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Preliminary control variates to improve empirical

regression methods

Tarik Ben Zineb and Emmanuel Gobet

Abstract. We design a variance reduction method to reduce the estimation error in re-

gression problems. It is based on an appropriate use of other known regression functions.

Theoretical estimates are supporting this improvement and numerical experiments are il-

lustrating the efficiency of the method.
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1 Introduction

Empirical regression methods to compute E(H|X = x) are widely used in Monte-

Carlo algorithms to solve optimal stopping problems [4,6,12], Backward Stochas-

tic Differential Equations [7, 8, 11] and various stochastic control problems [1, 2]:

these algorithms are often referred to as Least Squares Monte-Carlo algorithms.

However in some situations, the number of simulations is constrained to be rel-

atively small (due to restriction on the computational time, see [3]). That case

may cause significant inaccuracy in the least squares regression method, because

the estimation error (also called statistical error) can be dominant, in particular

if the conditional variance Var(H|X) is large (see [9, Chapter 11] for details, or

Theorem 2.1 below). The purpose of this work is to design a flexible method to

significantly reduce it.

Depending on the use of empirical regression methods, the framework can be

quite different. In the statistics field with applications to inference, data are rather

given to the experimenter and in general, he can not rely on extra information

about their distribution . In the probability field related to Monte-Carlo algorithms,

the situation is different: the experimenter simulates data with possibly additional

information. Here we consider this second framework by assuming the knowledge
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of explicit regression functions that are going to be used to optimally reduce the

estimation error of the empirical regression methods (see Theorems 2.2 and 2.3

below). These explicit regression functions are going to serve as control variates

(called Preliminary Control Variates or PCV in short), which result into a two-

stages algorithm presented in Section 2.3: firstly a L2-projection of the response

H using the PCV, secondly a linear least squares regression applied to the residual.

Our aim here is to prove numerically as well as mathematically how, in a context

of few simulations, it reduces the estimation error and hence achieves the optimal

bound (approximation error).

This paper is structured as follows. In the next section, we review an existing

result of the error convergence of the standard linear least squares regression esti-

mate; then we introduce the PCV method and state our main result about the global

error estimates. The proofs are done in Section 3, where we recall the necessary

tools of the Vapnik-Chervonenkis theory. Section 4 gathers numerical tests (in di-

mension 1 and 2 for X) showing the efficiency of the method. In some cases, the

same accuracy is obtained using 50 times fewer simulations. We refer the reader

to [3] for additional experiments.

2 Statement of the problem and main results

2.1 Setting

Our goal is to approximate

m(x) = E[H|X = x] with H = h(Z),

where Z and X are two random variables taking values respectively in R
dz and

R
dx (1 ≤ dz, dx < +∞) and h : R

dz → R is a known function. To evaluate

m(·), we make use of a data sample DN := (Zi, Xi)1≤i≤N which consists of i.i.d

simulations of (Z, X). We set Hi = h(Zi).

2.2 Standard linear least squares regression method

Our presentation is inspired from [9].

• Let µN be the empirical measure associated to the sample DN :

µN (dz, dx) :=
1

N

N∑

i=1

δ(Zi,Xi)(dz, dx).
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• The L2-norm of a function g, measured with respect to µN , is denoted by

‖g‖L2(µN ) :

‖g‖2
L2(µN ) :=

1

N

N∑

i=1

g2(Zi, Xi).

• Similarly, by denoting µ the law of (Z, X), we define ‖g‖L2(µ) by

‖g‖2
L2(µ) :=

∫
g2(z, x)µ(dz, dx).

• The unknown regression function m(·) : R
dx 7→ R is approximated within

the linear vector space

FN = Span(Φk : 1 ≤ k ≤ KF ),

with KF ∈ N
∗ and where Φk : R

dx 7→ R may depend on (X1, · · · , XN )
(see for instance the examples of data-driven basis functions in [4]).

The standard linear least squares regression method approximates1 m by mN =∑KF

k=1 γ̃kΦk where

(γ̃k)1≤k≤KF
= arginf

(γk)k

1

N

N∑

i=1

∣∣∣∣∣Hi −
KF∑

k=1

γkΦk(Xi)

∣∣∣∣∣

2

.

The following result (see [9, Theorem 11.1]) provides a standard control on the

convergence rate of mN . For more recent results, see [10].

Theorem 2.1. Assume Σ
2 = supx∈Rdx Var(H|X = x) < +∞. Then

E

[
‖mN − m‖2

L2(µN )

]
≤ Σ

2 KF
N

+ E

[
inf

f∈FN

‖f − m‖2
L2(µN )

]
.

The above global error reads as the usual bias-variance decomposition, consist-

ing of a sum of two terms.

• The first term is the estimation error: it is due to the finite number of simula-

tions.

• The second term is the approximation error: it measures how well the regres-

sion function m can be approximated by functions of FN .

1 The minimizing function mN is unique in L2(µN ) but there may be multiple minimizing coef-

ficients: in that case, we choose for eγ the SVD-optimal one, corresponding to that with minimal

norm. This choice does not affect the empirical regression function mN , see [8] for details.
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• The larger KF , the smaller the approximation error but the larger the estima-

tion error: hence, KF and N have to be tuned optimally to achieve optimal

convergence rates [13, 15].

