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Abstract

In [3], the authors proved that uniqueness holds among solutions whose exponentials are Lp with p bigger
than a constant γ (p > γ). In this paper, we consider the critical case: p = γ. We prove that the uniqueness
holds among solutions whose exponentials are Lγ under the additional assumption that the generator is strongly
convex.
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1 Introduction

Since the seminar paper [5], backward stochastic differential equations (BSDEs in short for the remaining of the
paper) have found many applications in various domains. A lot of efforts have been made in order to study the
well posedness of these equations. Quadratic BSDEs is a kind of BSDE which has attracted particular attention
recently and it is the subject of the paper.

In this article, we consider the following quadratic BSDE

Yt = ξ −

∫ T

t

g(Zs)ds+

∫ T

t

ZsdWs, 0 6 t 6 T, (1.1)

where the generator g is a continuous real function that is convex and has a quadratic growth with respect to the
variable z. Moreover ξ is an unbounded random variable (see e.g. [4] for the case of quadratic BSDEs with
bounded terminal conditions). Let us recall that, in the previous equation, we are looking for a pair of processes
(Y, Z) which is required to be adapted with respect to the filtration generated by the Rd-valued Brownian motion
W .

In order to state the main result of this paper, let us suppose that there exists a constant γ > 0 such that

ξ+ ∈ L1, exp(−γξ) ∈ L1 and 0 6 g(z) 6
γ

2
|z|

2
.
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By a localization procedure similar to that in [1], we prove easily that the BSDE (1.1) has at least a solution
(Y, Z) such that e−γY and Y belong to the class (D).

Concerning the uniqueness issue, in [2], the authors proved that the uniqueness holds among solutions whose
exponentials are in any Lp. In [3], the authors proved that the uniqueness holds among solutions whose exponen-
tials are in Lp for a given p > γ, i.e.

E

[

sup
0≤t≤T

epY
−

t

]

< ∞.

However, if we take g(z) = γ
2 |z|

2, then it is easy to see that for the associated BSDE, the uniqueness holds
among solutions (Y, Z) such that e−γY belongs to the class (D). It suffices to note that if (Y, Z) is a solution such
that e−γY belongs to the class (D), then e−γY is a uniformly integrable martingale and

Yt = −
1

γ
lnE

[

e−γξ
∣

∣Ft

]

.

So the aim of this paper is to study the uniqueness of solution of BSDE (1.1) in the critical case: p = γ.
We prove that the BSDE (1.1) has a unique solution (Y, Z) such that e−γY belongs to the class (D) under the
additional assumption that the generator g is strongly convex. We do not know if this result stays true without this
additional assumption.

The paper is organized as follows. Next section is devoted to an existence result, section 3 contains a useful
property for solutions and the last section is devoted to our main uniqueness result.

Let us close this introduction by giving notations that we will use in all the article. For the remaining of
the paper, let us fix a nonnegative real number T > 0. First of all, (Wt)t∈[0,T ] is a standard Brownian motion
with values in Rd defined on some complete probability space (Ω,F ,P). (Ft)t>0 is the natural filtration of the
Brownian motion W augmented by the P-null sets of F .

As mentioned before, we will deal only with real valued BSDEs which are equations of type (1.1). The
function g is called the generator and ξ the terminal condition. Let us recall that a generator is a function R1×d →
R which is measurable with respect to B(R1×d) and a terminal condition is simply a real FT -measurable random
variable. By a solution to the BSDE (1.1) we mean a pair (Yt, Zt)t∈[0,T ] of predictable processes with values in
R × R1×d such that P-a.s., t 7→ Yt is continuous, t 7→ Zt belongs to L2(0, T ), t 7→ g(Zt) belongs to L1(0, T )
and P-a.s. (Y, Z) verifies (1.1).

For any real p > 1, Sp denotes the set of real-valued, adapted and càdlàg processes (Yt)t∈[0,T ] such that

‖Y ‖Sp := E

[

sup
06t6T

|Yt|
p

]1/p

< +∞.

Mp denotes the set of (equivalent class of) predictable processes (Zt)t∈[0,T ] with values in R1×d such that

‖Z‖Mp := E





(

∫ T

0

|Zs|
2
ds

)p/2




1/p

< +∞.

We also recall that Y belongs to the class (D) as soon as the family {Yτ : τ 6 T stopping time} is uniformly
integrable.

For any convex function f : R1×d → R, we denote f∗ the Legendre-Fenchel transform of f given by

f∗(q) = sup
z∈R1×d

(zq − f(z)), ∀q ∈ Rd.

