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Abstract

We study the influence of taking liquidity costs and market impact into account when hedging a
contingent claim, first in the discrete time setting, then in continuous time. In the latter case and in a
complete market, we derive a fully non-linear pricing partial differential equation, and characterizes its
parabolic nature according to the value of a numerical parameter naturally interpreted as a relaxation
coefficient for market impact. We then investigate the more challenging case of stochastic volatility
models, and prove the parabolicity of the pricing equation in a particular case.

Introduction
There is a long history of studying the effect of transaction costs and liquidity costs in the context of deriva-
tive pricing and hedging. Transaction costs due to the presence of a Bid-Ask spread are well understood
in discrete time, see [9]. In continuous time, they lead to quasi-variational inequalities, see e.g. [18], and
to imperfect claim replication due to the infinite cost of hedging continuously over time. In this work, the
emphasis is put rather on liquidity costs, that is, the extra price one has to pay over the theoretical price
of a tradable asset, due to the finiteness of available liquidity at the best possible price. A reference work
for the modelling and mathematical study of liquidity in the context of a dynamic hedging strategy is [3],
see also [15], and our results can be seen as partially building on the same approach.
It is however unfortunate that a major drawback occurs when adding liquidity costs: as can easily be seen
in [3] [13] [15], the pricing and hedging equation are not unconditionally parabolic anymore and, therefore,
only a local existence and uniqueness of smooth solutions may be available. Note that this drawback can
easily be inferred from the very early heuristics in [10]: the formula suggested by Leland makes perfectly
good sense for small perturbation of the initial volatility, but is meaningless when the modified volatility be-
comes negative. An answer to this problem is proposed in [4], where the authors introduce super-replicating
strategies and show that the minimal cost of a super-replicating strategy solves a well-posed parabolic equa-
tion. Still, a partial conclusion is that incorporating liquidity cost leads to ill-posed pricing equation for
large option positions, a situation which cannot be considered satisfactory and hints at the fact that some
ingredient may be missing in the physical modelling of the market. It turns out that this missing ingredient
is precisely the market impact of the delta-hedger, as will become clear from our results. This fact is
already observed by the second author in [12], where a well posed, fully non-linear parabolic equation is
obtained using a simple market impact model.
Motivated by the need for quantitative approaches to algorithmic trading, the study of market impact in
order-driven markets has become a very active research subject in the past decade. In a very elementary
way, there always is an instantaneous market impact - termed virtual impact in [17] - whenever a transaction
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takes place, in the sense that the best available price immediately following a transaction may be modi-
fied if the size of the transaction is larger than the quantity available at the best limit in the order book.
As many empirical works show, see e.g. [2] [17], a relaxation phenomenon then takes place: after a trade,
the instantaneous impact decreases to a smaller value, the permanent impact. This phenomenon is named
resilience in [17], it can be interpreted as a rapid, negatively correlated response of the market to large
price changes due to liquidity effects. In the context of derivative hedging, it is clear that there are realistic
situations - e.g., a large option on an illiquid stock - where the market impact of an option hedging strategy
is significant. This situation has already been addressed by several authors, see in particular [16] [7] [6] [14],
where various hypothesis on the dynamics, the market impact and the hedging strategy are proposed and
studied. One may also refer to [8] [11] [15] for more recent related works. It is however noteworthy that in
these references, liquidity costs and market impact are not considered jointly, whereas in fact, the latter is
a rather direct consequence of the former. As we shall demonstrate, the level of permanent impact plays a
fundamental role in the well-posedness of the pricing and hedging equation, a fact that was overlooked in
previous works on liquidity costs and impact. Also, from a practical point of view, it seems relevant to us
to relate the well-posedness of the modified Black-Scholes equation to a parameter that can be measured
empirically using high frequency data.
This paper aims at contributing to the field by laying the grounds for a reasonable model of liquidity costs
and market impact for derivative hedging. We start in a discrete time setting, where notions are best in-
troduced and properly defined, and then move on to the continuous time case. Liquidity costs are modelled
by a simple, stationary order book, characterized by its shape around the best price, and the permanent
market impact is measured by a numerical parameter γ, 0 6 γ 6 1: γ = 0 means no permanent impact,
so the order book goes back to its previous state after the transaction is performed, whereas γ = 1 means
no relaxation, the liquidity consumed by the transaction is not replaced. This simplified representation of
market impact rests on the hypothesis that the characteristic time of the derivative hedger may be different
from the relaxation time of the order book, a realistic hypothesis since delta-hedge generally occurs at a
lower frequency than does liquidity providing.
What we consider as our main result is Theorem 4.1, which states that, in the complete market case, the
range of parameter for which the pricing equation is unconditionally parabolic is 2