Numerical experiments in [3] show that the upper bound in Theorem 2.1 is quite

tight. But, in a context of few simulations or when the variance supx∈Rdx Var(H|X =
x) is large, the estimation error is dominant, making the global error be far from

achieving the approximation error. Hence in such a context, designing a new re-

gression method which accelerates the convergence of the global error to the ap-

proximation error becomes an essential concern: this is the subject of the next

subsection where we present the PCV method and the related results.

2.3 PCV least squares regression method

Heuristics

Suppose that the available additional information is the knowledge of Kpcv regres-

sion functions x 7→ E[Pk(Z)|X = x] for some known functions Pk : R
dz 7→ R

(1 ≤ Kpcv < +∞). There is no loss of generality2 to assume that they are condi-

tionally centered:

∀1 ≤ k ≤ Kpcv : E[Pk(Z)|X] = 0.

Based on this extra information and on the same sample data DN , we wish to

reduce the estimation error term Σ
2 KF

N in the previous theorem, that is to improve

the factor supx∈Rdx Var(H|X = x).

We expect such an improvement by replacing Hi by Hi −
∑Kpcv

k=1 α⋆
kPk(Zi)

where (α⋆
k)1≤k≤Kpcv

are the optimal coefficients

(α⋆
k)1≤k≤Kpcv

= arginf
α∈A

E

[∣∣∣H −
Kpcv∑

k=1

αkPk(Z)
∣∣∣
2
]

(1)

(the set A of admissible parameters is defined later on). Indeed, as E[Pk(Z)|X] =
0 for any k, observe that α⋆ is the minimizer

arginf
α∈A

Var
(
H −

Kpcv∑

k=1

αkPk(Z)
)

= arginf
α∈A

E

[
Var
(
H −

Kpcv∑

k=1

αkPk(Z)|X
)]

, (2)

2 Indeed, we can rewrite the regression problem using extended variables ( bZ, bX, bH, bm) where
bZ := (X, Z), bX := X , bH := h(Z), bm( bX) := E( bH| bX) = m(X), bPk( bZ) := Pk(Z) −

E[Pk(Z)|X] that satisfies E( bPk( bZ)| bX) = 0. See also further examples.
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which might be close to minimizing supx∈Rdx Var(H −∑Kpcv

k=1 αkPk(Z)|X = x)
over α. Actually, to achieve a fully implementable scheme, the minimization w.r.t.

the L2(µ)-norm in (1) is going to be replaced by a minimization over the sample

data DN .

Examples of known regression functions

Our examples are inspired by applications related to a given stochastic process

(Ys)0≤s≤T , that is for computing E[h(YT )|Yt].
We first consider control variates with local support.

a) Consider a standard Brownian motion W ; if h were well approximated by

piecewise constant functions, one might take advantage of the control variates

Pk(Z) := Pk(Wt, WT ) := p0
xk,∆(WT ) − E

[
p0

xk,∆(WT )|Wt

]
,

with

p0
xk,∆ := 1]xk−∆,xk+∆]

and xk := −2
√

T +(k− 1
2
)4

√
T

Kpcv
, ∆ := 2

√
T

Kpcv
, so that the full support of (p0

xk,∆)k

is ]−2
√

T , 2
√

T ]. Besides, one has E

[
p0

xk,∆(WT )|Wt = x
]

= N
(

xk+∆−x√
T−t

)
−

N
(

xk−∆−x√
T−t

)
and X = Wt, Z = (Wt, WT ).

b) Now suppose that h could be well approximated by hat functions. Define

p1
xk,∆(x) := (1 − |x − xk

∆
|)+

where xk := −2
√

T + k∆, ∆ := 4
√

T
Kpcv+1

, and set

Pk(Z) := Pk(Wt, WT ) := p1
xk,∆(WT ) − E

[
p1

xk,∆(WT )|Wt

]
,

where

E
[
p1

xk,∆(WT )|Wt = x
]

=
x − xk−1

∆

[
N
(

xk − x√
T − t

)
−N

(
xk−1 − x√

T − t

)]

+
xk+1 − x

∆

[
N
(

xk+1 − x√
T − t

)
−N

(
xk − x√

T − t

)]

+

√
T − t

∆
√

2π

[
e

(xk−1−x)2

2(T−t) − 2e
(xk−x)2

2(T−t) + e
(xk+1−x)2

2(T−t)

]
.
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c) The extension of the previous example to a d-dimensional Brownian Motion

W = (W 1, . . . ,W d) is directly obtained by tensorization, leading to Kpcv =

(K
(d=1)
pcv )d control variates:

Pk(Z) := Pk1,...,kd
(Wt, WT ) :=

d∏

i=1

p1
xki

,∆(W i
T ) −

d∏

i=1

E

[
p1

xki
,∆(W i

T )|W i
t

]
,

where 1 ≤ ki ≤ K
(d=1)
pcv , 1 ≤ i ≤ d.

