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34095 Montpellier, France

Abstract

From the asymptotic expansion of the ground state of the Gross–Pitaevskii equa-
tion in the Thomas–Fermi limit given by Gallo and Pelinovsky [GP], we infer an
asymptotic expansion of the kinetic, potential and total energy of the ground state.
In particular, we give a rigorous proof of the expansion of the kinetic energy calculated
by Dalfovo, Pitaevskii and Stringari [DPS] in the case where the space dimension is
3. Moreover, we calculate one more term in this expansion, and we generalize the
result to space dimensions 1 and 2.

1 Introduction

After recent experiments with Bose–Einstein condensates, new interest has been stimulated
in the Gross–Pitaevskii equation with a harmonic potential, taken here in its adimensional
form

iεut + ε2∆u+ (1− |x|2)u− |u|2u = 0, x ∈ R
d, t ∈ R+, (1.1)

where the space dimension d is one, two or three, u(t, x) ∈ C describes the wave function
of a repulsive Bose gas, and ε is a small parameter that corresponds to the Thomas–Fermi
approximation of a nearly compact atomic cloud [F, T].
A ground state of the Bose-Einstein condensate is a positive, time-independent solution
u(t, x) = ηε(x) of the Gross–Pitaevskii equation (1.1). Namely, ηε : R

d 7→ R satisfies the
stationary Gross–Pitaevskii equation

ε2∆ηε(x) + (1− |x|2)ηε(x)− η3ε(x) = 0, x ∈ R
d, (1.2)

ηε(x) > 0 for all x ∈ R
d, and ηε has a finite energy Eε(ηε), where Eε is given by

Eε(u) =

∫

Rd

(

ε2|∇u|2 + (|x|2 − 1)u2 +
1

2
u4
)

dx.
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In dimensions one, two and three, provided ε is sufficiently small, existence and uniqueness
of a radial ground state ηε is known [IM, GP]. It is also well known [IM, AAB] that ηε(x)
converges to η0(x) as ε → 0 for all x ∈ R

2, where η0 is the so called Thomas–Fermi
approximation

η0(x) =

{

(1− |x|2)1/2 for |x| < 1,
0 for |x| > 1.

(1.3)

Several quantities such as the kinetic energy of the ground state

Ek,ε(ηε) = ε2
∫

Rd

|∇ηε|2dx,

can not be accurately approximated just by replacing the ground state ηε by η0, because of a
logarithmic divergence at the boundary region |x| = 1. In [DPS], in the three-dimensional
case, Dalfovo, Pitaevskii and Stringari give the behavior of the order parameter in the
boundary region, which for instance provides the first term in the asymptotic expansion of
Ek,ε(ηε) close to ε = 0. The comparison of this term with the energy obtained by solving
numerically the Gross–Pitaevskii equation enables them to confirm the correctness of their
prediction about the behaviour of the ground state at the boundary. The precise knowledge
of quantities such as the kinetic energy of the ground state Ek,ε(ηε), its potential energy

Ep(ηε) =

∫

Rd

(|x|2 − 1)η2εdx,

or its total energy Eε(ηε), is an interesting information about the ground state, in particular
because of the characterization of ηε as a minimizer of Eε. The purpose of this work is to
show how we can obtain rigorously asymptotic expansions (theoretically at arbitrarily high
order of accuracy) of such quantities. In particular, for d = 3, we give a rigorous proof
of the expansion of the kinetic energy of the ground state given in [DPS], we calculate
one more term in this expansion, and we generalize the result to one and two-dimensional
cases. The extra term we calculate in the three-dimensional case also gives an idea about
the range of values of the physical parameters for which the approximation of the kinetic
energy given in [DPS] is valid. Namely, we show that this extra term has to be taken into
account as soon as the ratio ε1/2 = aHO/R between the harmonic oscillator length and the
radius of the potential (see Section 4) is not negligeable in front of 5 ·10−2. The calculation
of other terms in the expansion, on top of giving a more accurate approximation of the
kinetic energy for small values of ε, would also give better approximations for larger values
of ε.
The calculation of the expansions of the different energies rely on the expansion of ηε into
powers of ε in the limit ε → 0, which was established in [GP]. So, let us first summarize
the main ideas which provide this expansion of ηε in [GP]. Since ηε is radially symmetric,
we can define a function νε on Jε := (−∞, ε−2/3] by

ηε(x) = ε1/3νε

(

1− |x|2
ε2/3

)

, x ∈ R
d. (1.4)
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Next, we rewrite equation (1.2) in terms of the new real variable y = (1− |x|2)/ε2/3. It is
equivalent for ηε to solve (1.2) and for νε to solve the differential equation

4(1− ε2/3y)ν ′′ε (y)− 2ε2/3dν ′ε(y) + yνε(y)− ν3ε (y) = 0, y ∈ Jε. (1.5)

Let N > 0 be an integer. We look for νε using the form

νε(y) =
N
∑

n=0

ε2n/3νn(y) + ε2(N+1)/3RN,ε(y), y ∈ Jε. (1.6)

Expansion (1.6) provides a solution of equation (1.5) if {νn}06n6N and RN,ε satisfy equa-
tions (1.7), (1.8) and (1.9) below.