3 6 γ 6 1. This result,
which we find quite nice in that it is explicit in terms of the parameter γ, obviously explains the ill-posedness
of the pricing equations in the references [3] [13] that correspond to the case γ = 0, or [8] [11] that correspond
to the case to the case γ = 1

2 within our formulation. In particular, Theorem 4.1 implies that when re-hedging
occurs at the same frequency as that at which liquidity is provided to the order book - that is, when γ = 1 -
the pricing equation is well-posed. This result was already obtained by the second author in [12]. Note that,
according to recent theoretical as well as empirical work on market impact, see [5], the level of permanent
impact should actually be equal to 2

3 , in striking compliance with the constraints Theorem 4.1 imposes!

The paper is organized as follows: after recalling some classical notations and concepts, Section 1 presents
the order book model that will be used to describe liquidity costs. Then, in Section 2, we write down the
model for the observed price dynamics and study the associated risk-minimizing strategy taking into account
liquidity costs and market impact. Section 3 is devoted to the continuous time version of these results. The
pricing and hedging equations are then worked out and characterized in the case of a complete market, in
the single asset case in Section ??, and in the multi-asset case in Section ??. Finally, Section 6 touches upon
the case of stochastic volatility models, for which partial results are presented.

1 Basic notations and definitions
To ease notations, we will assume throughout the paper that the risk-free interest rate is always 0, and that
the assets pay no dividend.
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Discrete time setting
The tradable asset price is modelled by a stochastic process Sk, (k = 0, · · · , T ) on a probability space
(Ω,F , P ) . Fk denotes the σ−field of events observable up to and including time k. Sk is assumed to be
adapted and square-integrable.
A contingent claim is a square-integrable random variable H ∈ L2(P ) of the following form H = δHST +βH

with δH and βH , FT -measurable random variables.
A trading strategy Φ is given by two stochastic processes δk, (k = 0, · · · , T ) and βk, (k = 0, · · · , T ). δk (resp.
βk) is the amount of stock (resp. cash) held during period k, (= [tk, tk+1)) and is fixed at the beginning of
that period, i.e. we assume that δk (resp. βk) is Fk−measurable (k = 0, · · · , T ). Moreover, δ and β are in
L2(P ).
The theoretical value of the portfolio at time k is given by

Vk = δkSk + βk, (k = 1, · · · , T ).

A strategy is H−admissible iff each Vk is square-integrable and VT = H.
In order to avoid dealing with several unnecessary yet involved cases, we assume that no transaction on the
stock will take place at maturity: the claim will be settled with whatever position there is in stock, plus a
cash adjustment to match its theoretical value (see the discussion in [9], Section 4).

Continuous time setting
In the continuous case, (Ω,F , P ) is a probability space with a filtration (Ft)0≤t≤T satisfying the usual
conditions of right-continuity and completeness. T ∈ R∗+ denotes a fixed and finite time horizon. Moreover,
F0 is trivial and FT = F .
The risky asset S = (St)0≤t≤T is a strictly positive, continuous Ft-semimartingale, and a trading strategy Φ
is a pair of càdlàg and adapted processes δ = (δt)0≤t≤T , β = (βt)0≤t≤T , while a contingent claim is described
by a random variable H ∈ L2(P ), with H = δHST +βH , δH and βH being FT−measurable random variables.
H−admissible strategies are defined as follows:

Definition 1.0.1 A trading strategy will be called H-admissible iff
δT = δH P − a.s.
βT = βH P − a.s.
δ has finite and integrable quadratic variation
β has finite and integrable quadratic variation
δ and β have finite and integrable quadratic covariation.

Since market impact is considered, the dynamics of S is not independent from that of the strategy (δ, β), so
that this set of assumption can only be verified a posteriori. One of the important consequences of Theorem
4.1 is precisely to give sufficient conditions ensuring that admissible trading strategies exist.