We now consider control variates with full support.

d) Associated to a standard Brownian motion (Ws)0≤s≤T , put X = Wt, Z =
(Wt, WT ) and let (Hk)k be the Hermite polynomials given by Hk(x) :=

ex2/2 dk

dxk (e−x2/2). Because of the martingale property of
(
tk/2Hk

(
Wt√

t

))
t≥0

(see [14, Chapter 4]), one can take as control variates

Pk(Z) := T k/2Hk

(
WT√

T

)
− tk/2Hk

(
Wt√

t

)
.

e) Similarly, for a Poisson process (Ns)0≤s≤T , let (Ck)k be the Charlier polyno-

mials defined by
∑∞

i=0 Ci(y, a)wi

i! = ew(1 − w
a )y. Since

(
tkCk (Nt, t)

)
0≤t≤T

is a martingale,

Pk(Z) := T kCk (NT , T ) − tkCk (Nt, t)

defines a control variate. Other examples of orthogonal polynomials in relation

with stochastic processes are provided in [14].

f) Recently in [5], Cuchiero etal. have proved that polynomials of stochastic

processes are preserved by conditional expectations, for a large class of mod-

els including affine processes, processes with quadratic diffusion coefficients,

Lévy-driven SDEs with affine vector fields. . . all these examples naturally lead

to PCVs of polynomial type.

g) More generally, let (Ys)0≤s≤T be a R
d-valued diffusion process

dYt = b(t, Yt)dt + σ(t, Yt)dWt

(assuming globally Lipschitz coefficients), and let (pk)1≤k≤Kpcv
be a family

of smooth functions. Put X = Yt, Z = (Yt, Ut,T , YUt,T
, YT ) where Ut,T is

a random variable uniformly distributed on [t, T ], independent of (Ys)0≤s≤T .

Denoting by L the infinitesimal generator and using Itô’s formula, it is easy to

check that

Pk(Z) := pk(T, YT ) − (T − t)(∂t + L)pk(Ut,T , YUt,T
) − pk(t, Yt)

is such E[Pk(Z)|Yt] = 0, thus it is a control variate.
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Notations and algorithm description

Let A be a non-empty closed convex subset of R
Kpcv and for α ∈ A, put

Hα = H −
Kpcv∑

k=1

αkPk(Z).

The PCV algorithm is as follows.

STEP 1. Variance Reduction. We approximate (α⋆
k)1≤k≤Kpcv

by the coefficients

(α̃k)1≤k≤Kpcv
using the empirical norm in (1):

(α̃k)1≤k≤Kpcv
:= arginf

α∈A

1

N

N∑

i=1

∣∣∣∣∣∣
Hi −

Kpcv∑

k=1

αkPk(Zi)

∣∣∣∣∣∣

2

.

STEP 2. Least squares regression. We compute the coefficients of the least

squares regression (β̃k)1≤k≤KF
verifying:

(β̃k)1≤k≤KF
:= arginf

(βk)k

1

N

N∑

i=1

∣∣∣∣∣∣
Hi −

Kpcv∑

k=1

α̃kPk(Zi) −
KF∑

k=1

βkΦk(Xi)

∣∣∣∣∣∣

2

.

Then, m̃N is defined by

m̃N :=

KF∑

k=1

β̃kΦk,

because the regression function of H −∑Kpcv

k=1 α⋆
kPk(Z) is also m(.),

due to the fact that E[Pk(Z)|X] = 0.

Hypothesis

To prove our theorems, we assume

(H) For some L ≥ 1,

i) ‖Pk‖∞ ≤ 1 and ‖h‖∞ ≤ L,

ii) A := {α ∈ R
Kpcv :

∑Kpcv

i=1 |αi| ≤ L}.
Clearly, A is a non empty closed convex set. These are technical assumptions,

which allow us to bound uniformly the PCVs and to apply Hoeffding-type con-

centration inequalities to them.
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Main theorems

Theorem 2.2. Set Σ
2(α⋆) = supx∈Rdx Var(Hα⋆ |X = x). Then, for any ρ > 0,

E

[
‖m̃N − m‖2

L2(µN )

]
≤ (1 + ρ−1)L4

[
c1 + (c2 + c3 log(N))(Kpcv + 1)

]

N

+(1 + ρ)
KF
N

Σ
2(α⋆) + (1 + ρ)E

[
inf

f∈FN

‖f − m‖2
L2(µN )

]
,

where c1, c2 et c3 are universal constants.

This theorem shows that the PCV regression presumably reduces the estimation

error through the factor Σ
2(α⋆) instead of the usual Σ

2 = Σ
2(0). But on the other

hand, the error contains an additional term (related to c1, c2, c3) because of the

extra error in the estimation of α⋆ by α̃.

Hence, in practice, we have to choose a relatively small Kpcv with respect to KF .

In the numerical tests, we illustrate this issue.

Theorem 2.3. Consider piecewise constant FN -basis functions of the form Φk =
1Ik

where (Ik)1≤k≤KF
are disjoint sets. Assume that one of the following assump-

tions holds, for some constant cI ≥ 1:

a) (Ik)k depends on (X1, . . . , XN ) and their frequencies dominate the uniform

distribution, i.e.

1

N

N∑

i=1

1Xi∈Ik
≥ 1

cIKF
, 1 ≤ k ≤ KF ;

b) (Ik)k are deterministic and their occurrences w.r.t. the distribution of X dom-

inate the uniform distribution, i.e.

P(X ∈ Ik) ≥
1

cIKF
, 1 ≤ k ≤ KF .