• ν0 solves the Painlevé-II equation

4ν ′′0 (y) + yν0(y)− ν30(y) = 0, y ∈ R, (1.7)

• for 1 6 n 6 N , νn solves

−4ν ′′n(y) +W0(y)νn(y) = Fn(y), y ∈ R, (1.8)

where
W0(y) = 3ν20(y)− y

and
Fn(y) = −

∑

n1, n2, n3 < n
n1 + n2 + n3 = n

νn1
(y)νn2

(y)νn3
(y)− 2dν ′n−1(y)− 4yν ′′n−1(y),

• RN,ε solves

−4(1− ε2/3y)R′′
N,ε + 2ε2/3dR′

N,ε +W0RN,ε = FN,ε(y, RN,ε), y ∈ Jε, (1.9)

where

FN,ε(y, R) = −(4yν ′′N + 2dν ′N)−
2N−1
∑

n=0

ε2n/3
∑

n1 + n2 + n3 = n + N + 1

0 6 n1, n2, n3 6 N

νn1
νn2

νn3

−






3

2N
∑

n=1

ε2n/3
∑

n1 + n2 = n
0 6 n1, n2 6 N

νn1
νn2






R−

(

3
2N+1
∑

n=N+1

ε2n/3νn−(N+1)

)

R2 − ε4(N+1)/3R3.

Notice that for 0 6 n 6 N , νn(y) is defined for all y ∈ R and does not depend on ε,
whereas RN,ε(y) is only defined for y ∈ Jε.
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In order to describe accurately the convergence of ηε to η0 by the first term (corre-
sponding to n = 0) in expansion (1.6), ν0 shall be chosen in such a way that

ε1/3ν0

(

1− x2

ε2/3

)

−→
{ √

1− |x|2 if|x| < 1
0 if|x| > 1,

which means that ν0 has to satisfy the asymptotic behaviour

ν0(y) ∼ y1/2 as y → +∞ and ν0(y) → 0 as y → −∞. (1.10)

The Painlevé-II equation is known to have a unique solution ν0 with the asymptotic be-
haviour (1.10). This is the so-called Hastings-McLeod solution. Moreover, the behaviour
of ν0(y) as y → ±∞ has been studied in details, for instance in [HM], [M], [FIKN]. Some
of its properties are summarized in the next proposition.

Proposition 1.1 [HM, M, FIKN] The Painlevé-II equation (1.7) admits a unique solu-
tion ν0 ∈ C∞(R) which satisfies (1.10). This solution ν0 is strictly increasing on R. The
behaviour of ν0 as y → −∞ is described by

ν0(y) =
1√

π(−y)1/4 exp
(

−1

3
(−y)3/2

)

(

1 +O(|y|−3/4)
)

≈
y→−∞

0, (1.11)

whereas as y → +∞,

ν0(y) ≈
y→+∞

y1/2
∞
∑

n=0

bn
(2y)3n/2

, (1.12)

where b0 = 1, b1 = 0, and for n > 0,

bn+2 = 4(9n2 − 1)bn −
3

2

n+1
∑

m=1

bmbn+2−m − 1

2

n
∑

l=1

n+1−l
∑

m=1

blbmbn+2−l−m.

Once ν0 has been chosen to be the Hastings-McLeod solution of the Painlevé-II equation
(1.7), we show by induction on n that there is a unique way to construct the sequence
(νn)n>1 ⊂ H∞(R) such that (1.8) is satisfied for every n > 1. Moreover, like for ν0, the
asymptotic behaviour of the νn’s can be precisely described, as it is shown in the next
proposition.

Proposition 1.2 [GP] For every n > 1,

νn(y) ≈
y→+∞

yβ−2n

∞
∑

m=0

gn,my
−3m/2 for some {gn,m}m∈N,

and νn(y) ≈
y→−∞

0,

where β =

{

−5/2 if d = 1,
1/2 if d = 2, 3.
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Remark 1.3 The coefficients gn,m can be calculated explicitely by plugging this expansion

of νn into (1.8). For instance, ν1(y) ∼
y→+∞

5(7−d)
4

y−9/2 if d = 1, whereas ν1(y) ∼
y→+∞

=

1−d
2
y−3/2 if d = 2, 3.