We also denote ∂f the subdifferential of f . We recall that the subdifferential of f at z0 is the non-empty convex
compact set of elements u ∈ Rd such that

f(z)− f(z0) > (z − z0)u, ∀z ∈ R1×d.

Finally, for any predictable process (qt)t∈[0,T ] such that
∫ T

0 |qs|
2
ds < +∞ P-a.s., we denote E(q) the

Doléans-Dade exponential
(

exp

(
∫ t

0

qsdWs −
1

2

∫ t

0

|qs|
2
ds

))

t∈[0,T ]

.
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2 An existence result

Let us begin by giving some assumptions used in this paper.

Assumption A. There exists a constant γ > 0 such that

1. ξ+ ∈ L1 and exp(−γξ) ∈ L1,

2. g : Rd → R+ is a convex function that satisfies

(a) g(0) = 0,

(b) there exists a constant C1 > 0 such that ∀z ∈ R1×d,

g(z) 6 C1 +
γ

2
|z|

2
.

Assumption B. There exist two constants ε > 0 and C2 > 0 such that ∀z, z′ ∈ R1×d, ∀s ∈ ∂g(z′),

g(z)− g(z′)− (z − z′)s >
ε

2
|z − z′|

2
− C2.

Remark 2.1

• If g is a C2 function then assumption B is equivalent to the assumption: there exist R > 0 and ε > 0 such

that for all z ∈ R1×d with |z| > R, we have g′′(z) > εId.

• For a general convex generator g with quadratic growth it is easy to modify the terminal condition and the

probability to obtain a new generator g̃ : R1×d → R+ such that assumption A.2. holds true.

The aim of this section is to show the existence of solutions under the assumption A, using a localization
method.

Theorem 2.2 Let us assume that assumption A holds. Then the BSDE (1.1) has at least a solution (Y, Z) such

that:

−
1

γ
lnE

[

eγC1T eγξ
−

∣

∣

∣
Ft

]

6 Yt 6 E [ξ| Ft] .

In particular, e−γY and Y belong to the class (D).

Proof of Theorem 2.2. To show this existence result we use the same classical localization argument as Briand
and Hu in [1]. Let us fix n, p ∈ N∗ and set ξn,p = ξ+ ∧ n− ξ− ∧ p. Then it is known from [4] that the BSDE

Y
n,p
t = ξn,p −

∫ T

t

g(Zn,p
s )ds+

∫ T

t

Zn,p
s dWs, 0 6 t 6 T,

has a unique solution (Y n,p, Zn,p) ∈ S∞ ×M2. By applying Theorem 2 in [1], we have the estimate

−
1

γ
lnE [φt(−ξn,p)| Ft] 6 Y

n,p
t

where (φt(z))t∈[0,T ] stands for the solution to the integral equation

φt(z) = eγz +

∫ T

t

H(φs(z))ds, 0 6 t 6 T,

with
H(p) = C1γp1l[1,+∞[(p) + C1γ1l]−∞,1[(p).

It is noticed in [1] that φt(z) = eγC1(T−t)eγz when z > 0 and z 7→ φt(z) is an increasing continuous function.
Thus, we have

−
1

γ
lnE

[

eγC1T eγξ
−

∣

∣

∣
Ft

]

6 −
1

γ
lnE

[

eγC1T eγ(ξ
n,p)−

∣

∣

∣
Ft

]

6 −
1

γ
lnE [φt(−ξn,p)| Ft] 6 Y

n,p
t .
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Moreover, g is a nonnegative function, so

Y
n,p
t = E

[

ξn,p −

∫ T

t

g(Zn,p
s )ds

∣

∣

∣

∣

∣

Ft

]

6 E [ξn,p| Ft] 6 E
[

ξ+
∣

∣Ft

]

.

We remark that
∀t ∈ [0, T ], Y

n,p+1
t 6 Y

n,p
t 6 Y

n+1,p
t ,

and we define Y p = supn>1 Y
n,p so that Y p+1

t 6 Y
p
t and Yt = infp>1 Y

p
t . By the dominated convergence

theorem, we have

−
1

γ
lnE

[

eγC1T eγξ
−

∣

∣

∣
Ft

]

6 −
1

γ
lnE [φt(−ξ)| Ft] 6 Yt 6 E [ ξ| Ft] ,

and in particular, we remark that limt→+∞ Yt = ξ = YT . Arguing as in [1] with a localization argument,
we can show that there exists a process Z such that (Y, Z) solves the BSDE (1.1). Finally, since processes

t 7→ E

[

eγC1T eγξ
−

∣

∣

∣
Ft

]

and t 7→ E [ξ| Ft] belong to the class (D), we conclude that e−γY , Y + and so Y belong

to the class (D).
⊓⊔

3 A uniform integrability property for solutions

In this part we will show the following proposition.