Then, for any ρ > 0,

E

[
‖m̃N − m‖2

L2(µN )

]
≤(1 + ρ−1)L4

[
c1 + (c2 + c3 log(N))(Kpcv + 1)

]

N

+ (1 + ρ)cI
KF
N

inf
α∈A

E [Var(Hα|X)]

+ (1 + ρ)E

[
inf

f∈FN

‖f − m‖2
L2(µN )

]
,

with the same constants c1, c2 et c3 as before.
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In Theorem 2.3, provided an additional hypothesis on Φk, we obtain a more pre-

cise bound for the overall error, since the second term factor is infα∈A E [Var(Hα|X)],
which is exactly the quantity minimized in STEP 1 of the PCV algorithm.

3 Proofs

We first introduce notations specific to the proofs.

i) Denote by 〈, 〉µ and 〈, 〉µN
the scalar products related to the L2-norms ‖.‖µ et

‖.‖µN
introduced before: for two functions g1, g2 : R

dz × R
dx → R,

〈g1, g2〉µ =

∫
g1(z, x)g2(z, x)µ(dz, dx), 〈g1, g2〉µN

=
1

N

N∑

i=1

g1(Zi, Xi)g2(Zi, Xi).

ii) PCV spaces: set

G :=





Kpcv∑

k=1

αkPk : α ∈ R
Kpcv



 , GA :=





Kpcv∑

k=1

αkPk : α ∈ A



 ,

TLG := {TLg : g ∈ G} ,

where TL is the truncation operator of functions at the level L defined by

TLg(x) = −L ∨ g(x) ∧ L.

It is important to observe that the assumption (H) implies GA ⊂ TLG.

iii) Define m̃⋆
N by

m̃⋆
N =

KF∑

k=1

β̃⋆
kΦk

where

(α⋆
k)1≤k≤Kpcv

= arginf
α∈A

E




∣∣∣∣∣∣
H −

Kpcv∑

k=1

αkPk(Z)

∣∣∣∣∣∣

2

 ,

(β̃⋆
k)1≤k≤KF

= arginf
(βk)k

1

N

N∑

i=1

∣∣∣∣∣∣
Hi −

Kpcv∑

k=1

α⋆
kPk(Zi) −

KF∑

k=1

βkΦk(Xi)

∣∣∣∣∣∣

2

.

We now present some tools useful in the theory of non-parametric regression,

see [9, Chapter 9] for full details.
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Definition 3.1. [Covering numbers Np(ε,G, zM
1 )] Let G be a set of functions

from R
d to R and let zM

1 = (z1, · · · , zM ) be M points in R
d: denote by νM the

corresponding empirical measure and by ‖.‖Lp(νM ) the related Lp-norm (p ≥ 1).

(i) For ε > 0, (gj : R
d → R)1≤j≤n is called an ε-cover of G w.r.t ‖.‖Lp(νM ), if

for every g ∈ G, there is a j ∈ {1, · · · , n} such that ‖g − gj‖Lp(νM ) < ε.

(ii) We denote by Np(ε,G, zM
1 ) the minimal size n of ε-covers (gj)1≤j≤n of G

w.r.t ‖.‖Lp(νM ).

The combination of Lemma 9.2, Theorem 9.4, Theorem 9.5 and Equation (10.23)

in [9] leads to the following ready-to-use estimates.

Proposition 3.2. For any zM
1 points in R

d and any ε ∈]0, L/2], we have

N1

(
ε, TLG, zM

1

)
≤ 3

(
2e(2L)

ε
log

(
3e(2L)

ε

))Kpcv+1

≤ 3

(
9L

ε

)2(Kpcv+1)

,

N2

(
ε, TLG, zM

1

)
≤ 3

(
2e(2L)2

ε2
log

(
3e(2L)2

ε2

))Kpcv+1

≤ 3

(
18L2

ε2

)2(Kpcv+1)

.

Actually, the second series of inequalities are easily derived from log(x) ≤ x/e
for any x > 0.

3.1 Proof of Theorem 2.2

We have :

E

[
‖m̃N − m‖2

L2(µN )

]
≤(1 + ρ−1)E

[
‖m̃N − m̃⋆

N‖2
L2(µN )

]

+ (1 + ρ)E
[
‖m̃⋆

N − m‖2
L2(µN )

]
. (3)

Step 1: Bound for E[‖m̃N − m̃
⋆
N‖2

L2(µN )]. m̃N and m̃⋆
N are respectively the

orthogonal projections onto Span(Φk : 1 ≤ k ≤ KF ) with respect to the scalar

product 〈., .〉µN
of h − ∑Kpcv

k=1 α̃kPk and h − ∑Kpcv

k=1 α⋆
kPk. By the contraction

property of projection, we get:

E

[
‖m̃N − m̃⋆

N‖2
L2(µN )

]
≤ E


‖

Kpcv∑

k=1

α̃kPk −
Kpcv∑

k=1

α⋆
kPk‖2

L2(µN )




= E

[
‖rN − r‖2

L2(µN )

]
(4)
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where we have set r :=
∑Kpcv

k=1 α⋆
kPk and rN :=

∑Kpcv

k=1 α̃kPk.

We now estimate E[‖rN−r‖2
L2(µ)] before deducing a bound on E[‖rN−r‖2

L2(µN )].