Finally, we close the argument by constructing a remainder term RN,ε that solves
equation (1.9). We also prove suitable estimates on RN,ε which ensure that the last term
in the right hand side of (1.6) is indeed small compared to the other ones, and that the
solution of the stationary Gross-Pitaevskii equation (1.2) that we have constructed by
(1.4), (1.6) and our choices of the νn’s and RN,ε is indeed the unique ground state of (1.2)
(in particular, it is positive). More precisely, we have the following result.

Proposition 1.4 [GP] For every N > 0, there exists εN > 0 and CN > 0 such that for
every 0 < ε < εN , there is a solution RN,ε ∈ C∞ ∩ L∞(Jε) of equation (1.9) with

‖RN,ε‖L∞(Jε) 6 CN ,

∫ ε−2/3

−∞

RN,ε(y)
2W0(y)(1− ε2/3y)d/2−1dy 6 CN

and SN,ε : x 7→ RN,ε

(

1− |x|2
ε2/3

)

∈ H2(Rd),

such that the unique radially symmetric ground state of equation (1.2) in L2(Rd) writes

ηε(x) = ε1/3
N
∑

n=0

ε2n/3νn

(

1− |x|2
ε2/3

)

+ ε2N/3+1RN,ε

(

1− |x|2
ε2/3

)

, x ∈ R
d. (1.13)

Remark 1.5 The estimate on the L∞ norm of RN,ε written in [GP] was ‖RN,ε‖L∞(Jε) 6

CNε
−(d−1)/3. The estimate we have in Proposition 1.4 above is a direct consequence of this

inequality with RN,ε replaced by RN+1,ε, taking into account that d 6 3, RN,ε = νN+1 +
ε2/3RN+1,ε and νN+1 ∈ L∞(R). The other estimate on RN,ε is a byproduct of the proof of
Proposition 1.4 given in [GP]. Indeed, RN,ε is obtained there thanks to a fix point argument
in a ball BH1

ε
(R0

N,ε, Cε
2/3), where ‖R0

N,ε‖H1
ε
. 1 and

‖u‖2H1
ε
=

∫ ε−2/3

−∞

(

4(1− ε2/3y)d/2|u′|2 + (1− ε2/3y)d/2−1W0(y)u(y)
2
)

dy.

The asymptotic expansion of ηε given by (1.4)-(1.6) as well as the precise description
of the behaviour of νn(y) as y → ±∞ (for n > 0) given in Propositions 1.1 and 1.2,
enable us to calculate expansions for kinetic, potential and full energy of the ground state.
Concerning the full energy, we get the following expansion.

Theorem 1.6 For d = 1,

Eε(ηε) = − 8

15
− 2

3
ε2 ln ε+

[

∫ 1

0

(1− t)−
1

2 − 1

t
dt− 1

2

∫ +∞

−∞

(

ν0(y)
4 − y2+ +

2

y
1{y>1}

)

dy

]

ε2

+

[

−1

2
− 1

4

∫ +∞

−∞

y

(

ν0(y)
4 − y2+ +

2

y
1{y>1}

)

dy − 2

∫ +∞

−∞

ν0(y)
3ν1(y)dy

]

ε8/3 +O(ε3).
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For d = 2,

Eε(ηε) = −π
6
− 2π

3
ε2 ln ε+

[

−π
2

∫ +∞

−∞

(

ν0(y)
4 − y2+ +

2

y
1{y>1}

)

dy + π

]

ε2

−2π

[∫ +∞

−∞

(

ν0(y)
3ν1(y) +

1

2
1{y>0}

)

dy

]

ε8/3 +O(ε3).

For d = 3,

Eε(ηε) = −16π

105
− 4π

3
ε2 ln ε

+

[

2π

∫ 1

0

(1− t)
1

2 − 1

t
dt− π

∫ +∞

−∞

(

ν0(y)
4 − y2+ +

2

y
1{y>1}

)

dy +
8π

3

]

ε2

+

[

π +
π

2

∫ +∞

−∞

y

(

ν0(y)
4 − y2+ +

2

y
1{y>1}

)

dy − 4π

∫ +∞

−∞

(

ν0(y)
3ν1(y) + 1{y>0}

)

dy

]

ε8/3 +O(ε3).

Remark 1.7 Note that the notation ν1 does not represent the same function in the three
expansions given in Theorem 1.6. Indeed, the equation (1.8) satisfied by ν1 depends on the
dimension d through F1.

