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Abstract

We study the influence of taking liquidity costs and market impact into account when hedging a
contingent claim, first in the discrete time setting, then in continuous time. In the latter case and in a
complete market, we derive a fully non-linear pricing partial differential equation, and characterizes its
parabolic nature according to the value of a numerical parameter naturally interpreted as a relaxation
coefficient for market impact. We then investigate the more challenging case of stochastic volatility
models, and prove the parabolicity of the pricing equation in a particular case.

Introduction
There is a long history of studying the effect of transaction costs and liquidity costs in the context of derivative
pricing and hedging. Transaction costs due to the presence of a Bid-Ask spread are well understood in discrete
time, see [5]. In continuous time, they lead to quasi-variational inequalities, see e.g. [12], and to imperfect
claim replication due to the infinite cost of hedging continuously over time. In this work, the emphasis is
put rather on liquidity costs, that is, the extra price one has to pay over the theoretical price of a tradable
asset, due to the finiteness of available liquidity at the best possible price. A reference work for the modelling
and mathematical study of liquidity in the context of a dynamic hedging strategy is [3], see also [10], and
our results can be seen as partially building on the same approach.
It is however unfortunate that a major drawback occurs when adding liquidity costs: as can easily be seen
in [3] [9] [10], the pricing and hedging equation are not unconditionally parabolic anymore and, therefore,
only a local existence and uniqueness of smooth solutions may be available. Note that this drawback can
easily be inferred from the very early heuristics in [6]: the formula suggested by Leland makes perfectly
good sense for small perturbation of the initial volatility, but is meaningless when the modified volatility
becomes negative. A partial conclusion is that incorporating liquidity cost leads to ill-posed pricing equation
for large option positions, a situation which cannot be considered satisfactory and hints at the fact that
some ingredient may be missing: this missing ingredient is precisely the market impact of the delta-hedger,
as will become clear from our results.
Motivated by the need for quantitative approaches to algorithmic trading, the study of market impact in
order-driven markets has become a very active research subject in the past decade. In a very elementary way,
there always is an instantaneous market impact - the virtual impact in [11] - whenever a transaction takes
place, in the sense that the best available price immediately after a transaction may be modified if the size of
the transaction is larger than the quantity available at the best limit in the order book. As many empirical
works show, see e.g. [2] [11], a relaxation phenomenon then takes place: after a trade, the instantaneous
impact decreases to a smaller value, the permanent impact. This phenomenon is named resilience in [11],
it can be interpreted as a rapid, negatively correlated response of the market to large price changes due to
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liquidity effects. In the context of derivative hedging, very little work has been done to take market impact
into account. It is however clear that there are realistic situations - e.g., a large option on an illiquid stock
- where the market impact of an option hedging strategy is significant. One may refer to [4] [7] [10] for
early attempts, although in these references, market impact and liquidity costs are not taken jointly into
account, a situation that leads again to ill-posed problem. As we shall demonstrate, the level of permanent
impact plays a key role in the well-posedness of the pricing and hedging equation, and the fact that it was
overlooked in the previous work on liquidity costs is the reason why the pricing equations in those models
were not parabolic.
This paper aims at filling this gap by laying the foundation for a reasonable model of liquidity costs and
market impact for derivative hedging. We start in a discrete time setting, where notions are best introduced
and properly defined, and then move on to the continuous time case, restricting ourselves to continuous, Itō
semi-martingales. Liquidity costs are modelled by a simple, stationary order book, characterized by its shape
around the best price, and permanent market impact is measured by a numerical parameter γ, 0 6 γ 6 1:
γ = 0 means no permanent impact, whereas γ = 1 means no relaxation. This simplified representation of
market impact rests on the hypothesis that the characteristic time of the derivative hedger may be different
than the relaxation time of the order book, a realistic hypothesis since delta-hedge generally occurs at a
lower frequency than does liquidity providing.
What we consider as our main result is Theorem 3.3, which states that, in the complete market case, the
range of parameter for which the pricing equation is unconditionally parabolic is 2