Actually, in view of (1), r is the L2(µ)-projection of h onto the non-empty closed

convex set GA; since rN is also in GA, we have
∫

|rN (z) − r(z)|2µ(dz, dx) ≤
∫

|rN (z) − h(z)|2µ(dz, dx) − E[|r(Z) − H|2].

Because of 1
N

∑N
i=1 |rN (Zi) − Hi|2 − 1

N

∑N
i=1 |r(Zi) − Hi|2 ≤ 0, we deduce:

∫
|rN (z)−r(z)|2µ(dz, dx)

≤ T1,N :=

∫
|rN (z) − h(z)|2µ(dz, dx) − E[|r(Z) − H|2]

− 2

(
1

N

N∑

i=1

|rN (Zi) − Hi|2 −
1

N

N∑

i=1

|r(Zi) − Hi|2
)

.

Let us estimate E(T1,N ) by controlling P(T1,N > t), t > 0. Since rN ∈ GA, we

have

P(T1,N > t) ≤ P

(
∃f ∈ GA : E[|f(Z) − H|2] − E[|r(Z) − H|2]

−
[ 1

N

N∑

i=1

|f(Zi) − Hi|2 −
1

N

N∑

i=1

|r(Zi) − Hi|2
]

>
1

2

[ t

2
+

t

2
+ E[|f(Z) − H|2] − E[|r(Z) − H|2]

])
.

By using Theorem A.2 in Appendix and Proposition 3.2 with GA ⊂ TLG, and

restricting to t ≥ 320L4

N , we get

P(T1,N > t) ≤ 14 sup
zN

1

N1

(
t

640L3
,GA, zN

1

)
exp

(
− N

5136L4
t

)

≤ 14 sup
zN

1

N1

(
L

2N
, TLG, zN

1

)
exp

(
− N

5136L4
t

)

≤ 42(18N)2(Kpcv+1) exp

(
− N

5136L4
t

)
.

We deduce, for any ε ≥ 320L4

N ,

E(T1,N ) ≤ ε +

∫ ∞

ε
42(18N)2(Kpcv+1) exp

(
− N

5136L4
t

)
dt
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≤ ε + 42(18N)2(Kpcv+1) 5136L4

N
exp

(
− N

5136L4
ε

)
.

The expression above is minimal for ε = 5136L4

N log
(
42(18N)2(Kpcv+1)

)
(note that

ε ≥ 320L4

N ). By plugging this value, we find :

E

[
‖rN − r‖2

L2(µ)

]
≤ E(T1,N ) ≤ 5136L4

N

(
log(42e) + 2(Kpcv + 1) log(18N)

)
. (5)

To deduce a bound for E

[
‖rN − r‖2

L2(µN )

]
, we set

T2,N := 2(max{‖rN − r‖L2(µN ) − 2‖rN − r‖L2(µ), 0})2

and we write the decomposition

‖rN − r‖2
L2(µN ) ≤ (max{‖rN − r‖L2(µN ) − 2‖rN − r‖L2(µ), 0} + 2‖rN − r‖L2(µ))

2

≤ T2,N + 8‖rN − r‖2
L2(µ). (6)

Let u > 144L2

N . Using rN ∈ GA ⊂ TLG, Lemma A.1 in Appendix and Proposition

3.2, we obtain

P(T2,N > u) ≤ P(∃f ∈ TLG : ‖f − r‖L2(µN ) − 2‖f − r‖L2(µ) >
√

u/2)

≤ 3 sup
z2N

1

N2

(√
u

24
, TLG, z2N

1

)
exp

(
− N

2304L2
u

)

≤ 3 sup
z2N

1

N2

(
L

2
√

N
, TLG, z2N

1

)
exp

(
− N

2304L2
u

)

≤ 9(72N)2(Kpcv+1) exp

(
− N

2304L2
u

)
.

Thus, similarly to the evaluation of E(T1,N ), we obtain, for any ε > 144L2

N ,

E(T2,N ) ≤ ε + 9(72N)2(Kpcv+1) 2304L2

N
exp

(
− N

2304L2
ε

)
.

For the choice ε = 2304L2

N log
(
9(72N)2(Kpcv+1)

)
> 144L2

N , we get:

E(T2,N ) ≤ 2304L2

N
(log(9e) + 2(Kpcv + 1) log(72N)). (7)

Plugging (5-6-7) into (4) and using L2 ≤ L4, we obtain

E

[
‖m̃N − m̃⋆

N‖2
L2(µN )

]
≤ L4 c1 + (c2 + c3 log(N))(Kpcv + 1)

N
. (8)
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Step 2: Bound for E[‖m̃
⋆
N − m‖2

L2(µN )]. To simplify, we introduce the nota-

tion E
∗[.] := E[.|X1, . . . , XN ].

Consider a complete orthonormal basis (f1, . . . , fK) (K ≤ KF ) for FN w.r.t. the

empirical scalar product 〈., .〉µN
:

〈fk, fl〉µN
=

1

N

N∑

i=1

fk(Xi)fl(Xi) = δk,l. (9)

Observe that

E
∗[‖m̃⋆

N − m‖2
L2(µN )] = E

∗
[

1

N

N∑

i=1

|m̃⋆
N (Xi) − E

∗[m̃⋆
N (Xi)]|2

]

+E
∗
[

1

N

N∑

i=1

|E∗[m̃⋆
N (Xi)] − m(Xi)|2

]

because E
∗
[

1
N

∑N
i=1(m̃

⋆
N (Xi) − E

∗[m̃⋆
N (Xi)])(E

∗[m̃⋆
N (Xi)] − m(Xi))

]
= 0.

