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How to ensure that a domain decomposition method will converge.

Introduction

The method presented here is a different application of a strategy devised in [START_REF] Spillane | A Robust Two Level Domain Decomposition Preconditioner for Systems of PDEs[END_REF][START_REF] Spillane | Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps[END_REF], in collaboration with Victorita Dolean, Patrice Hauret, Frédéric Nataf, Clemens Pechstein and Robert Scheichl, and generalized in [START_REF] Spillane | Rixen Spectral coarse spaces for robust FETI and BDD algorithms[END_REF] with Daniel J. Rixen. It is also closely related to the work of [START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF]. In Section 2 we present the one level Schwarz preconditioner, its two level extension based on projections (also known as hybrid Schwarz) and state clearly our objective. In Section 3 we present the theoretical analysis of this preconditioner based on [START_REF] Toselli | Domain decomposition methods: algorithms and theory[END_REF], find which is the bottleneck estimate and put it in a local form (11). Then we define the coarse space (Definition 1) and give the main result (16): an estimate for the convergence of the solver that does not depend on the number of subdomains or the parameters in the equations. Finally in Section 4 we give a numerical illustration for two dimensional linear elasticity with highly heterogeneous coefficients.

2 Two Level Schwarz Method with Projection (aka Hybrid Schwarz)

One Level Schwarz method

Maybe the most straightforward of the domain decomposition methods is the Additive Schwarz method [START_REF] Toselli | Domain decomposition methods: algorithms and theory[END_REF]. The information needed to build the additive Schwarz preconditioner is the following:

-A set ω = {1, . . . , n} of degrees of freedom, -A set of symmetric positive semi-definite element matrices {A τ ∈ R n×n ; τ ∈ T h }, which give the weights of the connections between degrees of freedom, -The connectivity graph for each connection τ ∈ T h which is the list dof (τ ) ⊂ ω of degrees of freedom which are connected to others through τ .

If the problem stems from the finite element approximation of a partial differential equation, these have geometrical interpretations: T h is the mesh of the global domain, τ is an element of this mesh and dof (τ ) is the set of degrees of freedom attached to the vertices of τ .

The global problem matrix is assembled as: A := τ ∈T h A τ . We suppose that A is symmetric positive definite (spd). Then, given a right hand side f ∈ R n the objective is to solve:

Find x * ∈ R n such that Ax * = f. (1) 
The idea behind the Additive Schwarz preconditioner is to approximate the global inverse of A by a sum of local inverse A -1 j . The local inverses are based on an overlapping partition of the set of degrees of freedom ω:

ω = ω 1 ∪. . .∪ω N , such that ∀m ∈ ω, ∃j = 1, . . . , N ;   {τ,m∈dof (τ )} dof (τ )   ⊂ ω j .
This condition says that each degree of freedom m is in the interior of at least one subdomain ω j in the sense that its neighbours, {τ,m∈dof (τ )} dof (τ ), are also in this subdomain. The convergence of the additive Schwarz method relies on this property. The final ingredient for building the one level additive Schwarz preconditioner is a set of interpolation matrices between the global unknowns and the local unknowns. For any j = 1, . . . , N let n j be the cardinality of ω j , then the restriction matrix R j ∈ R nj ×n is the boolean matrix with one 1 entry on each line which corresponds to a degree of freedom in ω j . With this the one level Schwarz preconditioner writes:

M -1 := N j=1 R ⊤ j A -1 j R j , A j := R j AR ⊤ j . (2) 
The matrices A j are built by extracting the coefficients in the global matrix A which correspond to degrees of freedom in ω j . For this reason they are also symmetric positive definite. Unfortunately, the conjugate gradient algorithm preconditioned with the one level Additive Schwarz method is usually not scalable. This means that its convergence rate strongly depends on the number of subdomains. Another drawback is that the convergence rate deteriorates when there are jumps in the coefficients of the underlying set of partial differential equations. One way to improve this is to use a projected operator.

