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Abstract. The simulation of processes in highly heterogeneous media
comes with many challenges. In particular many domain decomposition
methods do not perform well in this case, specially if the decomposi-
tion into subdomains does not accommodate the coefficient variations.
For three popular domain decomposition methods (two level additive
Schwarz, BDD and FETT) we have proposed a remedy to this problem
in previous work with coauthors. Here we present the strategy which was
used by applying it to the Hybrid Schwarz preconditioner. It is based on
identifying a bottleneck estimate in the proof of convergence which can-
not be satisfied for the entire solution space. Then the part of the solution
which is problematic is isolated via a generalized eigenvalue problem and
solved separately.

Keywords: domain decomposition, robustness, heterogeneous problems,
Hybrid Schwarz

1 Introduction

The method presented here is a different application of a strategy devised in
[7,8], in collaboration with Victorita Dolean, Patrice Hauret, Frédéric Nataf,
Clemens Pechstein and Robert Scheichl, and generalized in [3] with Daniel J.
Rixen. It is also closely related to the work of [6]. In Section 2 we present the
one level Schwarz preconditioner, its two level extension based on projections
(also known as hybrid Schwarz) and state clearly our objective. In Section 3 we
present the theoretical analysis of this preconditioner based on [4], find which is
the bottleneck estimate and put it in a local form (11). Then we define the coarse
space (Definition 1) and give the main result (16): an estimate for the conver-
gence of the solver that does not depend on the number of subdomains or the
parameters in the equations. Finally in Section 4 we give a numerical illustration
for two dimensional linear elasticity with highly heterogeneous coefficients.
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2 Two Level Schwarz Method with Projection (aka
Hybrid Schwarz)

2.1 One Level Schwarz method

Maybe the most straightforward of the domain decomposition methods is the
Additive Schwarz method [4]. The information needed to build the additive
Schwarz preconditioner is the following:

— A set w={1,...,n} of degrees of freedom,

— A set of symmetric positive semi-definite element matrices {A, € R"*™; 1 €
Tr}, which give the weights of the connections between degrees of freedom,

— The connectivity graph for each connection 7 € 7, which is the list dof (1) C
w of degrees of freedom which are connected to others through .

If the problem stems from the finite element approximation of a partial differ-
ential equation, these have geometrical interpretations: 7j is the mesh of the
global domain, 7 is an element of this mesh and dof(7) is the set of degrees of
freedom attached to the vertices of 7.

The global problem matrix is assembled as: A := Zren A.. We suppose that
A is symmetric positive definite (spd). Then, given a right hand side f € R™ the
objective is to solve:

Find z* € R" such that Az* = f. (1)

The idea behind the Additive Schwarz preconditioner is to approximate the
global inverse of A by a sum of local inverse A;l. The local inverses are based
on an overlapping partition of the set of degrees of freedom w:

w = wiU...Uwp, such that Vm € w,3j=1,..., N; U dof(r) | Cwj.
{r,medof(7)}

This condition says that each degree of freedom m is in the interior of at least
one subdomain w; in the sense that its neighbours, U dof(7), are also
{r,medof(r)}
in this subdomain. The convergence of the additive Schwarz method relies on
this property. The final ingredient for building the one level additive Schwarz
preconditioner is a set of interpolation matrices between the global unknowns
and the local unknowns. For any j = 1,..., N let n; be the cardinality of wj,
then the restriction matrix R; € R™*™ is the boolean matrix with one 1 entry
on each line which corresponds to a degree of freedom in w;. With this the one
level Schwarz preconditioner writes:

N
M~ :=>"RIA7'R;, A;:=R;AR]. (2)

j=1
The matrices A; are built by extracting the coefficients in the global matrix
A which correspond to degrees of freedom in w;. For this reason they are also
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symmetric positive definite. Unfortunately, the conjugate gradient algorithm pre-
conditioned with the one level Additive Schwarz method is usually not scalable.
This means that its convergence rate strongly depends on the number of subdo-
mains. Another drawback is that the convergence rate deteriorates when there
are jumps in the coefficients of the underlying set of partial differential equations.
One way to improve this is to use a projected operator.