3 6 γ 6 1. This result,
which we find quite nice in that it is explicit in terms of the parameter γ, obviously explains the ill-posedness
of the pricing equations in the references [3] [9] or [4] [7], since they all correspond to the case γ = 0 within
our formulation. In particular, Theorem 3.3 implies that when re-hedging occurs at the same frequency as
that at which liquidity is provided to the order book - that is, when γ = 1 - the pricing equation is well-posed.
The paper is organized as follows: after recalling some classical notations and concepts, Section 1 presents
the order book model that will be used to describe liquidity costs. Then, in Section 2, we write down
the model for the observed price dynamics and study the associated risk-minimizing strategy taking into
account liquidity costs and market impact. Section 3 is devoted to the continuous time version of the results
in Section 2, in particular, to the case of a complete market. Finally, we address in Section 4 the difficult
and interesting case of stochastic volatiliy models, for which partial results are presented.

1 Basic notations and definitions
To ease notations, we will assume that the risk-free interest rate is always 0.

Discrete time setting
The tradable asset price is modelled by a stochastic process Sk, (k = 0, · · · , T ) on a probability space
(Ω,F , P ) . Fk denotes the σ−field of events observable up to and including time k. Sk is assumed to be
adapted and square-integrable.
A contingent claim is a square-integrable random variable H ∈ L2(P ) of the following form H = δHST +βH

with δH and βH , FT -measurable random variables.
A trading strategy Φ is given by two stochastic processes δk, (k = 0, · · · , T ) and βk, (k = 0, · · · , T ). δk (resp.
βk) is the amount of stock (resp. cash) held during period k, (= [tk, tk+1)) and is fixed at the beginning of
that period, i.e. we assume that δk (resp. βk) is Fk−measurable (k = 0, · · · , T ). Moreover, δ and β are in
L2(P ).
The theoretical value of the portfolio at time k is given by

Vk = δkSk + βk, (k = 1, · · · , T ).

A strategy is H−admissible iff each Vk is square-integrable and VT = H.
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Continuous time setting
In the continuous case, (Ω,F , P ) is a probability space with a filtration (Ft)0≤t≤T satisfying the usual
conditions of right-continuity and completeness. T ∈ R∗+ denotes a fixed and finite time horizon. Moreover,
F0 is trivial and FT = F .
The risky asset S = (St)0≤t≤T is a strictly positive, continuous Ft-semimartingale, and a trading strategy Φ
is a pair of càdlàg and adapted processes δ = (δt)0≤t≤T , β = (βt)0≤t≤T , while a contingent claim is described
by a random variable H ∈ L2(P ), with H = δHST +βH , δH and βH being FT−measurable random variables.
H−admissible strategies are defined as follows:

Definition 1.0.1 A trading strategy will be called H-admissible iff
δT = δH P − a.s.
βT = βH P − a.s.
δ has finite and integrable quadratic variation
β has finite and integrable quadratic variation
δ and β have finite and integrable quadratic covariation.

Order book, transaction cost and impact
A constant, symmetric order-book profile is considered around the price Ŝt of the asset S at a given time t
before the option position is delta-hedged - think of Ŝt as a theoretical price in the absence of the option
hedger. µ(x) is the relative density (assumed to be nonnegative) of the order book, namely, the derivative
of the function M(x) ≡

∫ x
0
µ(t)dt ≡ number of shares one can buy (resp. sell) between the prices Ŝt and

Ŝt(1 + x) for positive (resp. negative) x.
The instantaneous market impact of a transaction of size ε is then

I(ε) = ŜtM
−1(ε), (1.1)

it is precisely the difference between the price before and after the transaction is completed.
The actual cost of the same transaction is

C(ε) = Ŝt

∫ M−1(ε)

0

(1 + x)µ(x)dx ≡ Ŝt
∫ ε

0

(1 +M−1(y))dy. (1.2)

We denote by κ the function M−1.