This proves

E

[
‖m̃⋆

N −m‖2
L2(µN )

]
= E

[
‖m̃⋆

N −E
∗[m̃⋆

N ]‖2
L2(µN )

]
+E

[
‖E∗[m̃⋆

N ]−m‖2
L2(µN )

]
.

(10)

Similarly to the proof of [9, Theorem 11.1, pp.185–187], we have

E

[
‖E

∗[m̃⋆
N ] − m‖2

L2(µN )

]
= E

[
inf

f∈FN

‖f − m‖2
L2(µN )

]
, (11)

E
∗
[
‖m̃⋆

N − E
∗[m̃⋆

N ]‖2
µN

]
=

1

N2

N∑

i=1

Var(Hα⋆

i |Xi)

K∑

k=1

(fk(Xi))
2. (12)

Introducing Σ
2(α⋆) for the uniform bound regarding to the conditional variance of

Hα⋆
and using ‖fk‖L2(µN ) = 1, we obtain

E
∗
[
‖m̃⋆

N − E
∗[m̃⋆

N ]‖2
L2(µN )

]
≤ K

N
Σ

2(α⋆).

Thus, since K ≤ KF , it follows

E

[
‖m̃⋆

N − E
∗[m̃⋆

N ]‖2
L2(µN )

]
≤ KF

N
Σ

2(α⋆). (13)

We complete the proof by combining (3-8-10-11-13).
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3.2 Proof of Theorem 2.3

Case a) The orthonormal basis of FN w.r.t. 〈., 〉µN
(see (9)) is readily given by

fk =
1Ik√

1
N

∑N
i=1 1Xi∈Ik

≤
√

cIKF1Ik
, 1 ≤ k ≤ K = KF .

Therefore, we have
∑K

k=1(fk(Xi))
2 ≤ cIKF and from (12), we deduce

E
[
‖m̃⋆

N − E
∗[m̃⋆

N ]‖2
L2(µN )

]
≤ 1

N
E

[
Var(Hα⋆ |X)

]
cIKF . (14)

Gathering the idendity (2) and the inequalities (3-8-10-11-14) leads to the theorem

result.

Case b) Concerning the orthogonalisation of (Φk)1≤k≤KF
, only K ≤ KF sets

contain at least one data. More precisely, for such a set Ik for which pk,N :=
1
N

∑N
i=1 1Xi∈Ik

> 0, we can set

fk =
1Ik√
pk,N

.

Hence, the last factor in (12) is equal to
∑K

k=1(fk(Xi))
2 =

∑KF

k=1

1Xi∈Ik

pk,N
1pk,N>0

using the convention 0/0 = 0. Then, by a symmetry argument within (X1, . . . , XN ),
we have

E

[
‖m̃⋆

N − E
∗[m̃⋆

N ]‖2
L2(µN )

]
=

1

N
E

[
Var(Hα⋆

1 |X1)

KF∑

k=1

1X1∈Ik

pk,N
1pk,N>0

]

=

KF∑

k=1

E

{
Var(Hα⋆

1 |X1)1X1∈Ik
E

[
1

1 +
∑N

i=2 1Xi∈Ik

]}
.

Observe that
∑N

i=2 1{Xi∈Ik} is binomially distributed with parameters (N−1, P(X ∈
Ik)): from [9, Lemma 4.1] we know that

E
[
1/(1 +

N∑

i=2

1Xi∈Ik
)
]
≤ 1

NP(X ∈ Ik)
≤ cIKF

N
.

Hence, E

[
‖m̃⋆

N − E
∗[m̃⋆

N ]‖2
L2(µN )

]
≤ cI

KF

N infα∈R
Kpcv E [Var(Hα|X)] . We con-

clude as for Case a).
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4 Numerical experiments

Consider two independent Brownian motions W and B. We experiment the method

in two cases related to the dimension of X: dx = 1 and dx = 2.

4.1 Dimension 1

Figure 1. Empirical error (in a log scale) as a function of N . Parameters: dx = 1 ,

K1 = Kpcv, K2 = KF .

Our goal is to estimate m(x) = E[h(W2)|W1 = x] where h(x) = e−
x2

2 ; due

to model assumption, m is explicit. For the PCVs, we take the hat functions, see

example b) in Paragraph 2.3. Regarding FN , we choose Φk(x) = xk, 0 ≤ k ≤ 9.
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The Figure 1 shows the global empirical error3
E

[
‖m̃N−m‖2

L2(µN )

]
for KF = 10

and various values of Kpcv, in a range of few simulations (N ≤ 10000) and in a

range of many simulations (10000 ≤ N ≤ 100000). The variables on the plots

are K1 = Kpcv and K2 = KF .

