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DIRICHLET EIGENVALUES OF CONES IN THE SMALL APERTURE LIMIT

We are interested in finite cones of fixed height 1 parametrized by their opening angle. We study the eigenpairs of the Dirichlet Laplacian in such domains when their apertures tend to 0. We provide multi-scale asymptotics for eigenpairs associated with the lowest eigenvalues of each fiber of the Dirichlet Laplacian. In order to do this, we investigate the family of their one-dimensional Born-Oppenheimer approximations. The eigenvalue asymptotics involves powers of the cube root of the aperture, while the eigenfunctions include simultaneously two scales.

1 Introduction

Motivations and related questions

Finding an explicit expression of the first Dirichlet eigenvalues in two or three dimensional domains is not an easy task, in general. We know how to proceed when the domain is a product reducing the problem to solving ordinary differential equations. Nevertheless, even for simple two dimensional domains like triangles this question is still complicated. This specific question is detailed in [START_REF] Freitas | Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and rhombi[END_REF] where a finite term asymptotics is provided in the regime θ goes to 0 (where θ is the aperture of the triangle). More recently [START_REF] Dauge | Plane waveguides with corners in the small angle limit[END_REF] gives a complete asymptotics for right-angled triangles.

In the latter paper, the aim of the authors was the study of a broken waveguide with corner in the small angle regime. The knowledge on triangles with small aperture leads to a comparison between the waveguide and a triangle. The question of waveguides with corners has already been investigated for the L-shape waveguide in [START_REF] Exner | On existence of a bound state in an L-shaped waveguide[END_REF]. For an arbitrary angle [START_REF] Avishai | Quantum bound states in open geometries[END_REF] provides an asymptotics of the lowest eigenvalues when the angle goes to π/2. The regime with small angle limit has been studied in [START_REF] Carini | Multiple bound states in sharply bent waveguides[END_REF] and more recently in [START_REF] Dauge | Quantum waveguides with corners[END_REF][START_REF] Dauge | Plane waveguides with corners in the small angle limit[END_REF]. The question of waveguides with corner arises naturally because it is studied for smooth waveguides in [START_REF] Duclos | Curvature-induced bound states in quantum waveguides in two and three dimensions[END_REF][START_REF] Carron | Topologically nontrivial quantum layers[END_REF][START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF] where we learn, among other things, that curvature induces bound states below the essential spectrum. The idea is that a corner can be seen as an infinite curvature.

The aim of the present paper is to obtain asymptotics for three dimensional cones in the small aperture limit. As in two dimensions, this question naturally appears when looking for the ground states in the small aperture regime of the conical layer studied in [START_REF] Exner | Spectrum of Dirichlet Laplacian in a conical layer[END_REF].

Remark 1 Co(θ) being a convex domain, we know that Dom -∆ Dir Co(θ) = H 2 (Co(θ)) ∩ H 1 0 (Co(θ)). △ Co(θ) θ x 3

x 2

x 1 (0, tan θ, 0) (0, 0, -1) O • 

Structure of the paper

One can show that after the use of adapted coordinates and a Fourier transform the Dirichlet Laplacian on the cone Co(θ) reduces to a countable family of two dimensional semi-classical operators. This is discussed in Section 2.

In Section 3 we state the main theorem and we apply it to a spherical sector. We also go about the so called Born-Oppenheimer approximation. Numerical experiments motivate and illustrate the study.

Afterwards, in Section 4, we perform a change of variables that transforms the meridian triangle into a rectangle. The operator is more complicated but we deal with a simpler geometrical domain. Thanks to this substitution we can construct quasimodes for each operator of the countable family using some lemmas which are adapted from the Fredholm alternative. The proof of Theorem 3 about the asymptotics of the first eigenvalues of the cone is over, when, using a Feshbach-Grushin projection, we justify that the Born-Oppenheimer approximation is actually an approximation of our problem and we obtain the separation of the eigenvalues.