2 Cost process with market impact in discrete time
In this section, we focus on the discrete time case.

2.1 The observed price dynamics
The model for the dynamics of the observed price - that is, the price Sk that the market can see at every
time tk after the re-hedging is complete - is now presented.
A natural modelling assumption is that the price moves according to the following sequence of events:

• First, it changes under the action of the "market" according to some (positive) stochastic dynamics
for the theoretical price increment ∆Ŝk

Ŝk ≡ Sk−1 + ∆Ŝk ≡ Sk−1(1 + ∆Mk + ∆Ak), (2.1)

where ∆Mk (resp. ∆Ak) is the increment of an F-martingale (resp. an F-predictable process).
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• Then, the hedger applies some extra pressure by re-hedging her position, being thereby subject to
liquidity costs and market impact as introduced in Section 1. As a consequence, the dynamics of the
observed price is

Sk = Sk−1(1 + ∆Mk + ∆Ak)(1 + γκ(δk − δk−1)), (2.2)

where γ, 0 6 γ 6 1, measures the permanent impact.

2.2 Incremental cost of the hedging strategy
Following the approach developed in [9], the incremental cost ∆Ck of re-hedging at time tk is now studied:
the strategy consists in buying δk − δk−1 shares of the asset, and rebalancing the cash account from βk−1 to
βk. With the notations just introduced in Section 2.1, there holds

∆Ck = Sk

∫ δk−δk−1

0

(1 + κ(u))du+ (βk − βk−1). (2.3)

Using the value process
Vk = βk + δkSk ≡ βk + δkŜk(1 + γκ(δk − δk−1)), (2.4)

one can then rewrite the incremental cost between tk−1 and tk as

∆Ck = (Vk − Vk−1)− (δkSk − δk−1Sk−1) + Ŝk

∫ δk−δk−1

0

(1 + κ(u))du. (2.5)

Straightforward computations lead to

∆Ck = (Vk − Vk−1)− δk−1(Sk − Sk−1) + Sk(

∫ δk−δk−1

0
1 + κ(u)du

1 + γκ(δk − δk−1)
− (δk − δk−1)), (2.6)

or equivalently

∆Ck = (Vk − Vk−1)− δk−1(Sk − Sk−1) + Sk(

∫ δk−δk−1

0
κ(u)du− γ(δk − δk−1)κ(δk − δk−1)

1 + γκ(δk − δk−1)
). (2.7)

To ease the notations, let us define, for x ∈ R,

g(x) ≡
∫ x
0
κ(u)du− γxκ(x)

1 + γκ(x)
. (2.8)

g is a smooth function satisfying

g(0) = g′(0) = 0, g′′(0) = (1− 2γ)κ′(0),

thanks to the natural assumption on the instantaneous price impact function κ(0) = 0.
We summarize our results in the

Proposition 2.1 The incremental cost of implementing a hedging strategy at time tk has the following
expression

∆Ck = (Vk − Vk−1)− δk−1(Sk − Sk−1) + Skg(δk − δk−1), (2.9)

where the function g is given in (2.8).
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2.3 Optimality conditions for quadratic local-risk minimization
Proposition (2.1) is the starting point for the characterization of a local-risk minimizing strategy. Upon
using a quadratic criterion, and under some assumptions ensuring the convexity of the quadratic risk, see
e.g. [9], one easily derives the two (pseudo-)optimality conditions for the value process Vk−1 and the hedge
ratio δk−1:

E(∆Ck|Fk−1) = 0 (2.10)

and
E((∆Ck)(Sk − Sk−1 + Skg

′(δk − δk−1))|Fk−1) = 0. (2.11)

Equation (2.11) can be better understood - especially when passing to the continuous time limit - by intro-
ducing a modified price process accounting for the cumulated effect of liquidity costs and market impact, as
in [9] [3]. To this end, we introduce the

Definition 2.3.1 The supply price S̄ is the process defined by

S̄0 = S0 (2.12)

and, for k > 1,
S̄k − S̄k−1 = Sk(1 + g′(δk − δk−1))− Sk−1, (2.13)

where g is defined in Equation (2.8).