We observe that the PCV method, compared to a simple regression, improves

the convergence of the global error. However, the PCV efficiency for small N
deteriorates when Kpcv becomes large (Kpcv = 21). This is explained by the

fact that the statistical error regarding the estimation of α⋆ (term with c1, c2, c3

in Theorem 2.2) is significant for small N and large Kpcv. Thus, for a small

number of simulations, using Kpcv = 3 or 5 is optimal. The standard method with

N = 100000 yields an error equivalent to that using PCV with N = 2000: hence,

the PCV yields a improvement factor of 50 regarding to the simulation effort. In

the range of large N , the PCV method reaches the approximation error while the

standard method still requires more simulations.

4.2 Dimension 2

Consider the estimation of m(x) = E[h(W2, B2)|W1 = x, B1 = x] where

h(x1, x2) = e−
x2

1
+x2

2
+ρx1x2
2 with ρ = 0.5. We use the hat functions in dimension

2, see example c) in Paragraph 2.3. The Figure 2 represents the global empirical

error E

[
‖m̃N −m‖2

L2(µN )

]
when KF = 13×13 and with different values of Kpcv.

We observe the same features as in dimension 1. Here, the improvement factor is

about 25 comparing the PCV with Kpcv = 5 × 5 at N = 2000 and the standard

method at N = 50000.

5 Conclusion and perspectives

The PCV method significantly accelerates the convergence of the estimation error

to 0, regardless of the selected approximation space. It provides a higher accuracy

of regression-based Monte-Carlo algorithms, especially for few simulations; thus,

it can be used for efficiently reducing the computational time. However, in view of

theoretical and numerical results, a special attention has to be paid to the choice of

the PCVs and their number Kpcv, which has to be small compared to the dimen-

sion KF of the approximation space.

An adaptive selection procedure of PCVs would be worth being designed, which

is left to further research. Moreover, we will investigate how to relax the bound-

3 the outside expectation is computed through 100 runs of the algorithm.
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Figure 2. Empirical error (in a log scale) as a function of N . Parameters: dx =
2, K1 = Kpcv, K2 = KF .

edness assumptions on Pk. It would allow to consider polynomials for the PCVs,

see [3] for promising related numerical experiments.

A Appendix

Lemma A.1. Let F be a countable set of functions f : R
d → R bounded by L and

let Z2N
1 = (Z1, · · · , ZN , ZN+1, · · · , Z2N ) be a sample of i.i.d random variables.

Let the empirical measure µN be defined w.r.t. ZN
1 = (Z1, · · · , ZN ). For ε > 0,

we have

P
(
∃f ∈ F : ‖f‖L2(µN ) − 2‖f‖L2(µ) > ε

)
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≤ 3E

[
N2

(√
2

24
ε,F , Z2N

1

)]
exp

(
− Nε2

288L2

)
.

Proof: we can restrict to the case N ≥ 4L2

ε2 since otherwise, the above inequality

is obvious.

We follow the four steps of the proof of [9, Theorem 11.2]. Only STEP 1 is

different, we detail it here. Define:

‖f‖′2
L2(µN ) =

1

N

2N∑

i=N+1

|f(Zi)|2.

Let f∗ be a function in F such as

‖f∗‖L2(µN ) − 2‖f∗‖L2(µ) > ε

if there exists any such function, otherwise let f∗ be another arbitrary fixed func-

tion in F ; note that f∗ depends on ZN
1 . Then, basic computations and Chebyshev

inequality yield

P

(
2‖f∗‖L2(µ) +

ε

2
> ‖f∗‖′

L2(µN )

∣∣ ZN
1

)

≥ P

(
4‖f∗‖2

L2(µ) +
ε2

4
> ‖f∗‖′2

L2(µN )

∣∣ ZN
1

)

= 1 − P

(
3‖f∗‖2

L2(µ) +
ε2

4
≤ ‖f∗‖′2

L2(µN ) − ‖f∗‖2
L2(µ)

∣∣ ZN
1

)

≥ 1 −
Var

(
1
N

∑2N
i=N+1 |f∗(Zi)|2

∣∣ ZN
1

)

(
3‖f∗‖2

L2(µ) + ε2

4

)2

≥ 1 −
1
N L2‖f∗‖2

L2(µ)(
3‖f∗‖2

L2(µ) + ε2

4

)2
≥ 1 − L2

3N

4

ε2
≥ 2

3

using the restriction on N . For such N , it follows that

P

(
∃f ∈ F : ‖f‖L2(µN ) − ‖f‖′

L2(µN ) >
ε

4

)

≥ P

(
‖f∗‖L2(µN ) − ‖f∗‖′

L2(µN ) >
ε

4

)

≥ P

(
‖f∗‖L2(µN ) +

3ε

4
− ‖f∗‖′

L2(µN ) > ε, 2‖f∗‖L2(µ) +
3ε

4
> ‖f∗‖′

L2(µN )

)
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≥ P

(
‖f∗‖L2(µN ) − 2‖f∗‖L2(µ) > ε, 2‖f∗‖L2(µ) +

3ε

4
> ‖f∗‖′

L2(µN )

)

≥ E

(
1{‖f∗‖L2(µN )−2‖f∗‖L2(µ)>ε}P(2‖f∗‖L2(µ) +

ε

2
> ‖f‖′

L2(µN )

∣∣ ZN
1 )
)

≥ 2

3
P
(
‖f∗‖L2(µN ) − 2‖f∗‖L2(µ) > ε

)

=
2

3
P
(
∃f ∈ F : ‖f‖L2(µN ) − 2‖f‖L2(µ) > ε

)
.

