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Abstract

The paper proposes a direct estimation of the mixing matrix and not

a tuning of the separation matrix as usually done. The method is based

on resolution of a set of 8 equations involving cumulants up to order 4 of

the mixture signals, which may be reduce to resolution to a second order

polynomial equation.

Experimental results and robustness suggest to use the method as a

preliminary step to propose good starting points.

1 Introduction

Most of the recent solutions for blind separation of sources are based on esti-
mation of a separation matrix, such that the product of the observation signals
(mixtures) vector multiplied by the matrix gives statistically independent sig-
nals. The algorithms, adaptive or not, use an independence criterion based on
higher-order statistics (moments or rather cumulants). Methods include mini-
mization of independence criteria ([4], [3], [9]) or contrast functions ([5], [10])
or cancellation of multiple criteria ([8], [12]).

In this paper, we propose a direct method, which consists in directly esti-
mating the mixture matrix (and not a separation matrix) from the observation
of the mixtures. The problem is restricted to instantaneous mixtures of two
sources as described in section 2. The sets of equations, based on 4th-order
cross-moments and cross-cumulants, are derived in the section 3, and discussed
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in the case of Gaussian signals and in the general case in sections 4 and 5, re-
spectively. The precision of the method and experimental results are given in
the section 7, before the conclusion.

2 Model equations

2.1 Mixture model

At any time t, we observe, with help of two sensors, two instantaneous mixtures
ei(t) of the two zero-mean sources xi(t), assumed statistically independent. De-
noting M the unknown mixture matrix with real coefficients, we have:

(

e1(t)
e2(t)

)

=

(

m11 m12

m21 m22

) (

x1(t)
x2(t)

)

. (1)

2.2 Moments and cumulants

Let us denote the cross-moments and the cross-cumulants of the observations:

Momkl(e1, e2) = E[ek
1(t)el

2(t)], (2)

Cumkl(e1, e2) = Cum(ek
1
(t)el

2
(t)) = Ckl, (3)

and the unknown moments and cumulants of the sources:

pi = E[x2

i (t)], (4)

γi = E[x4

i (t)], (5)

βi = Cum(x4

i ) = γi − 3pi. (6)

3 Mixture matrix estimation

We know that the necessary information for separate our sources are in the
mixture statistics. The various cross-moments and cross-cumulants of the mix-
ture signals can be expanded, using (1), with respect to the coefficients of the
mixture matrix and source statistics. Equating each equation to the estimated
cross-moments or cross-cumulants leads to a system of non-linear equations.
Can we compute the mixture matrix directly by solving the nonlinear system ?

In indirect methods of source separation, it has been proved that while 2nd-
order statistics are generally not sufficient exception special cases ([14], [6], [11]),
4th-order statistics are adequate. However, is it better to derive equations based
on cross-moments or on cross-cumulant ?
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3.1 System of equations based on cross-moments

From the relation (1), we can express cross-moments of the mixtures e1(t) and
e2(t) with respect to the coefficients mij , cross-moments and cross-cumulants
of the sources x1(t) and x2(t). Then, up to 4th-order, taking into account
the statistical independence of the sources, we get the following system of 8
nonlinear equations of 8 variables mij , pi, γi, (i, j ∈ [1, 2]):

Mom11(e1, e2) = m11m21p1 + m12m22p2, (7)

Mom20(e1, e2) = m2

11
p1 + m2

12
p2, (8)

Mom02(e1, e2) = m2

21p1 + m2

22p2, (9)

Mom31(e1, e2) = 3m11m12(m11m22 + m21m12)p1p2

+m3

11m21γ1 + m3

12m22γ2, (10)

Mom13(e1, e2) = 3m21m22(m11m22 + m21m12)p1p2

+m11m
3

21γ1 + m12m
3

22γ2, (11)

Mom22(e1, e2) = (m2

11
m2

22
+ 4m11m21m12m22 + m2

12
m2

21
)p1p2

+m2

11m
2

21γ1 + m2

12m
2

22γ2, (12)

Mom40(e1, e2) = m4

11
γ1 + 6m2

11
m2

12
p1p2 + m4

12
γ2, (13)

Mom04(e1, e2) = m4

21
γ1 + 6m2

21
m2

22
p1p2 + m4

22
γ2. (14)

In fact, even with the help of tools like Mathematica, we do not succeed in
solving the system. Then we propose to study the system based on the cross-
cumulants.