The rest of the paper is organized as follows. In section 2 we calculate asymptotic
expansions of Eε(ηε) and prove Theorem 1.6. In section 3 we calculate the asymptotic
expansion of the potential energy Ep(ηε). In section 4, we deduce the expansion of the
kinetic energy from the results of the two previous section, and we rediscover the expansion
found by Dalfovo, Pitaevskii and Stringari in [DPS] on a formal level. In the appendix, we
prove a key lemma which is used on many occasions in the calculation.

2 Expansion of Eε(ηε)

We are interested here in the behaviour of Eε(ηε) as ε → 0. First, if we multiply (1.2) by
ηε and sum over Rd, we get

Eε(ηε) = −1

2

∫

Rd

ηε(x)
4dx. (2.1)

From the convergence of ηε to η0 in L
p(Rd) (for any p ∈ [1,+∞]) as ε→ 0 [GP], we already

know

Eε(ηε) −→
ε→0

−1

2

∫

Rd

η0(x)
4dx =







−8/15 if d = 1
−π/6 if d = 2
−16π/105 if d = 3.

Next, we calculate some correction terms in the asymptotic expansion of Eε(ηε) as
ε→ 0. From (2.1), (1.4) and (1.6) we infer

6



Eε(ηε) +
1

2

∫

Rd

η0(x)
4dx

= −1

2

∫

Rd

(

ηε(x)
4 − η0(x)

4
)

dx

= −1

2

∫

Rd

ε4/3



νε

(

1− |x|2
ε2/3

)4

−
√

(

1− |x|2
ε2/3

)

+

4


 dx

= −ε
4/3

2

∣

∣S
d−1
∣

∣

∫ +∞

0



νε

(

1− r2

ε2/3

)4

−
√

(

1− r2

ε2/3

)

+

4


 rd−1dr

= −ε
2

4

∣

∣S
d−1
∣

∣

∫ ε−2/3

−∞

(

νε(y)
4 −√

y+
4
)

(1− ε2/3y)d/2−1dy

= −ε
2

4

∣

∣S
d−1
∣

∣

∫ ε−2/3

−∞

(

(ν0(y) + ε2/3R0,ε(y))
4 −√

y+
4
)

(1− ε2/3y)d/2−1dy

= −ε
2

4

∣

∣S
d−1
∣

∣

6
∑

j=1

Ij,

where

I1 =

∫ ε−2/3

−∞

−2

y
1{y>1}(1− ε2/3y)d/2−1dy,

I2 =

∫ ε−2/3

−∞

(

ν0(y)
4 −√

y+
4 +

2

y
1{y>1}

)

(1− ε2/3y)d/2−1dy,

I3 = 4ε2/3
∫ ε−2/3

−∞

ν0(y)
3R0,ε(y)(1− ε2/3y)d/2−1dy,

I4 = 6ε4/3
∫ ε−2/3

−∞

ν0(y)
2R0,ε(y)

2(1− ε2/3y)d/2−1dy,

I5 = 4ε2
∫ ε−2/3

−∞

ν0(y)R0,ε(y)
3(1− ε2/3y)d/2−1dy,

I6 = ε8/3
∫ ε−2/3

−∞

R0,ε(y)
4(1− ε2/3y)d/2−1dy.

Next, we give an asymptotic expansion as ε → 0 of each of the Ij’s, with a O(ε)
remainder. For this purpose, the following lemma, which is proved in the appendix, will
be convenient.
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Lemma 2.1 Let g : R 7→ R be a bounded function, such that g(y) =
y→−∞

O(exp(y)), and

g(y) =
y→+∞

O(y−α), where α ∈ R. Then

∫ ε−2/3

−∞

g(y)(1− ε2/3y)d/2−1dy

=
ε→0







O(ε−1/3) if α > 1/2
∫ +∞

−∞
g(y)dy +O(ε1/3) if α > 3/2

∫ +∞

−∞
g(y)dy −

(

d
2
− 1
)

ε2/3
∫ +∞

−∞
yg(y)dy +O(ε) if α > 5/2.

(2.2)

Expansion of I1. From the change of variable t = ε2/3y, we get

I1 = −2

∫ ε−2/3

1

(1− ε2/3y)d/2−1dy

y

= −2

∫ 1

ε2/3
(1− t)d/2−1dt

t

= −2

∫ 1

ε2/3

dt

t
− 2

∫ 1

0

(1− t)d/2−1 − 1

t
dt+ 2

∫ ε2/3

0

(1− t)d/2−1 − 1

t
dt

=
4

3
ln ε− 2

∫ 1

0

(1− t)d/2−1 − 1

t
dt− 2

(

d

2
− 1

)

ε2/3 +O(ε4/3).

Expansion of I2. We apply Lemma 2.1 to the function

g0(y) := ν0(y)
4 −√

y+
4 +

2

y
1{y>1}.