2.2 Adding Projection Steps

In [1] the idea to use a projection as a preconditioner for a Krylov method is
introduced. Having chosen a set V{ of vectors in R™ which are spanned by the
no (linearly independ) columns of R] € R™#Vo we build the A-orthogonal
projection operator onto Vj:

Py := Ry (RoAR] ) ' RoA. (3)

Using the A-orthogonality of Py, the original problem (1) rewrites as two
idependant problems: Find z* € R"™ such that

(I —Py)TA(I — Py)z* = (I — Py )f, and P, APyz* = P, f. (4)

The number of vectors in Vj is supposed to be sufficiently small so that we can
solve the second equation with a direct solve to get Pyx®. We then apply the
conjugate gradient iterations only to the first equation. The rationale behind
this splitting of the solution is that even if A is ill-conditioned, in many cases
the ill-conditioning is caused only by a small number of smooth vectors. If we
can identify these vectors and use them to span the projection space V| then we
are left with solving iteratively a problem for a much better conditioned matrix
(I —Py)TA(I - Py).

In our case we use both preconditioning and projection. The projected and
preconditioned problem is to find z* € R™ such that

MY I - P)"A(I — Py)z* = M~ (I — By )f, and P, APyz* = P f.  (5)

Our objective is the following: we want to design a solver which is scalable and
which is robust with respect to heterogeneous coefficients in the set of underlying
partial differential equations. We know an estimate for the convergence rate
of the preconditioned conjugate gradient method which depends only on the
condition number of the preconditioned operator (see [2] for instance). This is
why the criterion for choosing our projection space is:

Identify a space Vi which is sufficiently small for P’ AP, to be in-
verted using a direct solver and such that the condition number of
M~Y(I — Py)TA(I — Py) does not depend on the number of subdo-
mains N or on any of the parameters in the original set of equations.

Intuitively, the vectors which are used for the projection space are the parts of
the solution for which the preconditioner does not do a good job (M~!Axz is
very different from x).
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3 Choosing the Projection Space

3.1 Abstract Schwarz Theory

Fortunately the additive Schwarz preconditioner has already been thoroughly
analyzed and an abstract presentation of this theory can be found in [4] (see
hybrid Schwarz). Our choice for the projection space relies on this analysis.

The iterations of the preconditioned conjugate gradient for operator (I —
Py) " A(I—Py) and preconditioner M ~! produce the same values as the iterations
of the conjugate gradient for the symmetric operator M~Y/2(I — Py)T A(I —
Py)M~'/? where the right hand side f is replaced with M ~/2f and the unknown
is M'/2z [2]. We will obtain estimates for the condition number by finding an
upper bound for the, respectively, largest and lowest eigenvalues A0 and Ain
of M~Y/2(I — Py)T A(I — Py)M~Y/2 in range(M'/2(I — Py)).

Notice that the reformulation does not contradict our previous objective
since the eigenvalues and thus the condition number of M~Y2(I — Py)T A(I —
Py)M~Y/2 in range(M'/?(I — P,)) are the same as the eigenvalues of M 1A in
range(l — Py).

Let y € range(MY2(I — Py)), y = M'/%z, & € range(I — Fy), then

(M~Y2(1 = Po)TA(I — P)M ™%y, y) = (Az,x) and (y,y) = (Mx,z)  (6)
so if there exist constants C7 and Cs such that
Ciy(Mz,z) < (Az,z) < Co(Mz,x), ¥V € range(] — Pp) (7)

then Az < Ca, Amin > C1 and the condition number is bounded by Cy/Cy. We
notice that the constants which we want to evaluate measure, on range(l — F),
the difference between the energy norm with respect to the original operator A
and the energy norm with respect to the inverse of the preconditioner M (this
is the inverse of an approximation of the inverse of A). Since we have fixed the
choice of the preconditioner, the lattitude we are left with in order to satisfy
the estimate is to put the vectors for which we cannot write the proof into the
projection space Vj.