Order book, transaction cost and impact
A stationary, symmetric order-book profile is considered around the logarithm of the price Ŝt of the asset
S at a given time t before the option position is delta-hedged - think of Ŝt as a theoretical price in the
absence of the option hedger. The relative density µ(x) > 0 of the order book is the derivative of the
function M(x) ≡

∫ x
0
µ(t)dt ≡ number of shares one can buy (resp. sell) between the prices Ŝt and Ŝtex for

positive (resp. negative) x. This choice of representation using exponential is made to avoid difficulties in
the definiteness of costs and impact for large sell transactions.
The instantaneous - virtual in the terminology of [17] - market impact of a transaction of size ε is then

Ivirtual(ε) = Ŝt(e
M−1(ε) − 1), (1.1)
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it is precisely the difference between the price before and immediately after the transaction is completed.
The level of permanent impact is then measured via a parameter γ:

Ipermanent(ε) = Ŝt(e
γM−1(ε) − 1). (1.2)

The actual cost of the same transaction is

C(ε) = Ŝt

∫ ε

0

eM
−1(y)dy. (1.3)

Denote by κ the function M−1. Since some of our results depend on the simplifying assumption that κ is a
linear function

κ(ε) ≡ λε (1.4)

for some λ ∈ R, the computations in this setting are worked out explicitly in this setting:

Ivirtual(ε) = Ŝt(e
λε − 1), (1.5)

Ipermanent(ε) = Ŝt(e
γλε − 1). (1.6)

and

C(ε) = Ŝt

∫ ε

0

eM
−1(y)dy ≡ Ŝt

(eλε − 1)

λ
. (1.7)

This simplifying assumption seems necessary for a rigourous derivation of the local-risk minimizing strategies
in the Section 2 and, therefore, for the interpretation of a pseudo-optimal strategy in continuous time. Note
however that it plays no role in the case of a complete market studied in sections 4 and 5.

2 Cost process with market impact in discrete time
In this section, we focus on the discrete time case. As said above, the order book is now assumed to be flat,
so that κ is a linear function as in (1.4).

2.1 The observed price dynamics
The model for the dynamics of the observed price - that is, the price Sk that the market can see at every
time tk after the re-hedging is complete - is now presented.
A natural modelling assumption is that the price moves according to the following sequence of events:

• First, it changes under the action of the "market" according to some (positive) stochastic dynamics
for the theoretical price increment ∆Ŝk

Ŝk ≡ Sk−1 + ∆Ŝk ≡ Sk−1e
∆Mk+∆Ak , (2.1)

where ∆Mk (resp. ∆Ak) is the increment of an F-martingale (resp. an F-predictable process).

• Then, the hedger applies some extra pressure by re-hedging her position, being thereby subject to
liquidity costs and market impact as introduced in Section 1. As a consequence, the dynamics of the
observed price is

Sk = Sk−1e
∆Mk+∆Akeγλ(δk−δk−1). (2.2)

Since this model is "exponential-linear" - a consequence of the assumption that κ is linear - this
expression can be simplified to give

Sk = S0e
Mk+Akeγλδk . (2.3)

with the convention that M,A, δ are equal to 0 for k = 0.
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2.2 Incremental cost and optimal hedging strategy
Following the approach developed in [13], the incremental cost ∆Ck of re-hedging at time tk is now studied.
The strategy associated to the pair of processes β, δ consists in buying δk − δk−1 shares of the asset and
rebalancing the cash account from βk−1 to βk at the beginning of each hedging period [tk, tk+1). With the
notations just introduced in Section 2.1, there holds

∆Ck = Ŝk
(eλ(δk−δk−1) − 1)

λ
+ (βk − βk−1). (2.4)

Upon using a quadratic criterion, and under some assumptions ensuring the convexity of the quadratic risk,
see e.g. [13], one easily derives the two (pseudo-)optimality conditions for local risk minimization

E(∆Ck|Fk−1) = 0 (2.5)

and
E((∆Ck)(Ŝk(γ + (1− γ)eλ(δk−δk−1))|Fk−1) = 0,

where one must be careful to differentiate Ŝk with respect to δk−1, see (2.3).
This expression is now transformed - using the martingale condition (2.5) and the observed price (2.3) - into

E((∆Ck)(Ske
−λγ(δk−δk−1)(γ + (1− γ)eλ(δk−δk−1))|Fk−1) = 0 (2.6)

Equation (2.6) can be better understood - especially when passing to the continuous time limit - by intro-
ducing a modified price process accounting for the cumulated effect of liquidity costs and market impact, as
in [13] [3]. To this end, we introduce the

Definition 2.2.1 The supply price S̄ is the process defined by

S̄0 = S0 (2.7)

and, for k > 1,
S̄k − S̄k−1 = Ske

−λγ(δk−δk−1)(γ + (1− γ)eλ(δk−δk−1))− Sk−1. (2.8)

Then, the orthogonality condition (2.6) is equivalent to

E((∆Ck)(S̄k − S̄k−1)|Fk−1) = 0. (2.9)