Note that Proposition 1.1 yields g0(y) =
y→−∞

O(exp(y)), and g0(y) =
y→+∞

O(y−5/2). Thus,

I2 =

∫ ε−2/3

−∞

g0(y)(1− ε2/3y)d/2−1dy =

∫ +∞

−∞

g0(y)dy −
(

d

2
− 1

)

ε2/3
∫ +∞

−∞

yg0(y)dy +O(ε).

Expansion of I3. From (1.6), we get

I3 = 4ε2/3
∫ ε−2/3

−∞

ν0(y)
3R0,ε(y)(1− ε2/3y)d/2−1dy

= 4ε2/3
∫ ε−2/3

−∞

ν0(y)
3

(

k
∑

j=0

ε2j/3νj+1(y) + ε2(k+1)/3Rk+1,ε(y)

)

(1− ε2/3y)d/2−1dy.

From Propositions 1.1 and 1.2, we have

ν0(y) =
y→+∞

y1/2 − 1

2
y−5/2 +O(y−4),
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ν1(y) =
y→+∞

{

1−d
2
y−3/2 +O(y−3) if d = 2, 3

O(y−9/2) if d = 1,

and ν0(y), ν1(y) ≈
y→−∞

0. In particular, for d = 2, 3,

ν0(y)
3ν1(y) =

y→+∞

(

y1/2 +O(y−5/2)
)3
(

1− d

2
y−3/2 +O(y−3)

)

=
1− d

2
+O(y−3/2),

a result which also holds for d = 1. Thus, Lemma 2.1 implies

4ε2/3
∫ ε−2/3

−∞

ν0(y)
3ν1(y)(1− ε2/3y)d/2−1dy

= 4ε2/3
∫ ε−2/3

−∞

g1(y)(1− ε2/3y)d/2−1dy − 4ε2/3
∫ ε−2/3

0

d− 1

2
(1− ε2/3y)d/2−1dy

= 4ε2/3
∫ ε−2/3

−∞

g1(y)(1− ε2/3y)d/2−1dy − 4
d− 1

d

= 4
1− d

d
+ 4ε2/3

∫ +∞

−∞

g1(y)dy +O(ε), (2.3)

where

g1(y) = ν0(y)
3ν1(y) +

d− 1

2
1{y>0} =

y→+∞
O(y−3/2).

Next Proposition 1.2 provides, for j > 1, νj+1(y) =
y→+∞

O(y−7/2), and therefore ν0(y)
3νj+1(y) =

O(y−2). Thus, Lemma 2.1 implies

4ε2(1+j)/3

∫ ε−2/3

−∞

ν0(y)
3νj+1(y)(1− ε2/3y)d/2−1dy = O(ε2(1+j)/3) = O(ε4/3). (2.4)

Finally, if ε 6 1, thanks to Proposition 1.4,
∣

∣

∣

∣

∣

4ε2/3
∫ ε−2/3

−∞

ν0(y)
3ε2(k+1)/3Rk+1,ε(y)(1− ε2/3y)d/2−1dy

∣

∣

∣

∣

∣

6 4ε2(k+2)/3‖Rk+1,ε‖L∞(Jε)

∫ ε−2/3

−∞

ν0(y)
3(1− ε2/3y)d/2−1dy

. ε2(k+2)/3

(

∫ 0

−∞

ν0(y)
3(1 + |y|)1/2dy + (ε−2/3)3/2

∫ ε−2/3

0

(1− ε2/3y)d/2−1dy

)

. ε2(k+2)/3(1 + ε−5/3) = O(ε), (2.5)

provided k > 2. With such a choice of k, the combination of estimates (2.3), (2.4) and
(2.5) yields

I3 = 4
1− d

d
+ 4ε2/3

∫ +∞

−∞

g1(y)dy +O(ε).
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Estimates on I4,I5,I6. As mentionned in Proposition 1.1, ν0 is an increasing function
on R, ν0(y) −→

y→−∞
0 and ν0(y) ∼

y→+∞
y1/2. On the other side, it is proved in [GP] that

W0(y) = 3ν0(y)
2 − y > 0 for y ∈ R. Thus, there exists C > 0 such that for every y ∈ R,

max(ν0(y)
2, ν0(y), 1) 6 CW0(y).

Thus, it follows from the estimates on R0,ε stated in Proposition 1.4 that

I4 = O(ε4/3), I5 = O(ε2), I6 = O(ε8/3).

Combining the asymptotic expansions of all of the Ij’s, we obtain finally

Eε(ηε) +
1

2

∫

Rd

η0(x)
4dx

= −ε
2

4

∣

∣S
d−1
∣

∣

[

4

3
ln ε+

(

4
1− d

d
− 2

∫ 1

0

(1− t)d/2−1 − 1

t
dt+

∫ +∞

−∞

g0(y)dy

)

+

(

(1− d

2
)(2 +

∫ +∞

−∞

yg0(y)dy) + 4

∫ +∞

−∞

g1(y)dy

)

ε2/3 +O(ε)

]

.