3.2 System of equation based on cross-cumulants

According to a similar approach, the cross-cumulants of the mixture signals, up
to the 4th-order, leads to the following system of 8 nonlinear equations:

C11 = Cum11(e1, e2) = m11m21p1 + m12m22p2, (15)

C20 = Cum20(e1, e2) = m2

11p1 + m2

12p2, (16)

C02 = Cum02(e1, e2) = m2

21
p1 + m2

22
p2, (17)

C31 = Cum31(e1, e2) = m3

11m21β1 + m3

12m22β2, (18)

C13 = Cum13(e1, e2) = m11m
3

21
β1 + m12m

3

22
β2, (19)

C22 = Cum22(e1, e2) = m2

11m
2

21β1 + m2

12m
2

22β2, (20)

C40 = Cum40(e1, e2) = m4

11
β1 + m4

12
β2, (21)

C04 = Cum04(e1, e2) = m4

21β1 + m4

22β2, (22)

We note the formal expressions of the equations are quite simple. In the fol-
lowing, we will derive the analytical solutions of the system in many situations.
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4 Gaussian sources

4.1 The source signals are Gaussian

If the 2 source signals are Gaussian, then their kurtosis are equal to zero. In this
case, we cannot separate the source signal. In fact, the relations (18) to (22)
are equal to zero. Then we just have three equations of six variables (the matrix
coefficients mij and the source powers pi), and we need more information
to solve the system. This result is in accordance with well known results on
separation of Gaussian source [5].

4.2 One of the sources is Gaussian

If only one of the two sources is Gaussian (for example x1(t)), then its 4th-order
cumulant will be equal to zero (β1 = 0). Equations (18) to (22) then become:

C11 = Cum11(e1, e2) = m21p1 + m12p2, (23)

C20 = Cum20(e1, e2) = m2

11p1 + m2

12p2, (24)

C02 = Cum02(e1, e2) = m2

21
p1 + m2

22
p2, (25)

C31 = Cum31(e1, e2) = m3

12
m22β2, (26)

C13 = Cum13(e1, e2) = m12m
3

22β2, (27)

C22 = Cum22(e1, e2) = m2

12
m2

22
β2, (28)

C40 = Cum40(e1, e2) = m4

12β2, (29)

C04 = Cum04(e1, e2) = m4

22
β2, (30)

The five equations (26) to (30) only involving 3 variables, it is simple to prove
we cannot find the 4 coefficients mij . We know the separation of the sources
is possible up to a coefficient, then we always may suppose that the diagonal
coefficients of the mixture matrix are equal to one: mii = 1. Moreover, we
assume the mixture matrix is not singular: 1 − m12m21 6= 0.

Then, using the assumptions mii = 1, from relations (30) and (27), we find
the value of β2 and m12:

β2 = C04 6= 0 (31)

m12 =
C13

C04

. (32)

The three relations (26), (28) and (29) carry any supplementary information,
but we can use the relations to detect the situation. From the first three relations
(23) to (25), we find the other variables:
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m21 =
C11 − C02m12

C20 − C11m12

, (33)

p2 =
C02 − m2

21C20

1 − m2

12
m2

21

, (34)

p1 = C20 − m2

12p2. (35)

From the solutions, it is easy to deduce the sources by multiplying the mix-
ture vector signal by the inverse of estimated mixture matrix.

5 The sources are not Gaussian

We suppose in this section that the mixture matrix is not a singular matrix
(m11m22 − m12m21 6= 0). Considering the system (18) to (22), we can find the
general solution under the condition m11m22 6= ±m12m21. The condition first
leads to m11m22 6= m12m21: this means the mixture matrix is not singular. In
that case, clearly the separation cannot be achieved.