Using S̄ instead of S, Equation (2.11) can be rewritten as

E((∆Ck)(S̄k − S̄k−1)|Fk−1) = 0, (2.14)

again, a familiar expression in the context of local-risk minimization.
One can easily notice that Equations (2.10) and (2.11) reduce exactly to Equations (2.1) in [9] when market
impact is neglected (γ = 0) and the risk function is quadratic.

3 The continuous-time setting
This section is devoted to the characterization of the limiting equation for the value and the hedge param-
eter when the time step goes to zero. Since the proofs are identical to those given in [1] [9], we shall only
provide formal derivations, limiting ourselves to the case of (continuous) Itō semi-martingales for the driving
stochastic equations

3.1 The observed price dynamics
A first result concerns the dynamics of the observed price. Assuming that the underlying processes are
continuous and taking limits in ucp topology, one shows that the continuous-time equivalent of (2.2) is

dSt = St(dXt + dAt + γκ′(0)dδt) (3.1)

where X is a continuous martingale and A is a continuous, predictable process of bounded variation.
Equation (3.6) is fundamental in that it contains the information on the strategy-dependent volatility of the
observed price that will lead to fully non-linear parabolic pricing equation. In fact, the following result holds
true:
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Lemma 3.1 Consider a hedging strategy δ which is a function of time and the observed price S at time t:
δt ≡ δ(St, t). Then, the observed price dynamics (3.6) can be rewritten as

(1− γκ′(0)St
∂δ

∂S
)
dSt
St

= dXt + dA′t, (3.2)

where A′ is another predictable, continuous process of bounded variation.

Proof: use Itō’s lemma in Equation (3.6).

3.2 Cost of a strategy and optimality conditions
At this stage, we are not concerned with the actual optimality - with respect to local-risk minimization -
of pseudo-optimal solutions, but rather, with pseudo-optimality in continuous time. Hence, we shall use
Equations (2.10)(2.14) as a starting point when passing to the continuous time limit.

Thanks to g′(0) = 0, there holds the

Proposition 3.2 The cost process of an admissible hedging strategy (δ, V ) is given by

Ct ≡
∫ t

0

(dVu − δdSu +
1

2
Sug

′′(0)d < δ, δ >u). (3.3)

Moreover, an admissible strategy is (pseudo-)optimal iff it satisfies the two conditions

• C is a martingale

• C is orthogonal to the supply price process S̄, with

dS̄t = dSt + St(g
′′(0)dδt +

1

2
g(3)(0)d < δ, δ >t). (3.4)

In particular, if C is pseudo-optimal, there holds that

d < C, S̄ >t≡ d < V, S >t −δd < S, S >t +g′′(0)Std < V, δ >t −δStg′′(0)d < δ, S >t= 0. (3.5)

3.3 The case of a complete market
3.3.1 The case of a single asset

It is of course interesting and useful to fully characterize the results of Section 3.2 in the case of a complete
market. Hence, we assume in this section that the driving factor X is a one-dimensional Wiener process W
and that F is its natural filtration, so that the increment of the observed price is simply

dSt = St(σdWt + γκ′(0)dδt + dAt) (3.6)

where the "unperturbed" volatility σ is supposed to be constant. We also make the markovian assumption
that the strategy is a function of the state variable S and of time.
Under this set of assumptions, the orthogonality condition becomes trivial: the cost process C has to be
identically 0, Equation (3.5) yields

∂V

∂S
= δ, (3.7)

while the martingale condition for the cost process Ct reads

∂V

∂t
+

1

2
(
∂2V

∂S2
+ Stg

′′(0)(
∂2V

∂S2
)2)

d < S, S >t
dt

= 0. (3.8)
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Applying Lemma 3.1 yields

(1− γκ′(0)St
∂δ

∂S
)
dSt
St

= σdWt + dA′t, (3.9)

that is:
d < S, S >t

dt
=

σ2S2
t

(1− γκ′(0)St
∂δ
∂S )2

. (3.10)