It is classical - and somewhat more natural - to use the portfolio value process

Vk = βk + δkSk, (2.10)

so that one can then rewrite the incremental cost in (2.4) as

∆Ck = (Vk − Vk−1)− (δkSk − δk−1Sk−1) + Ŝk
(eλ(δk−δk−1) − 1)

λ
, (2.11)

or equivalently

∆Ck = (Vk − Vk−1)− δk−1(Sk − Sk−1) + Sk(
eλ(δk−δk−1) − 1

λeγλ(δk−δk−1)
− (δk − δk−1)). (2.12)

To ease the notations, let us define, for x ∈ R,

g(x) ≡ eλx − 1

λeγλx
− x. (2.13)
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The function g is smooth and satisfies

g(0) = g′(0) = 0, g′′(0) = (1− 2γ)λ. (2.14)

As a consequence, the incremental cost of implementing a hedging strategy at time tk has the following
expression

∆Ck = (Vk − Vk−1)− δk−1(Sk − Sk−1) + Skg(δk − δk−1), (2.15)

and Equation (2.6) can be rewritten using the value process V and the supply price process S̄ as

E((Vk − Vk−1 − δk−1(Sk − Sk−1) + Skg(δk − δk−1))(S̄k − S̄k−1)|Fk−1) = 0. (2.16)

One can easily notice that Equations (2.5) and (2.6) reduce exactly to Equations (2.1) in [13] when market
impact is neglected (γ = 0) and the risk function is quadratic.

3 The continuous-time setting
This section is devoted to the characterization of the limiting equation for the value and the hedge pa-
rameter when the time step goes to zero. Since the proofs are identical to those given in [1] [13], we shall
only provide formal derivations, limiting ourselves to the case of (continuous) Itō semi-martingales for the
driving stochastic equations. However, in the practical situations considered in the last sections of this pa-
per, necessary and sufficient conditions are given that ensure the well-posedness in the classical sense of the
strategy-dependent stochastic differential equations determining the price, value and cost processes, so that
the limiting arguments can be made perfectly rigourous under these conditions.

3.1 The observed price dynamics
A first result concerns the dynamics of the observed price. Assuming that the underlying processes are
continuous and taking limits in ucp topology, one shows that the continuous-time equivalent of (2.3) is

dSt = St(dXt + dAt + γλdδt) (3.1)

where X is a continuous martingale and A is a continuous, predictable process of bounded variation.
Equation (4.1) is fundamental in that it contains the information on the strategy-dependent volatility of the
observed price that will lead to fully non-linear parabolic pricing equation. In fact, the following result holds
true:

Lemma 3.1 Consider a hedging strategy δ which is a function of time and the observed price S at time t:
δt ≡ δ(St, t). Then, the observed price dynamics (4.1) can be rewritten as

(1− γλSt
∂δ

∂S
)
dSt
St

= dXt + dA′t, (3.2)

where A′ is another predictable, continuous process of bounded variation.

Proof: use Itō’s lemma in Equation (4.1).

3.2 Cost of a strategy and optimality conditions
At this stage, we are not concerned with the actual optimality - with respect to local-risk minimization -
of pseudo-optimal solutions, but rather, with pseudo-optimality in continuous time. Hence, we shall use
Equations (2.5)(2.16) as a starting point when passing to the continuous time limit.
Thanks to g′(0) = 0, there holds the

6



Proposition 3.2 The cost process of an admissible hedging strategy (δ, V ) is given by

Ct ≡
∫ t

0

(dVu − δdSu +
1

2
Sug

′′(0)d < δ, δ >u). (3.3)

Moreover, an admissible strategy is (pseudo-)optimal iff it satisfies the two conditions

• C is a martingale

• C is orthogonal to the supply price process S̄, with

dS̄t = dSt + St((1− 2γ)λdδt + µd < δ, δ >t) (3.4)

and µ = 1
2 (λ2(γ3 + (1− γ)3)).