We conclude by Section A illustrating by numerical experiments the shape of the eigenfunctions which illustrates some theoretical results obtained all along the paper.

Fiber decomposition

In this section, we describe the fiber decomposition of the Dirichlet Laplacian on the cone Co(θ). We use the terminology detailed in [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF]Section XIII.16].

Partial wave decomposition

We are interested in the positive Laplace operator on the cone Co(θ) which writes

-∆ Dir Co(θ) = -∂ 2 1 -∂ 2 2 -∂ 2 3 .
We can describe the domain Co(θ) using cylindrical coordinates. Let us perform the change of variables and introduce (r, φ, z) such that

r = x 2 1 + x 2 2 , φ = arctan x 2 x 1 , z = x 3 . (1) 
The cartesian domain Co(θ) is transformed into Tri(θ) × S 1 where the meridian domain Tri(θ) is:

Tri(θ) := (r, z) ∈ R 2 : -1 < z < 0 and 0 < r < (z + 1) tan θ . θ Tri(θ) (tan θ, 0) (0, -1) z r • O Figure 2: Meridian domain Tri(θ)
Performing the change of variables the Dirichlet Laplacian is written, on the geometrical domain Tri(θ) × S 1 , as the operator :

H Tri(θ)×S 1 := - 1 r ∂ r (r∂ r ) - 1 r 2 ∂ 2 φ -∂ 2 z ,
its domain being deduced by the change of variables [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N -body Schrödinger operators[END_REF].

The domain Tri(θ) × S 1 being axisymmetric we perform a Fourier transform and we have the constant fiber direct sum:

L 2 (Tri(θ) × S 1 , rdrdφdz) = L 2 (Tri(θ), rdrdz) ⊗ L 2 (S 1 ) = m∈Z L 2 (Tri(θ), rdrdz),
where L 2 (S 1 ) refers to functions on the unit circle with the orthonormal basis e 2iπmφ : m ∈ Z . The operator H Tri(θ)×S 1 decomposes as

H Tri(θ)×S 1 = m∈Z H [m] Tri(θ) , with H [m] Tri(θ) = - 1 r ∂ r (r∂ r ) -∂ 2 z + m 2 r 2 , (2) 
where the

H [m]
Tri(θ) are the fibers of H Tri(θ)×S 1 and their domains Dom(H

[m]
Tri(θ) ) are implicitly defined by the decomposition. The fibers

H [m] Tri(θ) have compact resolvent, consequently their spectra S H [m] Tri(θ)
consist in non-decreasing sequences of eigenvalues. We have :

S H Tri(θ)×S 1 = ∪ m∈Z S H [m] Tri(θ) . (3) 
Thus, if we denote by µ

[m] n (θ) the n th eigenvalue of H [m]
Tri(θ) we have the following description of the sprectum:

S H Tri(θ)×S 1 = ∪ (n,m)∈N * ×Z µ [m] n (θ) . Remark 2 For ψ ∈ Dom(H [m]
Tri(θ) ), we have the Dirichlet boundary condition ψ(r, 0) = 0 and ψ ((z + 1) tan θ, z) = 0.

If m = 0, we have for integrability reasons ψ(0, z) = 0. We refer to [4, Chapt. II] for more information. △

Rescaling of the meridian domain Tri(θ)

We rescale the integration domain in order to avoid its dependence on θ. Therefore, this dependence is transferred in the coefficients of the operator. For this reason, let us perform the following linear change of coordinates:

x = z, y = 1 tan θ r, (4) 
which maps Tri(θ) onto Tri π 4 . That is why we set for simplicity:

Tri := Tri π 4 . (5) 
Then, for each m ∈ Z, H

[m]

Tri(θ) is unitary equivalent to the operator with the new integration domain Tri:

D [m] (θ) := -∂ 2 x - 1 y tan 2 θ ∂ y (y∂ y ) + m 2 y 2 tan 2 θ .
with implicit boundary conditions as in Remark 2. We let h = tan θ; after a multiplication by tan 2 θ, we get the new operator:

L [m] (h) := -h 2 ∂ 2 x - 1 y ∂ y (y∂ y ) + m 2 y 2 . ( 6 
)
This operator is partially semi-classical in x. It is the shape of L [m] (h) that leads us in each steps of our study. That is why, in Subsection 3.3, we first consider its Born-Oppenheimer approximation (see [START_REF] Combes | The born-oppenheimer approximation[END_REF][START_REF] Klein | On the Born-Oppenheimer expansion for polyatomic molecules[END_REF][START_REF] Martinez | Développements asymptotiques et effet tunnel dans l'approximation de Born-Oppenheimer[END_REF]). Then our reasoning is inspired by the philosophy presented in [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF][START_REF] Helffer | Multiple wells in the semiclassical limit[END_REF][START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF].

3 Numerical motivations and main results

Asymptotic expansion of eigenvalues

According to the structure of the spectrum established in (3), we recall that we denote by µ

[m] n (θ) the n th eigenvalue of the m th fiber of H Co(θ) . In order to get more detailed information about the behavior of µ

[m] n (θ) we can, at first, study it numerically. We carried out the computation with the operator L [m] (tan θ) defined in [START_REF] Carron | Topologically nontrivial quantum layers[END_REF] and we pictured its eigenvalues denoted λ

[m]
n (tan θ). Figures 3 suggests that, for m = 0, 1, 2, the eigenvalues converge to a certain limit as the aperture θ goes to 0. Moreover, this value is near j 2 m,1 , where we denote by j m,1 the first zero of the m th Bessel function of first kind, represented by black dots. This result has to be connected to the one established in [START_REF] Exner | Spectrum of Dirichlet Laplacian in a conical layer[END_REF] where, studying a conical layer, the value j 2 0,1 π 2 plays a similar role. In that paper, they only consider the operator from the fiber of order 0 because in this case the other fibers have only essential spectrum (the factor 1 π 2 being a normalization constant). One can see that for θ large enough the eigenvalues cross and although λ

[m] n represents the n th eigenvalue of the m th fiber of L [m] (tan θ) it is clear that λ

[0]
n (tan θ) is not necessarily its n th eigenvalue. The main result of this paper is not only the convergence of the eigenvalues as θ → 0 illustrated in Figure 3 but an asymptotic expansion of these eigenvalues. Indeed, the lowest eigenvalues of each fiber of H Co(θ) admit expansions at any order in powers of θ 1/3 . We first state the result for the scaled operators L [m] (h) introduced in (6):

Theorem 3 If we denote by z A (n) the n th zero of the reversed Airy function, the eigenvalues of L [m] (h), denoted by λ

[m]

n (h), admit the expansions:

λ [m] n (h) ∼ h→0 k≥0 β [m] k,n h k/3 with β [m] 0,n = j 2 m,1 , β [m] 1,n = 0, β [m] 2,n = 2 j 2 m,1 2/3 z A (n),
the terms of odd rank being zero for j ≤ 8. The corresponding eigenfunctions have expansions in powers of h 1/3 with both scales x/h 2/3 and x/h.

In terms of the physical domain Tri(θ), we immediately deduce from the previous theorem that the eigenvalues of the m -th fiber of -∆ Dir Co(θ) admit the expansions:

µ [m] n (θ) ∼ θ→0 1 θ 2 k≥0 β [m],∆ k,n θ k/3 with β [m],∆ 0,n = j 2 m,1 , β [m],∆ 1,n = 0, β [m],∆ 2,n = (2 j m,1 ) 2/3 z A (n).
Figure 4 depicts that for small aperture θ, the numerical eigenvalues λ

[0]
n (tan θ) match with the theoretical expected behavior deduced from Theorem 3. The stalling for very small values of the aperture is due to numerical difficulties when θ → 0. n (tan θ) (m = 0, 1, 2) on the aperture θ (in degrees). We computed each eigenvalue for 80 values of θ.