Hence, taking (3.7) into account, there holds

∂V

∂t
+

1

2
(
∂2V

∂S2
+ g′′(0)St(

∂2V

∂S2
)2)

σ2S2
t

(1− γκ′(0)St
∂δ
∂S )2

= 0 (3.11)

or, using (3.7) and the identity g′′(0) = (1− 2γ)κ′(0):

∂V

∂t
+

1

2
(
∂2V

∂S2
(1 + (1− 2γ)κ′(0)St

∂2V

∂S2
))

σ2S2
t

(1− γκ′(0)St
∂2V
∂S2 )2

= 0. (3.12)

Equation (3.12) can be seen as the pricing equation in our model: any contingent claim can be perfectly
replicated at zero cost, as long as one can exhibit a solution to (3.12). Consequently, of the utmost importance
is the parabolicity of the pricing equation (3.12).
For instance, the case γ = 1 corresponding to a full market impact (no relaxation) yields the following
equation

∂V

∂t
+

1

2

∂2V

∂S2

σ2S2
t

(1− γκ′(0)St
∂2V
∂S2 )

= 0, (3.13)

which can be shown to be parabolic, see [8]. In fact, there holds the sharp result

Theorem 3.3 The non-linear backward partial differential operator

V → ∂V

∂t
+

1

2
((1 + (1− 2γ)κ′(0)St

∂2V

∂S2
))

σ2S2
t

(1− γκ′(0)St
∂2V
∂S2 )2

∂2V

∂S2
(3.14)

is parabolic whenever 2
3 6 γ 6 1.

Proof: the parabolic nature of the operator is determined by the monotonicity of the function

p→ F (p) =
p(1 + (1− 2γ)p)

(1− γp)2
. (3.15)

A direct computation shows that F ′(p) has the sign of 1 + (2− 3γ)p, so that F is globally (in p) monotonic
increasing on its domain of definition ] − ∞, 1γ [ whenever 2

3 6 γ 6 1. Therefore, the pricing equation is
globally well-posed in this range of parameters.

3.3.2 The multi-asset case

For the sake of completeness, the case of several assets is worked out.
Assuming that the ith asset, 1 6 i 6 D, has its own transaction cost structure and impact parameter
characterized by (κi, γi), one can easily extend the previous results and write down the modified dynamics
for each observed price Sit

dSit = Sit(σidW
i
t + γiκ

′
i(0)dδit + dAit) (3.16)

with notations similar to those introduced in the one-dimensional case.
In fact, one can derive an even more general formulation, taking into account the potential market impact
of one stock on another and obtain

dSit = Sit(σidW
i
t +

D∑
j=1

Mijdδ
j
t + dAit), (3.17)
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where Mij is the D ×D matrix representing the respective market impact of asset j on asset i - Equation
(3.17) corresponding to the diagonal case M = Diag(γiκ

′
i(0))16i6D.

Denote by S ≡ (S1, ..., SD) the vector-valued process of the D asset prices. Then, the completeness of the
market allows one to use the perfect hedge

δit =
∂V

∂Si
(3.18)

and the dynamics of S modified by the hedging strategy can be written as

dSt = (I−M)−1Diag(σiS
i)dWt + dAt, (3.19)

with

Mik = Si
D∑
j=1

Mij
∂2V

∂Sj∂Sk
, (3.20)

where W ≡ (W 1, ...,WD). The parabolic nature of the pricing equation can therefore be studied by means
similar to the single asset case, but with more cumbersome computations.