In particular, if C is pseudo-optimal, there holds that

d < C, S̄ >t≡ d < V, S >t −δd < S, S >t +(1− 2γ)λStd < V, δ >t −δSt(1− 2γ)λd < δ, S >t= 0. (3.5)

4 Complete market: the single asset case
It is of course interesting and useful to fully characterize the hedging and pricing strategy in the case of a
complete market. Hence, we assume in this section that the driving factor X is a one-dimensional Wiener
process W and that F is its natural filtration, so that the increment of the observed price is simply

dSt = St(σdWt + γλdδt + dAt) (4.1)

where the "unperturbed" volatility σ is supposed to be constant. We also make the markovian assumption
that the strategy is a function of the state variable S and of time.
Under this set of assumptions, perfect replication is considered: the cost process C has to be identically 0,
and Equation (3.3) yields the two conditions

∂V

∂S
= δ, (4.2)

and
∂V

∂t
+

1

2
(
∂2V

∂S2
+ Stg

′′(0)(
∂2V

∂S2
)2)

d < S, S >t
dt

= 0. (4.3)

Applying Lemma 3.1 yields

(1− γλSt
∂δ

∂S
)
dSt
St

= σdWt + dA′t (4.4)

leading to
d < S, S >t

dt
=

σ2S2
t

(1− γλSt ∂δ∂S )2
. (4.5)

Hence, taking (4.2) into account, there holds

∂V

∂t
+

1

2
(
∂2V

∂S2
+ g′′(0)St(

∂2V

∂S2
)2)

σ2S2
t

(1− γλSt ∂δ∂S )2
= 0 (4.6)

or, using (4.2) and the identity g′′(0) = (1− 2γ)λ:

∂V

∂t
+

1

2
(
∂2V

∂S2
(1 + (1− 2γ)λSt

∂2V

∂S2
))

σ2S2
t

(1− γλSt ∂
2V
∂S2 )2

= 0. (4.7)

Equation (4.7) can be seen as the pricing equation in our model: any contingent claim can be perfectly
replicated at zero cost, as long as one can exhibit a solution to (4.7). Consequently, of the utmost importance
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is the parabolicity of the pricing equation (4.7).
For instance, the case γ = 1 corresponding to a full market impact (no relaxation) yields the following
equation

∂V

∂t
+

1

2

∂2V

∂S2

σ2S2
t

(1− γλSt ∂
2V
∂S2 )

= 0, (4.8)

which can be shown to be parabolic, see [12]. In fact, there holds the sharp result

Theorem 4.1 Let us assume that 2
3 6 γ 6 1. Then, there holds:

• The non-linear backward partial differential operator

V → ∂V

∂t
+

1

2
((1 + (1− 2γ)λSt

∂2V

∂S2
))

σ2S2
t

(1− γλSt ∂
2V
∂S2 )2

∂2V

∂S2
(4.9)

is parabolic.

• Every european-style contingent claim with payoff Φ satisfying the terminal constraint

sup
S∈R+

(S
∂2Φ

∂S2
) <

1

γλ
(4.10)

can be perfectly replicated via a δ-hedging strategy given by the unique, smooth away from T , solution
to Equation (4.7).

Proof: the parabolic nature of the operator is determined by the monotonicity of the function

p→ F (p) =
p(1 + (1− 2γ)p)

(1− γp)2
. (4.11)

A direct computation shows that F ′(p) has the sign of 1 + (2− 3γ)p, so that F is globally (in p) monotonic
increasing on its domain of definition ] − ∞, 1

γ [ whenever 2
3 6 γ 6 1. Therefore, the pricing equation is

globally well-posed in this parameter range. Now, given that the payoff satisfies the terminal constraint,
classical results on the maximum principle for the second derivative of the solution ensure that the same
constraint is satisfied globally for t 6 T , and therefore, that the stochastic differential equation determining
the price of the asset has classical, strong solutions up to time T . As a consequence, the cost process
introduced in Proposition 3.2 is well-defined, and is identically 0. Hence, the perfect replication is possible.
Clearly, the constraint on the second derivative is binding, in that it is necessary to ensure the existence of
the asset price itself. See however Section 7 for a discussion of other situations.

5 Complete market: the multi-asset case
Consider a complete market described by d state variables X = X1, ..., Xd : one can think for instance of a
stochastic volatility model with X1 = S and X2 = σ when option-based hedging is available. 1

Using tradable market instruments, one is able to generate d hedge ratio δ = δ1, ..., δd with respect to the
independent variables X1, ..., Xd, that is, one can buy a combination of instruments whose price P (t,X)
satisfies

∂Xi
P = δi. (5.1)

We now introduce two market impact matrices, Λ1 and Λ2. The first one represents the virtual market
impact and the second, the permanent impact. When d = 1, they are linked to the previous notations by

Λ1 = λS,Λ2 = γλS.