Application to the spherical cone

Theorem 3 on the cone Co(θ) is closely related to the Dirichlet problem on a spherical cone. We denote by Sph(θ) the spherical cone of radius 1 and aperture θ with center in (0, 0, -1) described in Figure 5. We have

-∆ Dir Sph(θ) := -∂ 2 1 -∂ 2 2 -∂ 2 3 .
We perform the change of variables

ρ = x 2 1 + x 2 2 + (x 3 + 1) 2 , α = arcos x 3 + 1 ρ , β =            arcos x 1 x 2 1 + x 2 2 if x 2 ≥ 0, 2π -arcos x 1 x 2 1 + x 2 2 if x 2 < 0. (7) Hence the domain Sph(θ) is transformed into Sph(θ) = Circ(θ) × S 1 ,
where Circ(θ) is the circular meridian domain in the coordinates (ρ, α). n (tan θ) to the two first terms of the theoretical asymptotics on the aperture θ (in degrees). The black line represents the value 4/3.

The Dirichlet Laplacian H d

Sph(θ) writes in spherical coordinates

H d Sph(θ) := - 1 ρ 2 ∂ ρ ρ 2 ∂ ρ - 1 ρ 2 sin α ∂ α (sin α∂ α ) - 1 ρ 2 sin 2 α ∂ 2 β ,
on L 2 ( Sph(θ), ρ 2 sin αdρdαdβ). As in Section 2 we have the constant fiber direct sum:

L 2 Sph(θ), ρ 2 sin αdρdαdβ = m∈Z L 2 Circ(θ), ρ 2 sin αdρdα ,
and H d Sph(θ) decomposes in fibers :

H d Sph(θ) = m∈Z H [m] d Circ(θ) ,
where

H [m] d Circ(θ) := - 1 ρ 2 ∂ ρ ρ 2 ∂ ρ - 1 ρ 2 sin α ∂ α (sin α∂ α ) + m 2 ρ 2 sin 2 α ,
with implicit domains and boundary conditions. Let (µ, Ψ) be an eigenpair of

H [m] d Circ(θ) , with Ψ(ρ, α) = R(ρ)M (α).
It should satisfy the following system of differential equations :

   ∂ ρ ρ 2 ∂ ρ + c(θ) -µρ 2 R(ρ) = 0, - 1 sin α ∂ α (sin α∂ α ) + m 2 sin 2 α M (α) = c(θ)M (α). (8) 
Remark 5 We are not interested here in solving those equations. Nevertheless one can see that formally, when θ → 0 the angle α is small and the last equation of ( 8) looks like the Bessel equation. This could be a lead to find an asymptotic expansion at any order of µ when θ → 0. △ However, thanks to Theorem 3, we have easily a finite term asymptotic for the eigenvalues of -∆ Dir Sph(θ) . Let Co(θ, cos θ) be the set Co(θ) up to a dilatation of ratio cos θ. We have the set inclusion in R 3

Co(θ, cos θ) ⊂ Sph(θ) ⊂ Co(θ).
Let μn (θ) be the n th eigenvalue of the Dirichlet Laplacian on Sph(θ) and µ n (θ) the one on the cone Co(θ), the monotonicity of the Dirichlet Laplacian yields:

1 + tan 2 θ µ n (θ) ≥ μn (θ) ≥ µ n (θ). (9) 
If μ[m] n (θ) denotes the n th eigenvalue of the m th fiber of the Dirichlet Laplacian, (9) yields for small θ

1 + tan 2 θ µ [0] n (θ) ≥ μ[0] n (θ) ≥ µ [0] n (θ).
To deal with higher fibers we can apply the exact same argument on the meridian circular sector Cir(θ) and the meridian triangle Tri(θ) because :