Proposition 3.1 We assume that assumption A holds true. Let us consider (Y, Z) a solution of the BSDE (1.1)

such that Y and e−γY belong to the class (D). Then, for all predictable process (qs)s∈[0,T ] with values in Rd and

such that qs ∈ ∂g(Zs) for all s ∈ [0, T ], E(q) is a uniformly integrable process and defines a probability Q ∼ P.

Proof of Proposition 3.1. Let us start the proof by giving a simple lemma.

Lemma 3.2 The family of random variables
{

eγX |X ∈ H
}

is uniformly integrable if and only if there exists a

function k : R+ → R+ such that k(x) → +∞ when x → +∞, and

sup
X∈H

E[K(X+)] < +∞,

with K(x) =
∫ x

0 k(t)eγtdt. Moreover, we can assume without restriction that k ∈ C∞, k(0) = γ and k′(x) > 0
for all x ∈ R+.

Proof of Lemma 3.2. We only prove the nontrivial implication. Firstly, let us remark that
{

eγX |X ∈ H
}

is

uniformly integrable if and only if
{

eγX
+

|X ∈ H
}

is also uniformly integrable, so we can assume that H is a

family of positive random variables. Now we apply the de la Vallée-Poussin theorem: there exists a nondecreasing
function g : R+ → R+ which is a constant function on each interval [n, n+1[ for n ∈ N, that satisfies g(x) → +∞
when x → +∞ and such that

sup
X∈H

E[G(eγX)] < +∞,

with G(x) =
∫ x

1
g(t)dt. Then, it is simple to consider a smooth approximation g̃ of g such that g̃(1) = 1,

g̃′(x) > 0 for all x ∈ [1,+∞[ and g + 1 − g(1) 6 g̃ 6 g + C. This function g̃ also satisfies g̃(x) → +∞ when
x → +∞ and

sup
X∈H

E[G̃(eγX)] < +∞,

with G̃(x) =
∫ x

1
g̃(t)dt. A simple calculus gives us

G̃(eγx) =

∫ t

0

g̃(eγu)γeγudu

and so we just have to set k(x) = γg̃(eγx) to conclude the proof. ⊓⊔
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Now, let us apply the previous lemma in our situation: since we consider a solution (Y, Z) such that e−γY

belongs to the class (D), then there exists a function k : R+ → R+ given by Lemma 3.2 such that

sup
06τ6T, stopping time

E[K(Y −
τ )] < +∞, (3.1)

with K(x) =
∫ x

0
k(t)eγtdt. We define

Ψ0(x) = eγx − γx− 1 =

∫ x

0

γ(eγu − 1)du and Ψ(x) =

∫ x

0

k(u)(eγu − 1)du.

Since Ψ0 and Ψ are convex functions we can also consider their dual functions. Φ0(x) =
(

x
γ + 1

)

ln
(

x
γ + 1

)

− x
γ

is the dual function of Ψ0 since Φ′
0(x) =

1
γ ln

(

x
γ + 1

)

is the inverse function of Ψ′
0. Moreover, the dual function

of Ψ is given by Φ(x) =
∫ x

0
Φ′(u)du with Φ′ the inverse function of Ψ′.

Now we consider a predictable process (qs)s∈[0,T ] with values in Rd and such that qs ∈ ∂g(Zs) for all
s ∈ [0, T ]. Firstly let us show that s 7→ qs belongs to L2(0, T ) P-a.s.. Since assumption A.2 holds true for g, then
g∗ satisfies

g∗(q) > −C +
1

2γ
|q|

2 and g∗(0) = 0, (3.2)

and thus,
∫ T

0

|qs|
2
ds 6 C + C

∫ T

0

g∗(qs)ds = C + C

∫ T

0

(Zsqs − g(Zs))ds 6 C + C

∫ T

0

|Zsqs| ds+ C

∫ T

0

|Zs|
2
ds.

Moreover, since qs ∈ ∂g(Zs) we have

Zsqs = (2Zs − Zs)qs 6 g(2Zs)− g(Zs)

and
−Zsqs = (0− Zs)qs 6 g(0)− g(Zs).

So we finally obtain
∫ T

0

|qs|
2
ds 6 C + C

∫ T

0

|Zs|
2
ds < +∞ P-a.s..

Now let us show that E(q) is a uniformly integrable martingale. We start by defining the stopping time

τn = inf

{

t ∈ [0, T ] : sup

(
∫ t

0

|qs|
2
ds,

∫ t

0

|Zs|
2
ds

)

> n

}

∧ T,

and the probability

dQn

dP
= Mτn , with Mt = exp

(
∫ t

0

qsdWs −
1

2

∫ t

0

|qs|
2
ds

)

.