4 Extension to stochastic volatility models
In this section, the case of stochastic volatility is considered. The results in Section 3.3.2 can be used in this
context whenever the market is assumed to be completed, in the usual yet artificial way, via an option-based
hedging strategy. In this case, the orthogonality conditions reduce to the usual δ-hedge, and the pricing
equation can be studied as in Proposition ??. However, as we shall soon see, a realistic hedging strategy
based on the tradable asset only leads to more difficult problems.
Let then the observed price process be a solution to the following set of SDE’s

dSt = St(σtdW
1
t + γκ′(0)dδt + µtdt) (4.1)

dσt = νtdt+ ΣtdW
2
t (4.2)

where (W 1,W 2) is a two-dimensional Wiener process under P with correlation ρ:

d < W 1,W 2 >t= ρdt,

and the processes µt, νt and Σt are actually functions of the state variables S, σ.
We assume that the system (4.1, 4.2) admits a unique strong continuous solution with St, σt > 0, and
consider a markovian framework, thereby looking for the value process V and the optimal strategy δ as
smooth functions of the state variables

δt = δ(St, σt, t)

Vt = V (St, σt, t).

Then, the dynamics of the observed price becomes

dSt =
St

1− γκ′(0)St
∂δ
∂S

(σtdW
1
t + γκ′(0)

∂δ

∂σ
dσt + dQt), (4.3)

the orthogonality condition reads

(
∂V

∂S
− δ)d < S, S̄ >t +

∂V

∂σ
d < σ, S̄ >t= 0 (4.4)

and the pricing equation for the value function V is

∂V

∂t
+

1

2
(
∂2V

∂S2
− γκ′(0)St(

∂δ

∂S
)2)

d < S, S >t
dt

+
1

2
(
∂2V

∂σ2
− γκ′(0)St(

∂δ

∂σ
)2)

d < σ, σ >t
dt

+
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+ (
∂2V

∂σ∂S
− γκ′(0)St

∂δ

∂σ

∂δ

∂S
)
d < S, σ >t

dt
+ L1V = 0, (4.5)

where L1 is a first-order partial differential operator.
Equations (4.4) and (4.5) are obviously quite complicated. In the next paragraph, we focus on a particular
case that allows one to fully assess their well-posedness.

4.1 The case γ = 1, ρ = 0

When γ = 1, the martingale component of the supply price does not depend on the strategy anymore. As a
matter of fact, the supply price dynamics is given by

dS̄t = dSt + St(g
′′(0)dδt +

1

2
g(3)(0)d < δ, δ >t)

and therefore, using
g′′(0) = (1− 2γ)κ′(0) = −κ′(0), (4.6)

and the dynamics of S in (4.1), there holds that

dS̄t = St(σtdW
1
t + dRt), (4.7)

where R is a predictable process of bounded variation.
If in addition, the Wiener processes for the asset and the volatility are supposed to be decorrelated: ρ = 0,
the tedious computations leading to the optimal hedge and value function simplify, and one can study in full
generality the well-posedness of the pricing and hedging equations (4.4)(4.5).
First and foremost, the orthogonality condition (4.4) simply reads in this case

δ =
∂V

∂S
, (4.8)

exactly as in the complete market case.
As for the pricing equation (4.5), one first works out using (4.8) the various brackets in (4.5) and finds that

d < S, S >t
dt

= (1− κ′(0)St
∂2V

∂S2
)−2(σ2

tS
2
t + κ′(0)2S2

t (
∂2V

∂S∂σ
)2Σ2

t ), (4.9)

d < σ, σ >t
dt

= Σ2 (4.10)

and
d < S, σ >t

dt
= (1− κ′(0)St

∂2V

∂S2
)−1κ′(0)StΣ

2
t

∂2V

∂S∂σ
. (4.11)

Plugging these expressions in (4.5) yields the pricing equation for V

∂V

∂t
+

1

2

∂2V

∂S2
(1− κ′(0)St(

∂2V

∂S2
))−1(σ2

tS
2
t + κ′(0)2S2

t (
∂2V

∂S∂σ
)2Σ2

t ) +
1

2
(
∂2V

∂σ2
− κ′(0)St(

∂2V

∂S∂σ
)2)Σ2+

κ′(0)StΣ
2
t (
∂2V

∂S∂σ
)2 + L1V = 0, (4.12)

or, after a few final rearrangments:

∂V

∂t
+

σ2
tS

2
t

2(1− κ′(0)St(
∂2V
∂S2 ))