3 Expansion of Ep(ηε)

A calculation similar to the one we made to compute Eε(ηε) +
1
2
‖η0‖4L4(Rd)

gives

Ep(ηε)−
∫

Rd

(

|x|2 − 1
)

η0(x)
2dx

= −ε
2

2

∣

∣S
d−1
∣

∣

∫ ε−2/3

−∞

y
(

(ν0(y) + ε2/3R0,ε(y))
2 −√

y+
2
)

(1− ε2/3y)d/2−1dy

= −ε
2

2

∣

∣S
d−1
∣

∣

4
∑

j=1

Jj,

where

J1 =

∫ ε−2/3

−∞

−1

y
1{y>1}(1− ε2/3y)d/2−1dy,

J2 =

∫ ε−2/3

−∞

(

y(ν0(y)
2 − y+) +

1

y
1{y>1}

)

(1− ε2/3y)d/2−1dy,

J3 = 2ε2/3
∫ ε−2/3

−∞

yν0(y)R0,ε(y)(1− ε2/3y)d/2−1dy,

J4 = ε4/3
∫ ε−2/3

−∞

yR0,ε(y)
2(1− ε2/3y)d/2−1dy.

The method used to calculate asymptotic expansions of the Jj’s for j = 1, 2, 3, 4 is similar
to the one we used for the Ij’s. More precisely,
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Expansion of J1.

J1 =
1

2
I1 =

2

3
ln ε−

∫ 1

0

(1− t)d/2−1 − 1

t
dt−

(

d

2
− 1

)

ε2/3 +O(ε4/3).

Expansion of J2. From Lemma 2.1,

J2 = =

∫ +∞

−∞

g2(y)dy −
(

d

2
− 1

)

ε2/3
∫ +∞

−∞

yg2(y)dy +O(ε),

where

g2(y) = y(ν0(y)
2 − y+) +

1

y
1{y>1} =

y→+∞
O(y−5/2).

Expansion of J3. We infer from Propositions (1.1) and (1.2) that

yν0(y)ν1(y) =
y→+∞

1− d

2
+O(y−3/2).

We put

g3(y) := yν0(y)ν1(y) +
d− 1

2
1{y>0} =

y→+∞
O(y−3/2).

Like in the calculation of I3, we notice that for every j > 1, yν0(y)νj+1(y) =
y→+∞

O(y−2),

and we deduce

J3 = 2
1− d

d
+ 2ε2/3

∫ +∞

−∞

g3(y)dy +O(ε).

Expansion of J4. Like in the estimate on I4, we have

J4 = O(ε4/3).

As a conclusion, we get

Ep(ηε) +

∫

Rd

η0(x)
4dx

= −ε
2

2

∣

∣S
d−1
∣

∣

[

2

3
ln ε+

(

2
1− d

d
−
∫ 1

0

(1− t)d/2−1 − 1

t
dt+

∫ +∞

−∞

g2(y)dy

)

+

(

(1− d

2
)(1 +

∫ +∞

−∞

yg2(y)dy) + 2

∫ +∞

−∞

g3(y)dy

)

ε2/3 +O(ε)

]

.
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4 Expansion of Ek,ε(ηε)

Let us multiply (1.2) by ηε and sum over Rd. We get

Ek,ε(ηε) = 2Eε(ηε)− Ep(ηε)

Thus, the asymptotic expansions of Eε(ηε) and Ep(ηε) obtained in the previous sections
ensure

Ek,ε(ηε)

= −ε
2

2

∣

∣S
d−1
∣

∣

[

2

3
ln ε+

(

2
1− d

d
−
∫ 1

0

(1− t)d/2−1 − 1

t
dt+

∫ +∞

−∞

(g0(y)− g2(y))dy

)

+

(

(1− d

2
)(1 +

∫ +∞

−∞

y(g0(y)− g2(y))dy) +

∫ +∞

−∞

(4g1(y)− 2g3(y))dy

)

ε2/3 +O(ε)

]

= −ε
2

2

∣

∣S
d−1
∣

∣

[

2

3
ln ε+

(

2
1− d

d
−
∫ 1

0

(1− t)d/2−1 − 1

t
dt

+

∫ +∞

−∞

(ν0(y)
2(ν0(y)

2 − y) +
1

y
1{y>1})dy

)

+

(

(1− d

2
)(

∫ +∞

−∞

(

yν0(y)
2(ν0(y)

2 − y) + 1{y>0}

)

dy)

+

∫ +∞

−∞

(

2(2ν0(y)
2 − y)ν0(y)ν1(y) + (d− 1)1{y>0}

)

dy

)

ε2/3 +O(ε)

]

.