In conclusion, for N ≥ 4L2

ε2 , we get

P
(
∃f ∈ F : ‖f‖L2(µN ) − 2‖f‖L2(µ) > ε

)

≤ 3

2
P

(
∃f ∈ F : ‖f‖L2(µN ) − ‖f‖′

L2(µN ) >
ε

4

)
.

STEPS 2, 3 and 4 of the proof of [9, Theorem 11.2] lead to:

P

(
∃f ∈ F : ‖f‖L2(µN ) − ‖f‖′

L2(µN ) >
ε

4

)

≤ 2E

[
N2

(√
2

24
ε,F , Z2N

1

)]
exp

(
− Nε2

288L2

)
.

The lemma is proved.

Theorem A.2. Let r :=
∑Kpcv

k=1 α⋆
kPk be the minimizer of E(|H − f(Z)|2) over

f ∈ GA, see (1). For α, β > 0 and 0 < ε ≤ 1/2, we have

P

{
∃f ∈ GA : E[|f(Z) − H|2] − E[|r(Z) − H|2]

−
(

1

N

N∑

i=1

|f(Zi) − Hi|2 −
1

N

N∑

i=1

|r(Zi) − Hi|2
)

> ε
(
α + β + E[|f(Z) − H|2] − E[|r(Z) − H|2]

)}

≤ 14 sup
zN

1

N1

(
βε

160L3
,GA, zN

1

)
exp

(
− ε2(1 − ε)αN

214(1 + ε)L4

)
.

Proof: this is an adaptation of [9, Theorem 11.4] where we take the above

definition for r instead of their r(z) = E(H|Z = z), and where we correct a small

error in their proof (which only modifies a constant).
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Let us follow step by step the proof of the quoted reference, by detailing only

the differences related to our choice of r and GA.

In STEP 1, the single difference might be the inequality at the sixth line of [9, p.

211], i.e.

Var(gf (Z)) ≤ 16L2
E[gf (Z)] (15)

for any given f ∈ GA and where we put gf (z) = |f(z)−h(z)|2 − |r(z)−h(z)|2.
Actually (15) holds true in our setting, using firstly the boundedness of f, h, r and

secondly the projection property on the convex set GA:

Var(gf (Z)) ≤ E(g2
f (Z)) ≤ (4L)2

E[(f(Z) − r(Z))2]

≤ 16L2
(
E[(f(Z) − h(Z))2] − E[(r(Z) − h(Z))2]

)

= 16L2
E[gf (Z)].

Regarding to STEP 2, the computations are the same as in the quoted reference,

where the inequality (15) is again used at [9, line 13, p. 213]. Observe that a

square is missing on gf at the sixth line of [9, p. 213], i.e. one should read

4E

[
N1(

(α+β)ε
5

, {g2
f : f ∈ GA}, ZN

1 )
]

exp(−3ε2(α+β)N
40(16L4)

).

Next, computations of STEPS 3, 4, 5 AND 6 are the same. As a conclusion

(see [9, p. 219]), we obtain that the probability in the Theorem A.2 statement is

bounded, for n > 128L2

ε2(α+β)
, by

p :=
32

7
sup
zN

1

N1

(
εβ

20L
,GA, zN

1

)
exp

(
− ε2(1 − ǫ)αN

140L2(1 + ε)

)

+
64

7
sup
zN

1

N1

(
(α + β)ε

5
, {g2

f : f ∈ GA}, zN
1

)
exp(−3ε2(α + β)N

640L4
).

At this stage, we should manage the extra exponent 2 on gf which was missing

in the quoted reference. This follows from simple arguments. Let (fj)1≤j≤n be

a δ-covering of GA with respect to the L1-empirical norm associated to zN
1 and

without loss of generality, assume that |fj(z)| ≤ L: then for any f ∈ GA, there is

j ∈ {1, . . . , n} such that

1

N

N∑

i=1

|g2
f (zi) − g2

fj
(zi)|

=
1

N

N∑

i=1

|gf (zi) + gfj
(zi)| |f(zi) + fj(zi) − 2h(zi)| |f(zi) − fj(zi)|
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≤ 32L3 1

N

N∑

i=1

|f(zi) − fj(zi)| ≤ 32L3δ,

which proves that N1

(
32L3δ, {g2

f : f ∈ GA}, zN
1

)
≤ N1

(
δ,GA, zN

1

)
for any δ >

0. With this inequality at hand, using L ≥ 1 and ε ≥ 0, we obtain

p ≤ 32

7
sup
zN

1

N1

(
εβ

20L
,GA, zN

1

)
exp

(
− ε2(1 − ǫ)αN

140L4(1 + ε)

)

+
64

7
sup
zN

1

N1

(
(α + β)ε

160L3
,GA, zN

1

)
exp

(
−3ε2(1 − ε)αN

640L4(1 + ε)

)

≤ 96

7
sup
zN

1

N1

(
εβ

160L3
,GA, zN

1

)
exp

(
−3ε2(1 − ǫ)αN

640L2(1 + ε)

)

and this readily leads to our statement. For N ≤ 128L2

ε2(α+β)
, the announced inequality

is obvious.
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