We will show that (Mτn)n∈N is uniformly integrable which is sufficient to conclude. Since (Y, Z) solves the
BSDE (1.1), we have

Y0 = Yτn −

∫ τn

0

g(Zs)ds+

∫ τn

0

ZsdWs

= Yτn +

∫ τn

0

(Zsqs − g(Zs))ds+

∫ τn

0

Zs(dWs − qsds)

= EQn

[

Yτn +

∫ τn

0

g∗(qs)ds

]

. (3.3)

Firstly, since Ψ and Φ are dual functions, the Fenchel’s inequality gives us

EQn [Yτn ] > −EQn
[

Y −
τn

]

> −E
[

Ψ(Y −
τn)
]

− E [Φ(Mτn)] .

Moreover, we have, thanks to (3.1),

−E
[

Ψ(Y −
τn)
]

> −E
[

K(Y −
τn)
]

> −C,
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with C a constant that does not depend on n. By putting these inequalities into (3.3) we obtain

Y0 > −C − E [Φ(Mτn)] + EQn

[
∫ τn

0

g∗(qs)ds

]

. (3.4)

Thanks to the growth of g∗ given by (3.2) we have

EQn

[
∫ τn

0

g∗(qs)ds

]

> −C + EQn

[

1

2γ

∫ τn

0

|qs|
2
ds

]

.

Moreover, a simple calculus gives us

EQn

[

1

2γ

∫ τn

0

|qs|
2
ds

]

=
1

γ
E [Mτn ln(Mτn)] .

By putting these two results into (3.4), and by setting Λ = Φ0 − Φ, we obtain

Y0 > −C + E [Λ(Mτn)]− E [Φ0(Mτn)] +
1

γ
E [Mτn ln(Mτn)] . (3.5)

Let us remark that

E [Φ0(Mτn)]−
1

γ
E [Mτn ln(Mτn)]

= E

[

Mτn

γ
ln

(

1 +
γ

Mτn

)]

−

(

ln γ + 1

γ

)

E [Mτn ] + E

[

ln

(

Mτn

γ
+ 1

)]

= E

[

Mτn

γ
ln

(

1 +
γ

Mτn

)]

−

(

ln γ + 1

γ

)

+ E

[

ln

(

Mτn

γ
+ 1

)]

.

An elementary inequality gives us

E

[

Mτn

γ
ln

(

1 +
γ

Mτn

)]

6 E

[

Mτn

γ

γ

Mτn

]

6 1,

and

E

[

ln

(

Mτn

γ
+ 1

)]

6 E

[

Mτn

γ

]

6
1

γ
.

Thus, we have

E [Φ0(Mτn)]−
1

γ
E [Mτn ln(Mτn)] 6 C

and inequality (3.5) becomes
Y0 > −C + E [Λ(Mτn)] . (3.6)

Let us give a useful property of Λ that we will prove after.

Proposition 3.3 The function Λ satisfies

lim
x→+∞

Λ(x)

x
= +∞.

Thanks to this proposition and the inequality (3.6) we are allowed to apply the de la Vallée-Poussin Theorem:
(Mτn)n∈N is uniformly integrable and the proof is finished. ⊓⊔

Proof of Proposition 3.3: It is sufficient to show that Λ′ = Φ′
0 −Φ′ is increasing and limx→+∞ Λ′(x) → +∞.

Firstly, let us show that Ψ′′(Φ′(x)) > γ(x+ γ), for all x > 0:

Ψ′′(x) = k′(x)(eγx − 1) + k(x)γeγx > γk(x)(eγx − 1) + γk(x) > γΨ′(x) + γ2,

so we have
Ψ′′(Φ′(x)) > γΨ′(Φ′(x)) + γ2 = γ(x+ γ).

As a result, we get from the equality (Ψ′(Φ′(x)))′ = Ψ′′(Φ′(x))Φ′′(x) = 1 that Φ′′(x) 6
1

γ(x+γ) . We finally
obtain

Λ′′(x) = Φ′′
0(x) − Φ′′(x) >

1

γ(x+ γ)
−

1

γ(x+ γ)
> 0
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and so Λ′ is an increasing function. To conclude we will prove by contradiction that Λ′ is an unbounded function:
let us assume that there exists a constant A such that Λ′ 6 A. Then we have

x = Ψ′(Φ′(x)) = k(Φ′(x))
(

eγΦ
′(x) − 1

)

= k(Φ′(x))
(

eγ(Φ
′

0(x)−Λ′(x)) − 1
)

> k(Φ′(x))
(

eγΦ
′

0(x)e−A − 1
)

> k(Φ′(x))

((

x

γ
+ 1

)

e−A − 1

)

,

and so, we get for x big enough

k(Φ′(x)) 6
x

(

x
γ + 1

)

e−A − 1
6 C.

