at λ = 0(leaves), 5000 and 8000

just ordered. Any strictly increasing mapping α of the levels, e.g. square root,
log, etc., transforms a saliency into another one, as well as the addition by a
constant value. However, a distribution of arbitrary weights on the edges may
not be saliency. It is also required that by removing one edge one still maintains a
partition, i.e. that one does not create pending edges. This condition is formalized
below by the operation of class opening.

4.1 The class opening

This operation appeared in literature on the same date, in two independent
contexts. The first is the ultrametric opening [6] which concerns discrete
classifications by ultrametrics. The second is the pruning [14], which is a
morphological thinning, and transforms a skeleton into a skeleton by zones of
influence. More recently, in [9] the same opening allows to identify hierarchical
segmentation with ultrametric watershed in digital spaces (see also [3]). Here,
we start from the same notion, but more simply, without any ultrametric, or
graphs or any digital background.

The difference between what follows and the three above references concerns
the consequences of the class opening, namely the corollary 1, and above all
the key theorem of structure 4, ignored in [6], [14], [9], and which answers the
question set in the first sentence of this section. Given a finite set E of simple
arcs in the 2 − D space R2 or Z2, which can meet at their extremities only,
consider the binary operation γ : P( E)→ P( E) which reduces each set of arcs
X ∈ P( E) to the closed contours it may produce.

Theorem 4. the operation γ : P(E)→ P(E) is an opening.

Proof. Let be X,Y ∈ P( E). Then each closed contour of X is also a closed
contour of Y , and γ(X) ⊆ γ(Y ). On the other hand, as γ(X) is reduced to its
contours, γγ(X) = γ(X). Finally, γ(X) ⊆ X, which achieves the proof. ut



Fig. 6. A class opening demonstrated: Initial set of arcs, Class opening providing a
partition

We call ” binary class opening” the operation γ, since it selects the arcs that
delineate the classes of a partition of E.

The numerical extension of γ, for which we keep the same symbol γ, holds
on a numerical function g on the 2−D underlying space R2 or Z2. The edges of
the leaves are thus formed by elements of E, points or pixels. Denote by Xt( g)
the set of pixels of the leaves where g is ≥ t, and define the numerical opening
γ( g) by its level sets Xt[γ( g)] by putting

Xt[γ(g)] = γ[Xt(g)], t > 0.

As the number of edges is finite, the number of changes between level sets is
also finite. Let Si+1 be a class which appears at level ti+1. When t decreases,
the next new class Si appears at ti. Since there is no change in the interval ]
ti, ti+1], we have

ti = inf{g(x) | x ∈ ∂Si}. (8)

We assume that g is discrete, or lower semi-continuous, so that the value ti
occurs at one point of some edge ei of Si. This value is nothing but the weight of
the edge ei in the saliency transform γ( g) which in turn generates hierarchy H,
and ti is the highest level of class Si in H. If several classes appear at ti, generated
by several closing edges, then their intersections are empty and the description
remains valid. Therefore, an opening being characterized by its invariants, we
can state

Corollary 1. Let G be the family of all integer functions g : R2 → Z+, or
Z2 → Z+. The image I = γ(G) of G under the class opening γ is exactly the
family of all possible saliencies on the set E of the leaves edges.

4.2 Composition of class openings

The composition problems are the following:
1- A first saliency, s say, already weights the set of edges E. When a non

negative function g over space the underlying space R2 or Z2 is introduced, how
to compose it with s?



2- When in turn a second function, g2, acts on the saliency s1 resulting of
g1, how the two effects are composed?

The combination of saliencies and functions is not straightforward. Given s
and g, the sum, the difference, the product, the ratio, the supremum, or the
infimum between s and g, may not be saliencies. The only exception arises when
both s and g are saliencies. Then their supremum results in a saliency, but not
the other operations. However, a few nice properties can be stated:

Theorem 5. Let g1and g2 be two non negative functions on R2 or Z2, then:
i) γ(g1) (resp. γ(g2)) is the largest saliency smaller than g1 (resp. g2);
ii) γ(g1)∨γ(g2) is the largest saliency whose value at each edge is smaller or

equal to that of γ(g1) or γ(g2);
iii) if g1 ~ g2 denotes an operation from G × G → G, such as +,−,×,÷,∨,or

∧, then γ(g1 ~ g2) is the largest saliency smaller than g1 ~ g2, and γ(g1 ∨ g2) ≤
γ(g1 + g2).