1In the next section, stochastic volatility is addressed in the context of an incomplete market
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Note that here, we proceed directly to the continuous time case, so that the actual shape of the order book
plays a role only through its Taylor expansion around 0; hence, the use of the "linearized" impact via the
matrices Λi.
The permanent market impact of a transaction dδ is given by

dX = Λ2δ. (5.2)

The pricing equation is derived along the same lines as in Section 3: denote by V the option price, and let
∆,Γ be the first and second derivatives of V . The relationship between the "unperturbed " price change
dX̂t and the observed price change dXt is given by

dXt = dX̂t + Λ2dδt + dAt (5.3)

the d-dimensional version of (4.1). As before, a straightforward application of Itō’s formula in a markovian
setting yields the dynamics of the observed price

dX = (I − Λ2Γ)−1dX̂ + dA′t. (5.4)

The d-dimensional version of (2.15) for the incremental cost of hedging is

dCt = dVt −
d∑
i=1

δidX
i
t +

1

2
Trace((Λ1 − 2Λ2)d < δ, δ >t), (5.5)

(5.6)

so that, the market being complete, the perfect hedge condition dCt = 0 yields the usual delta-hedge

∂V

∂Xi
= δi (5.7)

together with the pricing equation

∂tV +
1

2
Trace(Γ

d < X,X >t
dt

) = Trace(Γ(Λ2 −
1

2
Λ1)

d < X,X >t
dt

). (5.8)

Using (5.4), the pricing equation becomes

∂tV +
1

2
Trace

[
(Γ(I − (2Λ2 − Λ1)Γ))(MΣtrM)

]
= 0. (5.9)

where we have set Σ = d<X̂,X̂>t

dt , M = (I − Λ2Γ)−1.
When Λ1 = Λ2 (i.e. no relaxation), the pricing equation becomes

∂tV +
1

2
Trace(Γ(I − ΛΓ)−1Σt) = 0. (5.10)

which, degenerating further to the 1-dimensional case, yields the pricing equation already derived in [12]

∂tV +
1

2

Γ

1− λΓ
S2σ2 = 0. (5.11)

The assessment of well-posedness in a general setting is related to the monotonicity of the linearized operator;
in the case of full market impact Λ1 = Λ2 ≡ Λ, there holds the

Proposition 5.1 Assume that the matrix Λ is symmetric. Then, Equation (5.10) is parabolic on the con-
nected component of {det(I − ΛΓ) > 0} that contains {Γ = 0}.
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Proof: let
F (Γ) = Trace(Γ(I − ΛΓ)−1Σt),

and
H(Γ) = Γ(I − ΛΓ)−1.

Denoting by S+
d the set of d-dimensional symmetric positive matrices, we need to show that for all dΓ ∈ S+

d ,
for all covariance matrix Σ ∈ S+

d , there holds

F (Γ + dΓ) ≥ F (Γ).

Performing a first order expansion yields

H(Γ + dΓ)−H(Γ) = Γ(I − ΛΓ)−1ΛdΓ(I − ΛΓ)−1 + dΓ(I − ΛΓ)−1 (5.12)
= (Γ(I − ΛΓ)−1Λ + I)dΓ(I − ΛΓ)−1. (5.13)

Using the elementary lemma 5.2 - stated below without proof - there immediately follows that

F (Γ + dΓ)− F (Γ) = Trace((I − ΓΛ)−1dΓ(I − ΛΓ)−1Σ) (5.14)
= Trace(dΓ(I − ΛΓ)−1Σ(I − ΓΛ)−1). (5.15)

Then, the symmetry condition on Λ allows to conclude the proof of Proposition 5.1.

Lemma 5.2 The following identity holds true for all matrices Γ,Λ:

Γ(I − ΛΓ)−1Λ + I = (I − ΓΛ)−1.

6 The case of an incomplete market
In this section, stochastic volatility is considered. As said earlier, the results in Section 5 directly apply in this
context whenever the market is assumed to be completed via an option-based hedging strategy. However, it
is well known that such an assumption is equivalent to a very demanding hypothesis on the realization of the
options dynamics and their associated risk premia, and it may be more realistic to assume that the market
remains incomplete, and then, study a hedging strategy based on the tradable asset only. As we shall see
below, such a strategy leads to more involved pricing and hedging equations.
Let then the observed price process be a solution to the following set of SDE’s

dSt = St(σtdW
1
t + γλdδt + µtdt) (6.1)

dσt = νtdt+ ΣtdW
2
t (6.2)

where (W 1,W 2) is a two-dimensional Wiener process under P with correlation ρ:

d < W 1,W 2 >t= ρdt,

and the processes µt, νt and Σt are actually functions of the state variables S, σ.
Consider again a markovian framework, thereby looking for the value process V and the optimal strategy δ
as smooth functions of the state variables

δt = δ(St, σt, t)

Vt = V (St, σt, t).