Tri(θ, cos θ) ⊂ Cir(θ) ⊂ Tri(θ).
As for m ≥ 1, there is a Dirichlet boundary condition everywhere (see Remark 2) we have :

1 + tan 2 θ µ [m] n (θ) ≥ μ[m] n (θ) ≥ µ [m] n (θ).
Those inequalities provide the first terms in the asymptotics of

μ[m] n (θ). θ Sph(θ) (0, 0, -1) 
(sin θ, 0, cos θ -1)

x 3

x 1

x 2

• O Figure 5: The spherical cone Sph(θ)

Schrödinger operators in one dimension

In the analysis of L [m] (h) we will see that its so called Born-Oppenheimer approximation will play an important role. That is why we define

l [m] BO (h) := -h 2 ∂ 2 x + v [m] (x), (10) 
θ Cir(θ)

(0, -1) z r (sin θ, cos θ -1) • O Figure 6: Meridian domain Cir(θ)
where the effective potential v [m] is obtained by replacing -1 y ∂ y (y∂ y ) + m 2 y 2 in the expression of L [m] (h) by its lowest eigenvalue on each slice of Tri at fixed x. One can see that

v [m] (x) = j 2 m,1 (x + 1) 2 for x ∈ (-1, 0).
By construction, for any m, the operator (10) can be seen as a lower bound of the operator

L [m] (h).
As it is shown in subsection 4.4, the choice of this approximation gives us informations about the eigenvalues of H Tri(θ)×S 1 . We have the

Proposition 6

The eigenvalues of l

[m] BO (h), denoted by λ [m]
BO,n (h), admit the expansion:

λ [m] BO,n (h) ∼ h→0 k≥0 β[m] k,n h 2j/3 , with β[m] 0,n = j 2 m,1 and β[m] 1,n = 2 j 2 m,1 2/3 z A (n).
The shape of the effective potential v [m] is the same as in [START_REF] Dauge | Plane waveguides with corners in the small angle limit[END_REF]Section 3]. Then, we deduce Proposition 6 from [11, Th 4.1.]. The key is the construction of quasimodes at the scale h 2/3 which naturally arises by expanding the effective potential v [m] and recognizing the Airy operator at first order. This method is adapted from the harmonic approximation for regular potentials with a well (see [START_REF] Simon | Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions[END_REF], [START_REF] Cycon | Schrödinger operators with application to quantum mechanics and global geometry[END_REF]Chapt. 11] and [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]Chapt. 4]). It yields an upper bound of the eigenvalues of l

[m]

BO (h). To obtain a lower bound we then need the Agmon estimates of Propositions 7 and 8 and to apply the min-max principle and get the separation of eigenvalues. The Agmon estimates near x = 0 take the following form Proposition 7 Let Γ 0 > 0. There exist h 0 > 0, C 0 > 0 and η 0 > 0 such that for any h ∈ (0, h 0 ) and all eigenpair (λ, ψ) of l

[m] BO (h) satisfying λ -j 2 m,1 ≤ Γ 0 h 2/3
, we have:

0 -1 e η 0 h -1 |x| 3/2 |ψ| 2 + |h 2/3 ∂ x ψ| 2 dx ≤ C 0 ||ψ|| 2 .
And the Agmon estimates near x = -1 take the following form Proposition 8 Let Γ 0 > 0 and ρ 0 ∈ (0, j m,1 ). There exist h 0 > 0, C 0 > 0 such that for any h ∈ (0, h 0 ) and all eigenpair (λ, ψ) of l

[m]

BO (h) satisfying λj 2 m,1 ≤ Γ 0 h 2/3 , we have:

0 -1 (x + 1) -ρ 0 /h |ψ| 2 + |h∂ x ψ| 2 dx ≤ C 0 ||ψ|| 2 .
These semiclassical Agmon estimates (see [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N -body Schrödinger operators[END_REF][START_REF] Agmon | Bounds on exponential decay of eigenfunctions of Schrödinger operators[END_REF]) are obtained using the technical background of [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]Chapt. 6] and [START_REF] Helffer | Multiple wells in the semiclassical limit[END_REF].