Since limx→+∞ Φ′(x) = +∞, previous inequality gives us that k is a bounded function, which is a contradiction.
⊓⊔

Remark 3.4 In [3], the authors proved that if for some p > γ,

E

[

sup
0≤t≤T

epY
−

t

]

< ∞,

then E(q) has finite entropy, i.e.,

E [E(q)T ln E(q)T ] < +∞.

However, in the critical case, e−γY belongs to the class (D), this property is not always true. It suffices to take

again g(z) = γ
2 |z|

2
, then if Y ≤ 0,

E(q)t ln E(q)t = eγY0eγY
−

t (γY0 + γY −
t ).

It follows that if g(z) = γ
2 |z|

2
and Y ≤ 0, E(q) has finite entropy if and only if Y −eγY

−

belongs to the class (D).

4 The uniqueness result

Remark 3.4 indicates that E(q) does not always have finite entropy in the critical case. Hence we could not adopt
the verification argument given in [3] to show the uniqueness. In this last section, we show the uniqueness under
the additional assumption B.

Theorem 4.1 Let us assume that assumptions A and B hold true. Then the BSDE (1.1) has a unique solution

(Y, Z) such that Y and e−γY belong to the class (D).

Proof of Theorem 4.1. The existence result is already given in Theorem 2.2. For the uniqueness, let us consider
(Y, Z) and (Y ′, Z ′) two solutions of the BSDE (1.1) such that Y , Y ′, e−γY and e−γY ′

belong to the class (D).
By a symmetry argument it is sufficient to show that Yt > Y ′

t P-a.s. for all t ∈ [0, T ]. For t ∈ [0, T [, let us denote
A := {Yt < Y ′

t } and set the stopping time τ = inf {s > t|Ys > Y ′
s}. Then, for s ∈ [t, τ ] we have Ys 6 Y ′

s and
Yτ = Y ′

τ P-a.s. because t → Yt is continuous P-a.s..
Let us consider a predictable process (qs)s∈[0,T ] with values in Rd and such that qs ∈ ∂g(Zs) for all s ∈ [0, T ].

Thanks to Proposition 3.1 we know that E(q) defines a probability that we will denote Q. Under Q, we get

d(Ys − Y ′
s ) = (g(Zs)− g(Z ′

s)− (Zs − Z ′
s)qs)ds− (Zs − Z ′

s)dW
Q
s . (4.1)

Then, Itô formula gives us, for 0 < α 6 ε,

deα(Ys∧τ−Y ′

s∧τ+C2(T−s))1lA

= −α1lAe
α((Ys∧τ−Y ′

s∧τ+C2(T−s))1lA
(

g(Z ′
s)− g(Zs)− (Z ′

s − Zs)qs + C2 −
α

2
|Z ′

s − Zs|
2
)

1ls6τds

−α1lAe
αC2(T−s)1lA1ls>τds+ 1ls6τdMs,

with (Ms)s∈[t,τ ] a local martingale under Q. From assumption B we have that

g(Z ′
s)− g(Zs)− (Z ′

s − Zs)qs >
ε

2
|Z ′

s − Zs|
2
− C2.
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So, we obtain that
(

eα(Ys∧τ−Y ′

s∧τ+C2(T−s))1lA
)

t6s6T
is a bounded supermartingale under Q and

eα(Ys∧τ−Y ′

s∧τ+C2(T−s))1lA > E

[

eα(Yτ−Y ′

τ+C2(T−T ))1lA
∣

∣

∣
Fs

]

= 1, ∀s ∈ [t, T ].

It implies that ((Ys∧τ − Y ′
s∧τ )1lA)s∈[t,T ] is a bounded process. Moreover, g is a convex function so

g(z)− g(z′)− (z − z′)u 6 0, ∀z, z′ ∈ R1×d, ∀u ∈ ∂g(z).

By using this inequality in (4.1), we obtain that ((Ys∧τ − Y ′
s∧τ )1lA)s∈[t,T ] is a bounded negative supermartingale

under Q such that (Yτ − Y ′
τ )1lA = 0. We conclude that (Yt − Y ′

t )1lA = 0, that is to say, Yt > Y ′
t . Finally, it is

rather standard to show that
∫ T

0
|Zs − Z ′

s|
2
ds = 0 P-a.s.. ⊓⊔
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