Then, the dynamics of the observed price becomes

dSt =
St

1− γλSt ∂δ∂S
(σtdW

1
t + γλ

∂δ

∂σ
dσt + dQt), (6.3)
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the orthogonality condition reads

(
∂V

∂S
− δ)d < S, S̄ >t +

∂V

∂σ
d < σ, S̄ >t= 0 (6.4)

and the pricing equation for the value function V is

∂V

∂t
+

1

2
(
∂2V

∂S2
− γλSt(

∂δ

∂S
)2)

d < S, S >t
dt

+
1

2
(
∂2V

∂σ2
− γλSt(

∂δ

∂σ
)2)

d < σ, σ >t
dt

+

+ (
∂2V

∂σ∂S
− γλSt

∂δ

∂σ

∂δ

∂S
)
d < S, σ >t

dt
+ L1V = 0, (6.5)

where L1 is a first-order partial differential operator.
Equations (6.4) and (6.5) are quite complicated. In the next paragraph, we focus on a particular case that
allows one to fully assess their well-posedness.

6.1 The case γ = 1, ρ = 0

When γ = 1, the martingale component of the supply price does not depend on the strategy anymore. As a
matter of fact, the supply price dynamics is given by

dS̄t = dSt + St((1− 2γ)λdδt +
1

2
µd < δ, δ >t),

see (3.4), and therefore, using (6.1), there holds that

dS̄t = St(σtdW
1
t + λ(1− γ)dδt + dRt) ≡ St(σtdW 1

t + dRt), (6.6)

where R is a process of bounded variation. If, in addition, the Wiener processes for the asset and the
volatility are supposed to be uncorrelated: ρ = 0, the tedious computations leading to the optimal hedge
and value function simplify, and one can study in full generality the well-posedness of the pricing and hedging
equations (6.4)(6.5).
First and foremost, the orthogonality condition (6.4) simply reads in this case

δ =
∂V

∂S
, (6.7)

exactly as in the complete market case. This is a standard result in local-risk minimization with stochastic
volatility when there is no correlation.
As for the pricing equation (6.5), one first works out using (6.7) the various brackets in (6.5) and finds that

d < S, S >t
dt

= (1− λSt
∂2V

∂S2
)−2(σ2

tS
2
t + λ2S2

t (
∂2V

∂S∂σ
)2Σ2

t ), (6.8)

d < σ, σ >t
dt

= Σ2 (6.9)

and
d < S, σ >t

dt
= (1− λSt

∂2V

∂S2
)−1λStΣ

2
t

∂2V

∂S∂σ
. (6.10)

Plugging these expressions in (6.5) yields the pricing equation for V

∂V

∂t
+

1

2

∂2V

∂S2
(1− λSt(

∂2V

∂S2
))−1(σ2

tS
2
t + λ2S2

t (
∂2V

∂S∂σ
)2Σ2

t ) +
1

2
(
∂2V

∂σ2
− λSt(

∂2V

∂S∂σ
)2)Σ2+

λStΣ
2
t (
∂2V

∂S∂σ
)2 + L1V = 0, (6.11)
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or, after a few final rearrangments,

∂V

∂t
+

σ2
tS

2
t

2(1− λSt(∂
2V
∂S2 ))

∂2V

∂S2
+

1

2

∂2V

∂σ2
Σ2 +

1

2

λStΣ
2

(1− λSt(∂
2V
∂S2 ))

(
∂2V

∂σ∂S
)2 + L1V = 0. (6.12)

The main result of this section is the

Proposition 6.1 Equation (6.12) is of parabolic type.

Proof: one has to study the monotocity of the operator

L : V → L(V ) ≡ σ2
tS

2
t

2(1− λSt(∂
2V
∂S2 ))

∂2V

∂S2
+

1

2

∂2V

∂σ2
Σ2 +

1

2

λStΣ
2

(1− λSt(∂
2V
∂S2 ))

(
∂2V

∂σ∂S
)2. (6.13)

Introducing the classical notations

p ≡
(
p11 p12

p21 p22

)
(6.14)

with p11 = ∂2V
∂S2 , p12 = p21 = ∂2V

∂S∂σ and p22 = ∂2V
∂σ2 and defining

L(S,p) ≡ σ2
tS

2
t p11

(1− λStp11)
+ Σ2p22 +

λStΣ
2

(1− λStp11)
p2

12, (6.15)

one is led to study the positivity of the 2× 2 matrix ∂L
∂p11

1
2
∂L
∂p12

1
2
∂L
∂p12

∂L
∂p22

 . (6.16)