The condition also leads to the special case m11m22 6= −m12m21. We will
study that case in the next subsection.

In the following, we still suppose mii = 1, because the solution is up to any
diagonal matrix and up to any permutation matrix.

5.1 Particular case m11m22 = −m12m21

With m11 = m22 = 1, the condition becomes 1 = −m12m21, that is the mixture
matrix has the following form:

M =

(

1 − 1

m

m 1

)

. (36)

Solving the nonlinear system leads to:

m21 = ±

√

C02

C20

, (37)

m22 = −
1

m21

. (38)

The above solutions emphasizes on a sign indetermination, which gives 2 pairs
of solutions. The other parameters (sources statistics) can also be analytically
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computed. From a practical point of view, the special case can be detected
using:

C20

C02

=
C31

C13

=
C40

C22

=
C22

C04

(39)

5.2 General case

Now we suppose that we have m11m22 6= ±m12m21. Then, it is quite easy to
prove the system of 8 equations, (15) to (22), only consists of 6 independent
equations of 8 variables. Again, it proves the 4 mixture coefficients cannot be
found. In the following, we will then assume m11 = m22 = 1.

From the 5 relations (15), (16), (17), (21) and (22), we especially can derive
the mixture coefficient m12 and the source statistics with respect to the other
mixture coefficient, and estimations of mixture cross-cumulants Cij :

m12 =
C11 − C20m21

C02 − C11m21

, (1) (40)

p1 =
C20 − C02m

2

12

1 − m2

12
m2

21

, (41)

p2 =
C02 − C20m

2

21

1 − m2

12
m2

21

, (42)

β1 =
C40 − C04m

4

12

1 − m4

12
m4

21

, (43)

β2 =
C04 − C40m

4

21

1 − m4

12
m4

21

. (44)

Clearly, the relation (40) defines an infinite number of points (m12, m21) be-
longing to an hyperbola. Using the relations (40) . . . (44) in (18) . . . (20), we
get:

(C2

02
C22 − C2

11
C04) + 2m21C11(C20C04 − C02C22)

+ m2

21(2C2

11C22 − C2

20C04 − C2

02C40)

+ 2m3

21
C11(C02C20 − C20C22) + m4

21
(C22C

2

20
− C2

11
C40) = 0.(45)

The relation (45) is a fourth degree polynomial equation of the variable m21.
The equation has a nice property: suppose that the m⋆

21 is a root of that
equation, then 1

m⋆

21

is also a root. This property has already been proved by

Sorouchyari [13] and Fort [7]. Finally, solving the equation (45) is possible with
various classical methods and gives m21. Then replacing in (40) gives m12.

1It is easy to prove that m11m22 6= ±m12m21 =⇒ C02 − C11m21 6= 0.
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5.2.1 Separation with the 4th-order cumulants

Up to now, to estimate the mixture coefficients, we use cross-cumulants up to
4th-order. In this section, we wonder if the use of only fourth order cumulants
is enough.

Assuming m11 = m22 = 1, we then have 5 equations of 4 variables, (m12,
m21, β1 and β2):

C31 = m21β1 + m3

12
β2, (46)

C13 = m3

21β1 + m12β2, (47)

C22 = m2

21
β1 + m2

12
β2, (48)

C40 = β1 + m4

12
β2, (49)

C04 = m4

21β1 + β2. (50)

We first assume the condition m12m21 6= ±1 holds, otherwise we may refer to
results of section 5.1. We also assume sources are not Gaussian, that is β1β2 6= 0.