In practice we never need to compute the inverse M of the preconditioner.
In our analysis we will use the expression given in Lemma 2.5 of [4]':

N
(Mz,z) P ;;Eﬁv:l RTo)) j:1<ij]7 ;). (8)
The energy norm of x with respect to the inverse of the preconditioner M mini-
mizes the sum, over all the possible decompositions of x onto the N subdomains,
of the local energies.
Next we prove an estimate for \,,.;. This estimate depends on the maximal
number N¢ of colors that are needed to color each of the sets w; in such a

! In the book P,q = M~ 'Aso AP,}' = M.
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way that two subsets with the same color are A-orthogonal. More precisely let
color(j) € {1,..., N} denote the color of a subdomain j then

(AR up, R w;) = 0, Yuy, € wy, and u; € wy if color(k) = color(l).

Given the decomposition z = Zjv:l R;»'—xj which realizes the minimum in (8) we
write

(Mz,z) = zj} (AR]z;,R] z;)
Zc:1<A Z R;rx“ Z R:J}Z>

{z color(i)=c} {#;color(i)=c} (9)
> Nc(Azj 1RT:U],ZJ 1RT$J>
= w=(Az, z).

The argument for the inequality in the third line is a generalization of the identity
2(a? +b2) > (a + b)%. We have proved that A, < A¢. This estimate does not
depend on the number of subdomains or the coefficients in the equations and it
holds independently of the choice of the projection space.
Deriving a bound for A,,;, is a trickier job.

3.2 Identifying the Bottleneck

We procede by beginning to write the proof for an arbitrary contant C. We will
find a sufficient condition for this bound to be true which has the nice feature
of being local. Then we will build the projection space by solving a generalized
eigenvalue problem which identifies which parts of the local subspace satisfy
the sufficient condition or not. Those that do not will serve as a basis for the
projection space.

(Az,z) > C(Mzx,x)

& (Az,x) > C min Z] Az, x;)
{z;€R™I m—ZN RTLEJ}
& (Az,x) > C min Z] (AT — PO)R zj, (I — PO)R zj).

{z;€R™ 0=, R] z;}

(10)
The last equivalence is too long to prove here. The idea is to look at the projected
Additive Schwarz preconditioner as the textbook additive Schwarz precondi-
tioner for the projected operator (I — Py) " A(I — Py) with prolongation operators
R;r replaced by (I — PO)R;F. A sufficient condition for (10) to be true is that this
inequality hold for one particular choice of the decomposition of x so we choose
one. Let D; € R"*" be diagonal weghting matrices which form a partition of
unity: Zjvzl R]-TDjRj = I (I is the identity in R"*™). Then let z; = D;R;x. We

have built a decomposition of x onto the subspaces (Z;V:I R]-ij =) and

N
(Az,z) > C Z (I — Po)R/ DjRjx,(I — Po)R] D;R;z) = (10).
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The final step to make the condition local is to make the left hand side local.
We recall that A is assembled as a sum of element matrices A =3 - A;. Each
of these element matrices was supposed to be symmetric positive semi definite.
This means that if we assemble the element matrices over a subset 7;3 of Ty, the
resulting energy norm will be bounded with respect to (A-, -)*/2. In particular, let
T} ={r;dof(r) C w;} be the set of connections which are completely in subdo-
main j and define the corresponding local matrix as /ij = ZTET,-Z R;FATR]- then

Z;yﬂ(fljij, R;x) < N¢(Ax,z), and the sufficient condition becomes local:

~ C
(A;Rjx, Rjx) > A?<A(I — Po)R] DRz, (I — Py)R] D;R;z) = (10). (11)
We do not know how to simplify this condition further without using infor-
mation on the underlying set of partial differential equations and on the partition
of unity so this is the bottleneck estimate which we have used to select which
vectors span the projection space. Next we give its definition:

3.3 Building the Projection Space to satisfy the Bottleneck
Definition 1. For any subdomain j = 1,..., N, find the eigenpairs (pf,)\f) €
R™ x RT of )

Aj]?? = )\;CDJAJDpr (12)
Then for a given threshold IC let the coarse space be defined by

Vo= |J RID;(VY); Vi = span{pli; A) < K}
j=1,...N

Suppose that the eigenvectors have been normalized so that (D;A;D; pf , pf) =
1. Maybe the most important arguments for writing the proof are

(A;D;pk, Dypl) = 0 and (A;pf,pl) =0, if k #1.