Adding Projection Steps

In [START_REF] Dostàl | Conjugate gradient method with preconditioning by projector[END_REF] the idea to use a projection as a preconditioner for a Krylov method is introduced. Having chosen a set V 0 of vectors in R n which are spanned by the n 0 (linearly independ) columns of R ⊤ 0 ∈ R n×#V0 , we build the A-orthogonal projection operator onto V 0 :

P 0 := R ⊤ 0 (R 0 AR ⊤ 0 ) -1 R 0 A. (3) 
Using the A-orthogonality of P 0 , the original problem (1) rewrites as two idependant problems: Find x * ∈ R n such that (I -P 0 ) ⊤ A(I -P 0 )x * = (I -P ⊤ 0 )f, and

P ⊤ 0 AP 0 x * = P ⊤ 0 f. ( 4 
)
The number of vectors in V 0 is supposed to be sufficiently small so that we can solve the second equation with a direct solve to get P 0 x * . We then apply the conjugate gradient iterations only to the first equation. The rationale behind this splitting of the solution is that even if A is ill-conditioned, in many cases the ill-conditioning is caused only by a small number of smooth vectors. If we can identify these vectors and use them to span the projection space V 0 then we are left with solving iteratively a problem for a much better conditioned matrix (I -P 0 ) ⊤ A(I -P 0 ).

In our case we use both preconditioning and projection. The projected and preconditioned problem is to find x * ∈ R n such that M -1 (I -P 0 ) ⊤ A(I -P 0 )x * = M -1 (I -P ⊤ 0 )f, and P ⊤ 0 AP 0 x * = P ⊤ 0 f. (5) Our objective is the following: we want to design a solver which is scalable and which is robust with respect to heterogeneous coefficients in the set of underlying partial differential equations. We know an estimate for the convergence rate of the preconditioned conjugate gradient method which depends only on the condition number of the preconditioned operator (see [START_REF] Saad | Iterative methods for sparse linear systems[END_REF] for instance). This is why the criterion for choosing our projection space is: Identify a space V 0 which is sufficiently small for P ⊤ 0 AP 0 to be inverted using a direct solver and such that the condition number of M -1 (I -P 0 ) ⊤ A(I -P 0 ) does not depend on the number of subdomains N or on any of the parameters in the original set of equations.

Intuitively, the vectors which are used for the projection space are the parts of the solution for which the preconditioner does not do a good job (M -1 Ax is very different from x).

3 Choosing the Projection Space

Abstract Schwarz Theory

Fortunately the additive Schwarz preconditioner has already been thoroughly analyzed and an abstract presentation of this theory can be found in [START_REF] Toselli | Domain decomposition methods: algorithms and theory[END_REF] (see hybrid Schwarz). Our choice for the projection space relies on this analysis.

The iterations of the preconditioned conjugate gradient for operator (I -P 0 ) ⊤ A(I -P 0 ) and preconditioner M -1 produce the same values as the iterations of the conjugate gradient for the symmetric operator M -1/2 (I -P 0 ) ⊤ A(I -P 0 )M -1/2 where the right hand side f is replaced with M -1/2 f and the unknown is M 1/2 x [2]. We will obtain estimates for the condition number by finding an upper bound for the, respectively, largest and lowest eigenvalues λ max and λ min of M -1/2 (I -P 0 ) ⊤ A(I -P 0 )M -1/2 in range(M 1/2 (I -P 0 )).

Notice that the reformulation does not contradict our previous objective since the eigenvalues and thus the condition number of M -1/2 (I -P 0 ) ⊤ A(I -P 0 )M -1/2 in range(M 1/2 (I -P 0 )) are the same as the eigenvalues of M -1 A in range(I -P 0 ).

Let y ∈ range(M 1/2 (I -P 0 )), y = M 1/2 x, x ∈ range(I -P 0 ), then

M -1/2 (I -P 0 ) ⊤ A(I -P 0 )M -1/2 y, y = Ax, x and y, y = M x, x (6) 
so if there exist constants C 1 and C 2 such that

C 1 M x, x ≤ Ax, x ≤ C 2 M x, x , ∀ x ∈ range(I -P 0 ) (7) 
then λ max ≤ C 2 , λ min ≥ C 1 and the condition number is bounded by C 2 /C 1 . We notice that the constants which we want to evaluate measure, on range(I -P 0 ), the difference between the energy norm with respect to the original operator A and the energy norm with respect to the inverse of the preconditioner M (this is the inverse of an approximation of the inverse of A). Since we have fixed the choice of the preconditioner, the lattitude we are left with in order to satisfy the estimate is to put the vectors for which we cannot write the proof into the projection space V 0 . In practice we never need to compute the inverse M of the preconditioner. In our analysis we will use the expression given in Lemma 2.5 of [4] 1 :

M x, x = min {xj ∈R n j ;x= N j=1 R ⊤ j xj } N j=1 A j x j , x j . (8) 
The energy norm of x with respect to the inverse of the preconditioner M minimizes the sum, over all the possible decompositions of x onto the N subdomains, of the local energies.