∂2V

∂S2
+

1

2

∂2V

∂σ2
Σ2 +

1

2

κ′(0)StΣ
2

(1− κ′(0)St(
∂2V
∂S2 ))

(
∂2V

∂σ∂S
)2 + L1V = 0. (4.13)

The main result of this section is the

Proposition 4.1 Equation (4.13) is of parabolic type.
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Proof: one has to study the monotocity of the operator

L : V → L(V ) ≡ σ2
tS

2
t

2(1− κ′(0)St(
∂2V
∂S2 ))

∂2V

∂S2
+

1

2

∂2V

∂σ2
Σ2 +

1

2

κ′(0)StΣ
2

(1− κ′(0)St(
∂2V
∂S2 ))

(
∂2V

∂σ∂S
)2. (4.14)

Introducing the classical notations

p ≡
(
p11 p12
p21 p22

)
(4.15)

with p11 = ∂2V
∂S2 , p12 = p21 = ∂2V

∂S∂σ and p22 = ∂2V
∂σ2 and defining

L(S,p) ≡ σ2
tS

2
t p11

(1− κ′(0)Stp11)
+ Σ2p22 +

κ′(0)StΣ
2

(1− κ′(0)Stp11)
p212, (4.16)

one is led to study the positivity of the 2× 2 matrix ∂L
∂p11

1
2
∂L
∂p12

1
2
∂L
∂p12

∂L
∂p22

 . (4.17)

Setting F (p11) = σ2S2p11
1−κ′(0)Sp11 and D(p11) = 1− κ′(0)Sp11, one needs to show that the matrix H(p) F ′(p11) + (κ′(0)SΣ)2

p212
D2 κ′(0)SΣ2 p12

D

κ′(0)SΣ2 p12
D Σ2

 (4.18)

is positive. This result is trivially shown to be true by computing the trace and determinant of H(p):

Tr(H(p)) = F ′(p11) + Σ2 + (κ′(0)SΣ)2
p212
D2

(4.19)

and
Det(H(p)) = Σ2F ′(p11) (4.20)

and using the fact that F is a monotonically increasing function.
This ends the proof of Proposition 4.13.

4.2 The correlated case
We now drop the assumption that ρ = 0, while still assuming that γ = 1. The supply price dynamics remains
independent from the strategy, but δ cannot be eliminated from the pricing equation (4.5).
Using Lemma 2.2, one can write (4.3) as

dSt
St

=
σt + ρκ′(0) ∂δ∂σΣ

1− κ′(0)St
∂δ
∂S

dW 1
t +

√
1− ρ2κ′(0) ∂δ∂σΣ

1− κ′(0)St
∂δ
∂S

dZt + dQt, (4.21)

where W, Z are uncorrelated Wiener processes and Q is predictable, of finite variation. On the other hand,
the supply price dynamics is again given by (4.7), so that the orthogonality condition becomes

(
∂V

∂S
− δ)

S(σ + ρκ′(0)Σ ∂δ
∂σ )

1− κ′(0)S ∂δ
∂S

+ ρΣ
∂V

∂σ
= 0 (4.22)

or ∣∣∣∣ ∂V
∂S − δ −ρΣ + ρκ′(0)ΣS ∂δ

∂σ
∂V
∂σ σS + ρκ′(0)ΣS ∂δ

∂S

∣∣∣∣ = 0. (4.23)

10



The expressions of the various angle brackets become

d < S, S >t
dt

= (1− κ′(0)St
∂2V

∂S2
)−2(σ2

tS
2
t + κ′(0)2S2

t (
∂δ

∂σ
)2Σ2

t + 2ρκ′(0)2S2
t Σt

∂δ

∂σ
), (4.24)

d < σ, σ >t
dt

= Σ2 (4.25)

and
d < S, σ >t

dt
= (1− κ′(0)St

∂2V

∂S2
)−1ρΣt(κ

′(0)StΣ
2
t

∂δ

∂σ
+ σtSt). (4.26)
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