In [DPS], the author study the kinetic energy

Ekin =
~
2

2m

∫

R3

|∇ψ(r)|2 dr

of the ground state ψ of the Gross–Pitaevskii equation with an isotropic harmonic trap

~
2

2m
∆ψ(r) +

(

µ− 1

2
mω2

HO|r|2
)

ψ(r)− 4π~2a

m
|ψ(r)|2ψ(r) = 0, (4.1)

where µ > 0 is a chemical potential, a > 0 is the scattering length. Like in [DPS], we
denote by R the radius of the condensate, defined by

µ =
1

2
mω2

HOR
2,

and we introduce the harmonic oscillator length

aHO =

(

~

mωHO

)1/2

,
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as well as the maximal value α of the wave function ψTF of the Thomas-Fermi approxima-
tion:

α =
R

(8πa4HOa)
1/2
, ψTF (r) =

{

α
(

1− r
2

R2

)1/2

if |r| 6 1

0 if |r| > 1.

Then, the total number of particles is

N =

∫

|r|61

ψTF (r)
2dr =

R5

15aa4HO

.

The change of variables
ψ(r) = αu(r/R),

maps the ground state ψ of (4.1) to the solution u = ηε of (1.2), where

ε =
a2HO

R2
.

Let us now use our expansion of Ek,ε(ηε) to calculate the expansion of Ekin.

Ekin =
~
2

2m
α2R

∫

R3

|∇ηε(x)|2 dx

=
~
2

2m

R3

8πa4HOa
ε−2Ek,ε(ηε)

=
5N~

2

2mR2

[

ln
R

aHO

+ A+B
(aHO

R

)4/3

+O

(

(aHO

R

)2
)]

,

where

A = 1 +
3

4

∫ 1

0

(1− t)1/2 − 1

t
dt− 3

4

∫ +∞

−∞

(ν0(y)
4 − yν0(y)

2 +
1{y>1}

y
)dy,

B =
3

8

∫ +∞

−∞

(

yν0(y)
2(ν0(y)

2 − y) + 1{y>0}

)

dy−3

2

∫ +∞

−∞

(

(2ν0(y)
2 − y)ν0(y)ν1(y) + 1{y>0}

)

dy.

Let us now show that the constant A we get in the expansion of Ekin is indeed the same as
the one obtained by Dalfovo, Pitaevskii and Stringari in [DPS]. First, taking into account
the properties of the solution ν0 of the Painlevé II equation mentioned in Proposition 1.1,
we infer

1

4

∫ +∞

−∞

(

ν0(y)
4 − yν0(y)

2 +
1{y>1}

y

)

dy =
1

2
−
∫ +∞

−∞

(

ν ′0(y)
2 − 1{y>1}

4y

)

dy.

In order to compare our result with the one in [DPS], we introduce the function ϕ(ξ) =
2−1/3ν0(−22/3ξ), which is the solution to

ϕ′′ − ξϕ− ϕ3 = 0, ϕ(ξ) ∼
ξ→−∞

√

−ξ, ϕ(ξ) −→
ξ→+∞

0.
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Thus,

A = 1 +
3

4
(−2 + 2 ln 2)− 3

2
+ 3

∫ +∞

−∞

(

ν ′0(y)
2 − 1{y>1}

4y

)

dy

= −2 +
3

2
ln 2 + 3

∫ +∞

−∞

(

ϕ′(ξ)2 +
1{ξ6−2−2/3}

4ξ

)

dξ

= −2 +
3

2
ln 2 + 3 lim

M→+∞

(∫ +∞

−M

ϕ′(ξ)2dξ +
1

4
ln 2−2/3 − 1

4
lnM

)

= −2 +
7

4
ln 2 + 3C,

where like in [DPS], we have denoted

C = lim
M→+∞

(∫ +∞

−M

ϕ′(ξ)2dξ − 1

4
lnM

)

− 1

4
ln 2.

By numerical calculations, we obtain A ≃ −0.24 and B ≃ 15.3. Thus, our additionnal
term B(aHO/R)

4/3 in the expansion of Ekin has to be taken into account as soon as the
small parameter aHO/R is not negligible compared to (|A|/B)3/4 ≃ 0.05.

5 Appendix: Proof of Lemma 2.1

If α > 1/2, we split the integral in three pieces. On the one side, since d 6 3 and since the
maps g and y 7→ |y|1/2g(y) are in L1(R−), we have

∣

∣

∣

∣

∫ 0

−∞

g(y)(1− ε2/3y)d/2−1dy

∣

∣

∣

∣

6

∫ 0

−∞

|g(y)|max(2, 2ε2/3|y|)1/2dy = O(1).