Next we prove an estimate for λ max . This estimate depends on the maximal number N c of colors that are needed to color each of the sets ω j in such a way that two subsets with the same color are A-orthogonal. More precisely let color(j) ∈ {1, . . . , N c } denote the color of a subdomain j then

AR ⊤ k u k , R ⊤ l u l = 0, ∀u k ∈ ω k and u l ∈ ω l if color(k) = color(l).
Given the decomposition x = N j=1 R ⊤ j x j which realizes the minimum in ( 8) we write

M x, x = N j=1 AR ⊤ j x j , R ⊤ j x j = N c c=1 A {i;color(i)=c} R ⊤ i x i , {i;color(i)=c} R ⊤ i x i ≥ 1 N c A N j=1 R ⊤ j x j , N j=1 R ⊤ j x j = 1 N c Ax, x . (9) 
The argument for the inequality in the third line is a generalization of the identity 2(a 2 + b 2 ) ≥ (a + b) 2 . We have proved that λ max ≤ N c . This estimate does not depend on the number of subdomains or the coefficients in the equations and it holds independently of the choice of the projection space. Deriving a bound for λ min is a trickier job.

Identifying the Bottleneck

We procede by beginning to write the proof for an arbitrary contant C. We will find a sufficient condition for this bound to be true which has the nice feature of being local. Then we will build the projection space by solving a generalized eigenvalue problem which identifies which parts of the local subspace satisfy the sufficient condition or not. Those that do not will serve as a basis for the projection space.

Ax, x ≥ C M x, x ⇔ Ax, x ≥ C min {xj ∈R n j ;x= N j=1 R ⊤ j xj } N j=1 A j x j , x j ⇔ Ax, x ≥ C min {xj ∈R n j ;x= N j=1 R ⊤ j xj } N j=1 A(I -P 0 )R ⊤ j x j , (I -P 0 )R ⊤ j x j .
(10) The last equivalence is too long to prove here. The idea is to look at the projected Additive Schwarz preconditioner as the textbook additive Schwarz preconditioner for the projected operator (I -P 0 ) ⊤ A(I -P 0 ) with prolongation operators R ⊤ j replaced by (I -P 0 )R ⊤ j . A sufficient condition for (10) to be true is that this inequality hold for one particular choice of the decomposition of x so we choose one. Let D j ∈ R nj ×nj be diagonal weghting matrices which form a partition of unity:

N j=1 R ⊤ j D j R j = I (I is the identity in R n×n ). Then let x j = D j R j x.
We have built a decomposition of x onto the subspaces (

N j=1 R ⊤ j x j = x) and Ax, x ≥ C N j=1 A(I -P 0 )R ⊤ j D j R j x, (I -P 0 )R ⊤ j D j R j x ⇒ (10).
The final step to make the condition local is to make the left hand side local. We recall that A is assembled as a sum of element matrices A = τ ∈T h A τ . Each of these element matrices was supposed to be symmetric positive semi definite. This means that if we assemble the element matrices over a subset T j h of T h the resulting energy norm will be bounded with respect to A•, • 1/2 . In particular, let T j h = {τ ; dof (τ ) ⊂ ω j } be the set of connections which are completely in subdomain j and define the corresponding local matrix as Ãj

= τ ∈T j h R ⊤ j A τ R j then N j=1 Ãj R j x, R j x ≤ N c Ax, x
, and the sufficient condition becomes local:

Ãj R j x, R j x ≥ C N c A(I -P 0 )R ⊤ j D j R j x, (I -P 0 )R ⊤ j D j R j x ⇒ (10). ( 11 
)
We do not know how to simplify this condition further without using information on the underlying set of partial differential equations and on the partition of unity so this is the bottleneck estimate which we have used to select which vectors span the projection space. Next we give its definition:

3.3 Building the Projection Space to satisfy the Bottleneck Definition 1. For any subdomain j = 1, . . . , N , find the eigenpairs

(p k j , λ k j ) ∈ R nj × R + of Ãj p k j = λ k j D j A j D j p k j . (12) 
Then for a given threshold K let the coarse space be defined by

V 0 = j=1,...,N R ⊤ j D j (V j 0 ); V j 0 = span{p k j ; λ k j < K}.
Suppose that the eigenvectors have been normalized so that D j A j D j p k j , p k j = 1. Maybe the most important arguments for writing the proof are A j D j p k j , D j p l j = 0 and Ãj p k j , p l j = 0, if k = l.