In all cases the resulting saliency is unique.

The proposition suggests two paths for combining saliencies. Given a primary
saliency s and the ground truths g1, g2, ...gn, the sequence s, s∨ γ(g1), s∨γ(g1)∨
γ(g2), etc..provides an increasing family of saliencies, and the ground truths
commute in the various s ∨ γ(g1) ∨ ...γ(gi). Alternative families are given when
we compose various gi and then perform the class opening, namely γ(s ∨ g1) ,
γ(s ∨ g1 ∨ g2), etc.. and γ(s + g1) , γ(s + g1 + g2), etc..In all cases the series is
increasing, and simplify more the hierarchy H(s) when suprema are involved.

Owing to the equivalence ”saliencies ⇔ hierarchies” all the above composi-
tions map the whole space H of the hierarchies into itself. We have the succession

H → saliency s→ saliency γ(s, g)→ new hierarchy H ′

We are no longer in the situation of the semi-groups of section 3, where the
framework was restricted to H(S). Here new classes, absent in H, can appear
in H ′. The adopted approach, via the class opening, provides also the space H
with a lattice structure isomorphic to that of the openings.

5 Experiments and analysis

Here we demonstrate an example of the class opening on the Ultrametric contour
map (UCM) from the Berkeley database [1].

5.1 Saliency transformation by ground truth

Conventionally the ground truth information is intended to assess the quality
of a segmentation, here a hierarchy H of segmentations. Here in the place
of evaluating the hierarchy, we analyse it with respect to the given ground



Fig. 7. 239096 Image, One of the Ground truth partitions(G1), Inverse distance
function for g1, Point ground truth inverse distance function gp(point at top right),
where g1 and gp are the corresponding euclidean distance functions

Fig. 8. Original Saliency s(Image 239096), new transformed saliency by class opening
γ(g1 + s) with ground truth G1. Saliency by class opening with point ground truth
γ(gp + s) to demonstrate the effect of the inverse distance function. we see the profile
of the transformed saliency γ(gp + s) follows the inverse distance function gp

truth. The saliency transformation by a ground truth is an amelioration of
the partitions in the hierarchy to generate new partitions with the same edges
ordered by combined effect of: 1. proximity to the ground truth 2. high saliency.
More clearly, how do we combine a ground truth and a hierarchy of partitions ?

The inputs given to us are the saliency function s representing the initial
hierarchy H and the ground truth partition of edges G. Here we use the distance
function of ground truth d, to define the inverse distance function g = 1 − d.
The output is a new saliency γ(s + g) and thus a new hierarchy Hg which
contains partial partitions from H that are closest in distance to the ground
truth partition G and the saliency (see figure 7).

Figure 8 summarizes the input and output saliencies. The input saliency is
shown for input image 239096 from the Berkeley database. The ground truth G1

is more or less representative of the image structure in the saliency s, and thus
the resulting transformed saliency sG1 is not too different, except that in general
edges very far from the ground truth are reduced or weakened, while the ones in
close proximity are reinforced. For the sake of pedagogy we demonstrate with a
inverse distance function of a point shown in Figure 7 (gp) and its corresponding
saliency γ(gp + s). We see the radial attenuation in the transformed saliency.



6 conclusion

This paper discussed two main contributions, namely: 1. The different scale space
semigroups on hierarchies of partitions. 2. A saliency transform that introduces
external information into some initial hierarchy. The synthesis was obtained by
means of a class opening that reduces a set of arcs containing loops into just its
loops, and its numerical equivalent. An application of fusing the ground truth and
saliency function was demonstrated, which reordered arcs in the hierarchy based
jointly on the saliency and ground truth proximity. The distance function here
can be replaced by other external information, like color and depth information,
[2], thus enabling the evaluation of the hierarchy using many different functions.
Following this algebraic structure, applications in multi-variable fusion and
feature extraction will be explored.

Acknowledgements The authors are grateful to Prof. L. Najman for his
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