Setting F (p11) = σ2S2p11
1−λSp11 and D(p11) = 1− λSp11, one needs to show that the matrix H(p) F ′(p11) + (λSΣ)2 p

2
12

D2 λSΣ2 p12
D

λSΣ2 p12
D Σ2

 (6.17)

is positive. This result is trivially shown to be true by computing the trace and determinant of H(p):

Tr(H(p)) = F ′(p11) + Σ2 + (λSΣ)2 p
2
12

D2
(6.18)

and
Det(H(p)) = Σ2F ′(p11) (6.19)

and using the fact that F is a monotonically increasing function.
This ends the proof of Proposition 6.1.
As a final remark, we point out that the condition on the payoff for (6.12) to have a global, smooth solution,
is exactly the same as in the one-dimensional case: stochastic volatility does not impose further constraints,
except the now imperfect replication strategy.

7 Concluding remarks
In this work, we model the effect of liquidity costs and market impact on the pricing and hedging of deriva-
tives, using a static order book description and introducing a numerical parameter measuring the level
of asymptotic market impact. In the complete market case, a structural result characterizing the well-
posedness of the strategy-dependent diffusion is proven. Extensions to incomplete markets and nonlinear
hedging strategies are also considered.
We conclude with a discussion of the two conditions that play a fundamental role in our results.
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The condition γ ∈ [2
3
, 1]

Of interest is the interpretation of the condition on the resilience parameter: 2
3 6 γ 6 1.

The case γ > 1 is rather trivial to understand, as one can easily see that it leads to arbitrage by a simple
round-trip trade. The case γ < 2

3 is not so simple. The loss of monotonicity of the function F (p) =
p(1+(1−2γ)p)

(1−γp)2 for γ < 2
3 yields the existence of p1, p2 such that p1 < p2 but F (p1) > F (p2), which will lead to

an arbitrage opportunity as we now show.
Recall that the price of the replicating strategy solves the equation

∂V

∂t
+

1

2
σ2SF

(
S
∂2V

∂S2

)
= 0, (7.1)

and assume that there exists p ∈ R with F ′(p) < 0. One can then find two values p1 < p2 such that
F (p1) > F (p2). Consider now two contingent claims Φ1,Φ2 satisfying S ∂

2Φi

∂S2 ≡ pi, i = 1, 2, together with
∂Φ
∂S (S0) = 0,Φi(S0) = 0 for some given S0 > 0. Under these assumptions, Φ2(S) ≥ Φ1(S) for all S.
Then, there exist explicit solutions Vi(t, S) to (7.1) with terminal conditions Φi, i = 1, 2, given simply by
translations in time of the terminal payoff:

Vi(t, S) = Φi(S) + (T − t)σ
2

2
SF (pi). (7.2)

Consider the following strategy: sell the terminal payoff Φ1 at price V1(0, S0), without hedging, and hedge
Φ2 following the replicating strategy given by (7.1). The final wealth of such a strategy is given by

Wealth(T ) = (Φ2(ST )− V2(0, S0))︸ ︷︷ ︸
hedge strategy

+ (V1(0, S0)− Φ1(ST ))︸ ︷︷ ︸
option sold

. (7.3)

Using (7.2), one obtains

Wealth(T ) = T
σ2

2
S0(F (p1)− F (p2)) + (Φ2(ST )− Φ2(S0))− (Φ1(ST )− Φ1(S0)) , (7.4)

which is always positive, given the conditions on Φ1,Φ2, and thereby generates an arbitrage opportunity.
Note that this arbitrage opportunity exists both for γ > 1 and γ < 2/3, since it just requires that F be locally
decreasing. However, in the case γ > 1, since round-trip trades generate money, it is the price dynamics
itself that create arbitrage opportunities, whereas in the case γ < 2/3, it is the option prices generated by
exact replication strategies that lead to an arbitrage.
In this case it makes sense to look for super-replicating strategies, in the spirit of [4], this will be the object
of a forthcoming work.

The condition S ∂2V
∂S2 <

1
γλ

Another important question has been left aside so far: the behaviour of the solution to the pricing equation
when the constraint is violated at maturity - after all, this is bound to be the case for a real-life contingent
claim such as a call option ! From a mathematical point of view, see the discussion in [12], there is a
solution which amounts to replace the pricing equation P(D)(V ) = 0 by Max(P(D)(V ), S ∂

2V
∂S2 − 1

γλ ) = 0,
but of course, in this case, the perfect replication does not exist any longer - again, one should use a
super-replicating strategy.
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