We may use the vectors R ⊤ j D j p k j ∈ V 0 as columns for the interpolation operator R ⊤ 0 from V 0 into R n . Then we build the projector P 0 following (3). This way we have completed the definition of our domain decomposition method. All that is left to do is to make sure that the projection space introduced in Definition 1 does indeed do its job and that the bottleneck estimate (11) holds for any x ∈ range(I -P 0 ).

If P j 0 is the A-orthogonal projection onto the set {R ⊤ j D j p k j ; λ k j < K j } then A(I -P 0 )u, (I -P 0 )u ≤ A(I -P j 0 )u, (I -

P j 0 )u , ∀u ∈ ω. (13) 
Moreover, if Π j : ω j → ω j , Π j x j = {k;λ k j <K} D j A j D j x j , p k j p k j is the projection operator from [START_REF] Spillane | Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps[END_REF] then

P j 0 R ⊤ j D j = R ⊤ j D j Π j so A(I -P j 0 )R ⊤ j D j R j x, (I -P 0 )R ⊤ j D j R j x = D j A j D j (I -Π j )R j x, (I -Π j )R j x . (14) 
We apply the abstract Lemma 2.11 from [START_REF] Spillane | Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps[END_REF] and then use the fact that Ãj p k j , p l j = 0, k = l, to get

D j A j D j (I -Π j )R j x, (I -Π j )R j x ≤ 1 K Ãj (I -Π j )R j x, (I -Π j )R j x ≤ 1 K Ãj R j x, R j x . (15) 
Putting (15) together with (13) and ( 14) proves the condition in (11) for C/N c = K so λ min ≥ K/N c and the condition number is bounded by N c2 /K. Hence if x * is the exact solution of the original problem (1), x 0 is the initial guess, and x m is the approximate solution given by the m-th step of the preconditioned conjugate gradient algorithm with the projected Additive Schwarz preconditioner, the error decreases at least as

x * -x m A x * -x 0 A ≤ 2 √ K -N c √ K + N c m , (16) 
where

• A = A•, • 1/2
, K is the chosen threshold used to select eigenvectors for the projection space in Definition 1, and N c is the number of colors that are needed to color the subdomains in such a way that two subdomains with the same color are orthogonal.

Numerical Illustration

Original λ 1 = -1 • 10 -14 ; λ 2 = 1 • 10 -15 ; λ 3 = 7 • 10 -15 ; λ 4 = 1 • 10 -5 ; λ 5 = 7 • 10 -5 ; λ 6 = 2 • 10 -4 λ 7 = 0.13; λ 8 = 0.13; λ 9 = 0.15; λ 10 = 0.15; λ 11 = 0.30; Fig. 1. Original configuration and first eleven eigenvectors for a floating subdomain. With K = 0.1 we select six eigenvectors for the projection space. Among these, the first three correspond to the rigid body modes ( Ãjp 1,2,3 j = 0). In total the size of the projection space is 46.

In this section for lack of space we have chosen to illustrate the way that the method works rather than a set of performance tests. The implementation uses matlab and Freefem++. We solve the two dimensional linear elasticity equations discretized with P 1 (piecewise linear) finite elements on a 121 × 16 regular mesh with simplicial elements. The domain is an 8 × 1 rectangle which we decompose into 8 side by side unit squares. Then we add one layer of overlap to each. The medium is a soft material (Lamé parameters: E = 10 7 , ν = 0.4) with two layers of a harder material (E = 10 12 , ν = 0.4). In Figure 4 we have plotted the original configuration for one subdomain as well as the first eigenmodes for eigenproblem (12). In Figure 4 we show that the new method converges very fast and that the projection step does its job since it reduces the condition number from 3576 to 13 using only 46 projection vectors.

Fig. 2 .

 2 Fig.2. Error versus the iteration count for three methods: no projection (blue full line), projection onto the rigid body modes (red hashes), projection onto the space from definition 1 (green hashes and dots). The new projections space does its job. The condition number is reduced from 3576 to 13. With just the rigid body modes it is 1808.

In the book P ad = M -1 A so AP -1 ad = M .