We may use the vectors RjTDjp? € Vp as columns for the interpolation operator

Ry from V; into R™. Then we build the projector Py following (3). This way we

have completed the definition of our domain decomposition method. All that is

left to do is to make sure that the projection space introduced in Definition 1

does indeed do its job and that the bottleneck estimate (11) holds for any x €

range(] — P).

If PJ is the A-orthogonal projection onto the set {R;Djpé?; )\f < IC;} then

(A(I = Py)u, (I — Po)u) < (A(I — Pl)u, (I — P))u), Yu € w. (13)

Moreover, if IT; : w; — wj, Iz; = Z{k,Ak<K}<DjAijxj,p§>p§ is the projec-

_ g
tion operator from [8] then PjR] D; = R/ D;II; so

(AI-P})R] D;R;z,(I—Py)R] D;R;x) = (D;A;D;(I—1II;) Rz, (Ifnj)RZ@).
14
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We apply the abstract Lemma 2.11 from [8] and then use the fact that (fljp?, pé) =
0, k # 1, to get

(A;(I = ;) Rz, (I — II;) R;x)
<AjRj.’E,Rj.’E>.

(DjA;Di(I — 1) Rz, (I — 11;) R;w)

- (15)

A==

Putting (15) together with (13) and (14) proves the condition in (11) for C/N°¢ =
K 50 Apmin > K /N and the condition number is bounded by A¢* /K. Hence if z*
is the exact solution of the original problem (1), z¥ is the initial guess, and 2™ is
the approximate solution given by the m-th step of the preconditioned conjugate
gradient algorithm with the projected Additive Schwarz preconditioner, the error
decreases at least as

||$* _xm”A \/E_NC (16)
[ —aa =2 | VET AT
where || - |4 = (A-,-)!/2, K is the chosen threshold used to select eigenvectors

for the projection space in Definition 1, and N is the number of colors that are
needed to color the subdomains in such a way that two subdomains with the
same color are orthogonal.

4 Numerical Illustration

i

Original A'=—-1-107"% X =1-107%; X =7-107"% )\ =1. 10—5 >\5—7 1075;

:::::w:

A =2.10"1 =0.13; =0.13; 9 =0.15; 0 =0.15; L =0.30;

Fig. 1. Original configuration and first eleven eigenvectors for a floating subdomain.
With I = 0.1 we select six eigenvectors for the projection space. Among these, the
first three correspond to the rigid body modes (Ajp; 23 = (). In total the size of the
projection space is 46.

In this section for lack of space we have chosen to illustrate the way that the
method works rather than a set of performance tests. The implementation uses
matlab and Freefem+4-. We solve the two dimensional linear elasticity equations
discretized with P; (piecewise linear) finite elements on a 121 x 16 regular mesh
with simplicial elements. The domain is an 8 x 1 rectangle which we decompose
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Heration count

Fig. 2. Error versus the iteration count for three methods: no projection (blue full
line), projection onto the rigid body modes (red hashes), projection onto the space
from definition 1 (green hashes and dots). The new projections space does its job. The
condition number is reduced from 3576 to 13. With just the rigid body modes it is
1808.

into 8 side by side unit squares. Then we add one layer of overlap to each. The
medium is a soft material (Lamé parameters: E = 107, v = 0.4) with two layers
of a harder material (E = 10'2, v = 0.4). In Figure 4 we have plotted the original
configuration for one subdomain as well as the first eigenmodes for eigenproblem
(12). In Figure 4 we show that the new method converges very fast and that the
projection step does its job since it reduces the condition number from 3576 to
13 using only 46 projection vectors.
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