Then, there exists C > 0 such that g(y) 6 C(1 + |y|)−1/2 for every y > 0, and since d > 1,

∣

∣

∣

∣

∣

∫ ε−2/3/2

0

g(y)(1− ε2/3y)d/2−1dy

∣

∣

∣

∣

∣

6

∫ ε−2/3/2

0

C(1 + |y|)−1/221/2dy = O(ε−1/3).

Finally,

∣

∣

∣

∣

∣

∫ ε−2/3

ε−2/3/2

g(y)(1− ε2/3y)d/2−1dy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

1/2

g(t/ε2/3)(1− t)d/2−1 dt

ε2/3

∣

∣

∣

∣

6 Cε1/3
∫ 1

1/2

t−1/2(1− t)d/2−1 dt

ε2/3
= O(ε−1/3).
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If α > 5/2, using the Taylor formula,
∫ ε−2/3

−∞

g(y)(1− ε2/3y)d/2−1dy

=

∫ +∞

−∞

g(y)dy +

∫ ε−2/3/2

−∞

g(y)
(

(1− ε2/3y)d/2−1 − 1
)

dy

+

∫ ε−2/3

ε−2/3/2

g(y)(1− ε2/3y)d/2−1dy −
∫ +∞

ε−2/3/2

g(y)dy

=

∫ +∞

−∞

g(y)dy +

∫ ε−2/3/2

−∞

g(y)

(

−(
d

2
− 1)ε2/3y + (

d

2
− 1)(

d

2
− 2)

1

2
(1− ξε,y)

d/2−3ε4/3y2
)

dy

+

∫ 1

1/2

g(t/ε2/3)(1− t)d/2−1 dt

ε2/3
+O((ε−2/3)−5/2+1),

where ξε,y ∈ [0, ε2/3y) or ξε,y ∈ (ε2/3y, 0), depending on the sign of y. In particular, if
y 6 ε−2/3/2, ξε,y 6 1/2 and since d/2− 3 < 0, (1− ξε,y)

d/2−3 6 23−d/2. Additionnally,
∫ ε−2/3/2

−∞

g(y)y2dy 6

∫ 0

−∞

g(y)y2dy +

∫ ε−2/3/2

0

C(1 + y)−5/2y2dy = O(ε−1/3)

Moreover, there exists a positive constant C such that for t ∈ [1/2, 1], g(t/ε2/3) 6

(ε2/3/t)5/2. Thus,
∫ ε−2/3

−∞

g(y)(1− ε2/3y)d/2−1dy =

∫ +∞

−∞

g(y)dy − (
d

2
− 1)ε2/3

∫ ε−2/3/2

−∞

yg(y)dy +O(ε)

=

∫ +∞

−∞

g(y)dy − (
d

2
− 1)ε2/3

∫ +∞

−∞

yg(y)dy +O(ε).

If α > 3/2, we start the calculation like in the case α > 5/2. Then, again thanks to the
Taylor formula,
∣

∣

∣

∣

∣

∫ ε−2/3/2

−∞

g(y)
(

(1− ε2/3y)d/2−1 − 1
)

dy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−(
d

2
− 1)

∫ ε−2/3/2

−∞

g(y)(1− ξε,y)
d/2−2ε2/3ydy

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

d

2
− 1

∣

∣

∣

∣

22−d/2ε2/3
∫ ε−2/3/2

−∞

|g(y)||y|dy = O(ε1/3),

for some ξε,y ∈ [0, ε2/3y) or ξε,y ∈ (ε2/3y, 0). Then,
∫ ε−2/3

ε−2/3/2

g(y)(1− ε2/3y)d/2−1dy =

∫ 1

1/2

g(t/ε2/3)(1− t)d/2−1 dt

ε2/3
= O(ε1/3).

Finally,
∫ +∞

ε−2/3/2

g(y)dy = O(ε1/3),

which gives the result in the case α > 3/2.
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Second Painlevé Transcendent and the Korteweg-de Vries Equation, Arch. Rat. Mec.
Anal., 73, 31–51 (1980)

[IM] R. Ignat and V. Millot, The critical velocity for vortex existence in a two-
dimensional rotating Bose–Einstein condensate, J. Funct. Anal. 233, 260–306 (2006)

[M] D. Margetis, Asymptotic formula for the condensate wave function of a trapped
Bose gas, Phys. Rev. A 61, 055601 (2000)

[T] L.H. Thomas, The calculation of atomic fields, Proc. Cambridge Philos. Soc. 23, 542
(1927)

16