Now, assuming m12m21 6= 0, from the two relations (49) and (50):

β1 =
C40 − C04m

4

12

1 − m4

21
m4

12

, (51)

β2 =
C04 − C40m

4

21

1 − m4

21
m4

12

. (52)

Replacing in (46) to (50) leads to:

C31(1 + m2

21m
2

12)(1 + m21m12) = C40m21(1 + m21m12 + m2

21m
2

12) + C04m
3

12 (53)

C13(1 + m2

21
m2

12
)(1 + m21m12) = C40m

3

21
+ C04m12(1 + m21m12 + m2

21
m2

12
) (54)

C22(1 + m2

21m
2

12) = C40m
2

21 + C04m
2

12. (55)

From (55) and (54), we derive:

m12 =
C13 − C22m21

C04 − C13m21

. (56)

It is easy to check that C04−C13m21 = β2(1−m12m21), so if C04−C13m21 6=
0 except if one source (at least) is Gaussian or if the mixture matrix is singular.

Finally, using (56) in the equation (55):

(C40C
2

13
− C3

22
)m4

21
+ 2C13(C

2

22
− C40C04)m

3

21
+ (C40C

2

04
+ C04C

2

22
− 2C22C

2

13
)m2

21

+ C04(C
2

13 − C22C04) = 0. (57)

As in the section 5.2, we find again a fourth order polynomial equation.
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5.2.2 A simpler solution

We still suppose mii = 1 and m12m21 6= ±1. Using the three2nd order cross-
cumulants:

C11 = p1m21 + p2m12,

C20 = p1 + m2

12
p2,

C02 = p1m
2

21 + p2,

leads to another relation between m12 and m21, which again is an hyperbola,
like (56):

m12 =
C11 − C20m21

C02 − C11m21

. (58)

satisfying simultaneously the relations (56) and the relation (58), we find
the value of m21 with a simple second degree equation:

(C13C20 −C22C11)m
2

21
+ (C02C22 −C04C20)m21 + C11C04 −C13C02 = 0. (59)

The two roots of the equation correspond to the solution of the separation
problem up to a permutation.

6 Robustness of the method

6.1 Error influence

In this section, we still suppose that m11 = m22 = 1. Let us denote the
estimation errors by: d1 = d[Cum11(e1, e2)], d2 = d[Cum20(e1, e2)], d3 =
d[Cum02(e1, e2)], d4 = d[Cum31(e1, e2)], d5 = d[Cum13(e1, e2)], and d6 =
d[Cum22(e1, e2)]. The influence of estimation errors on the results is given
by a linear system that we may directly derive from the nonlinear system of the
section 3.2 by a simple differentiation:

















m21 p1 p2 m12 0 0
1 0 2m12p2 m2

12 0 0
m2

21
2m21p1 0 1 0 0

0 β1 3β2m
2

12
0 m21 m3

12

0 3β1m
2
21 β2 0 m3

21 m12

0 2β1m21 2m12β2 0 m2

21
m2

12

































dp1

dm21

dm12

dp2

dβ1

dβ2

















=

















d1

d2

d3

d4

d5

d6

















. (60)
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For sake of simplicity, we will suppose that the cumulants of the same order
have the same estimation error. d1 = d2 = d3 = δ2 and d4 = d5 = d6 = δ4. The
solution of the system (60) especially provides:

dm21

m21

=
(1 − m12)(1 − m21)(p2δ4 − β2m12δ2)

m21(m12m21 − 1)(β2m12p1 − β1m21p2)
, (61)

dm12

m12

=
(p1δ4 − β1m21δ2)(m21 + m12 − 1 − m12m21)

m12(m12m21 − 1)(β2m12p1 − β1m21p2)
.

Unfortunately, the above expressions are not practically relevant.

6.2 Improvement condition

Another approach to the robustness study is to find the condition witch is uses
to improve the residual crosstalk. Let us suppose that the mixture matrix is

M =

[

1 a
b 1

]

(62)

and estimated mixture matrix:

M̂ =

[

1 x
y 1

]

. (63)

Finally, the sources are estimated by the global matrix G:

G = M̂−1M =

[

1−xb
1−xy

a−x
1−xy

b−y
1−xy

1−ay
1−xy

]

. (64)

The solution of the blind separation of sources is estimated up to coefficient,
then we may compute the crosstalk improvement on normalized output signals.
The normalized global matrix will give us four possible similar cases. Then, we
will study that one:

GN =

[

1 a−x
1−xy

b−y

1−ay
1

]

. (65)

So, to improve the residual crosstalk, the following condition must be veri-
fied:

|
a − x

1 − xb
| < |a| ⇐⇒ x(1 − ab)(x + xab − 2a) < 0. (66)

We have a similar condition on y. Let us denote the estimation error by d.
Then we can deduce from (66) another condition according to d:

d2(1 − a2b2) + 2a2bd(1 − ab) − a2(1 − ab)2 < 0 (67)
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For sake of simplicity, we will discuss the only case 2 where |ab| < 1. The
solution of (67) is :

min[−a, a
1 − ab

1 + ab
] < d < max[−a, a

1 − ab

1 + ab
]. (68)

For study the condition (68) according to the relative estimation error d/a, we
will suppose that a > 03, then this condition will be:

−1 <
d

a
<

1 − ab

1 + ab
. (69)

Finally, let us denote the relative estimation error of the second order cumulant
by δr

2
and the fourth order one by δr

4
. From the relation (61) and the condition

(69), we will find that :

δr
2m12 −

m21(1 − m12m21)
2

(1 − m12)(1 − m21)(1 + m12m21)
≤ δr

4

δr
2
m12 +

m21(m12 − m21)(1 − m21m21)

(1 − m12)(1 − m21)
≥ δr

4
. (70)

It means the improvement condition is satisfied if the estimation of 4th
order cross-cumulants accurate enough with respect to 2 nd order ones. For a
given number of samples, δr

2 and δr
4 are fixed ( see [2]), and then the condition

depends of the mixing matrix,. The improvement is then bounded, with respect
the mixing matrix.
Each estimation of M̂ allow to improve the separation. We can then iterate this
step on the output signals s = Gx.

6.3 Experimental results

In this section, we used the simple solution of paragraph 5.2.2. The estimation
of the different cumulants 4 of the mixture signals, is done with help of the
algorithm proposed by Amblard et al. [1]. The algorithm is efficient but only
when our signals are stationary (see [1] and [2]).
If the sources are i.i.d signals, then we get about -22 dB for the residual
crosstalk (see Fig. 1) using statistics estimated over about 500 samples.

We also tested the method with non stationary signals: one of the signals
is a speech signal (a part of the word ”Bonjour”) and the other one is an i.i.d
signal. We found about -20 dB for the residual crosstalk, if the sample number

2the others cases are similars
3Now, we have the condition a|b| < 1
4The estimation depends on sample number
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is 500.

The shape of the signals : observations, estimated sources and estimation
errors are shown on Fig. 2.

In the general case of non stationary signals, the estimation must be done
on a few number of samples. For instance, we estimate the cumulant over only
100 samples. After five iterations as proposed in paragraph 6.2, we got about
-17 dB for the residual crosstalk with i.i.d. sources (see Fig. 3.a). With similar
estimation in the case of non stationary signals (speech signals), we obtained a
bad result (see Fig. 2.b).

7 Conclusion

In this paper, we first proved that equations based on cumulants are simpler to
derive than these based on cross-moments. We proposed a direct method, based
on cumulants estimation and on the resolution of a 2nd degree polynomial
equation. We also proved the method may be applied in any case, except if the
two sources are Gaussian. The method is then quite simple, but the solutions
obtained are very sensitive to the precision of the estimated cumulants.
If the sources are stationary, good results can be obtained by estimating
statistics over 500 samples or more. However, in the case of non stationary
signals, the number of samples must be decreased, and relevant improvement
of the crosstalk is more difficult. A solution can be to repeat the process as
suggested in the paragraph 6.2.

Here, we restricted the study to the separation of 2 sources, but theoretical
solutions for more than 3 sources are not easily tractable.

The direct solution seems finally not so precise than indirect methods, es-
pecially adaptive algorithms. However, it can give, for such an algorithm, a
good starting point with a small computation cost, and then allow a faster
convergence.
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Figure 1: Signals and performance results.
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