Meridian triangle Tri with Dirichlet boundary condition

The aim of this section is to prove Theorem 3. The proof will be divided into two main steps : a construction of quasimodes and the use of the true eigenfunctions of L [m] (h) as quasimodes for the Born-Oppenheimer approximation in order to obtain a lower bound for true eigenvalues. We first perform a change of variables to transform the triangle into the square:

u = x ∈ (-1, 0), t = y x + 1 ∈ (0, 1). ( 11 
)
The meridian triangle Tri is transformed into a square Sq

Sq := (-1, 0) × (0, 1). ( 12 
)
The operator L [m] (h) becomes:

L [m] Sq (h)(u, t; ∂ u , ∂ t ) := 1 (u + 1) 2 - 1 t ∂ t (t∂ t ) + m 2 t 2 -h 2 ∂ 2 u - h 2 t 2 (u + 1) 2 ∂ 2 t + 2h 2 t u + 1 ∂ t ∂ u - 2h 2 t (u + 1) 2 ∂ t , (13) 
on L 2 (Sq, t(u + 1) 2 dudt) with Dirichlet boundary condition on the faces {(0, t) : 0 < t < 1} and {(u, 1) :

-1 < u < 0}. The equation L [m] (h)ψ [m] h = λ [m] h ψ [m]
h is transformed into the equation

L [m] Sq (h) ψ[m] h = λ [m] h ψ[m] h with ψ[m] h (u, t) = ψ [m] h (x, y).
In what follows we denote by •, • t the scalar product on L 2 ((0, 1), tdt).

Quasimodes

This section is devoted to the proof of the following proposition.

Proposition 9 If S(L [m] (h)) denotes the spectrum of L [m] (h), there are sequences (β [m]
j,n ) j≥0 for any integer n ≥ 1 so that there holds: for all N 0 ∈ N * and J ∈ N, there exist h 0 > 0 and C > 0 such that for h ∈ (0, h 0 )

dist S(L [m] (h)), J j=0 β [m] j,n h j/3 ≤ Ch (J+1)/3 , n = 1, . . . , N 0 . ( 14 
)
Moreover, we have:

β [m] 0,n = j 2 m,1 , β [m]
1,n = 0, and

β [m] 2,n = 2 j 2 m,1 2/3 z A (n).
Proof: The proof is divided into three parts. The first one deals with the form of the Ansatz chosen to construct quasimodes. The second part deals with three lemmas about operators which appear in the first part. The third part is the determination of the profiles of the Ansatz.

Shape of the Ansatz

We want to construct quasimodes (β

[m] h , ψ [m]
h ) for the operator L [m] (h)(x, y; ∂ x , ∂ y ). It will be more convenient to work on the square Sq with the operator L

[m]

Sq (h)(u, t; ∂ u , ∂ t ). We introduce the new scales s = h -2/3 u and σ = h -1 u, and we look for quasimodes (β

[m] h , ψ[m] h ) in the form of series β [m] h ∼ j≥0 β [m] j h j/3 and ψ[m] h (u, t) ∼ j≥0 Ψ [m] j (s, t) + Φ [m] j (σ, t) h j/3 (15) 
in order to solve

L [m] Sq (h) ψ[m] h = β [m] h ψ[m]
h in the sense of formal series. An Ansatz containing only the scale h -2/3 is not sufficient to construct quasimodes for L

[m]

Sq (h) because one can see that the system is overdetermined. Expanding the operator in powers of h 2/3 we obtain the formal series:

L [m] Sq (h)(h 2/3 s, t; h -2/3 ∂ s , ∂ t ) ∼ j≥0 L [m] 2j h 2j/3 with leading term L [m] 0 = - 1 t ∂ t (t∂ t ) + m 2 t 2 , ( 16 
)
and in power of h:

L [m] Sq (h)(hσ, t; h -1 ∂ σ , ∂ t ) ∼ j≥0 N [m] 3j h j with leading term N [m] 0 = - 1 t ∂ t (t∂ t ) + m 2 t 2 -∂ 2 σ . (17) 
In what follows, in order to ensure the Dirichlet condition on Tri \ (-1, 0) × {0} we will require for our Ansatz the boundary condition, for any j ∈ N:

Ψ [m] j (0, t) + Φ [m] j (0, t) = 0, 0 ≤ t ≤ 1, (18) 

Ψ

[m] j (s, 1) = 0, s < 0 and Φ

[m] j (σ, 1) = 0, σ ≤ 0.

More specifically, we are interested in the ground energy λ = j 2 m,1 of the Dirichlet problem at 1 for L

[m] 0 on the interval (0, 1). Thus, we have to solve the Dirichlet problem for the operators N

[m] 0 -j 2 m,1 and L [m] 0 -j 2 m,1 on the half-strip Hst = R -× (0, 1), (20) 
and look for solutions exponentially decaying (see Remark 10). Our aim is to apply the spectral theorem to the truncated series ψ[m] h (u, t) restricted in the square Sq thanks to a cut-off function.

Remark 10 In the following part, we will need to use exponentially decaying functions.Then, we define the spaces:

L 2 exp (R -) := f ∈ L 2 (R -) : ∃ α > 0 such that e α|s| f ∈ L 2 (R -) , H 2 exp (R -) := f ∈ H 2 (R -) : ∃ α > 0 such that e α|s| f ∈ H 2 (R -) , L 2 exp (Hst, tdudt) := f ∈ L 2 (Hst, tdudt) : ∃ α > 0 such that e α|u| f ∈ L 2 (Hst, tdudt) , H 2 exp (Hst, tdudt) := f ∈ H 2 (Hst, tdudt) : ∃ α > 0 such that e α|u| f ∈ H 2 (Hst, tdudt) . △

Three lemmas

To start the construction of our Ansatz we will need the three next lemmas. Lemmas 12 and 13 are consequences of the Fredholm alternative.

Lemma 11

We denote the n th normalized eigenfunction of

L [m] 0 by b [m] n : b [m] n (t) = C [m] n J m (j m,n t) C [m] n ∈ R being a normalization constant ,
where J m is the m th Bessel function of first kind. Let F = F (σ, t) be a function in L 2 exp (Hst, tdσdt) and let G ∈ H 3/2 ((0, 1), tdt) be a function of t with G(1) = 0. Then there exists a unique γ ∈ R such that the problem

N [m] 0 -j 2 m,1 Φ = F, Φ(σ, 1) = 0, Φ(0, t) = G(t) + γb [m] 1 (t)
admits a unique solution in H 2 exp (Hst, tdσdt). Moreover γ is given by:

γ = - 0 -∞ 1 0 F (σ, t)σb [m] 1 (t)tdtdσ - 1 0 G(t)b [m] 1 (t)tdt. ( 21 
)
Lemma 12 Let F = F (s, t) be a function in L 2 exp (Hst, tdsdt). Then, there exists solution(s) Ψ such that:

L [m] 0 -j 2 m,1 Ψ = F in Hst, Ψ(s, 1) = 0 if and only if F (s, •), b [m] 1 t = 0 for all s < 0. In this case, Ψ(s, t) = Ψ ⊥ (s, t) + g(s)b [m] 1 (t) where Ψ ⊥ satisfies Ψ(s, •) ⊥ , b [m] 1
t ≡ 0 and Ψ belongs to H 2 exp (Hst, tdsdt).

Lemma 13 Let n ≥ 1. We recall that z A (n) is the n th zero of the Airy reverse function, and we denote by

a [m] n (s) = C[m] n A 2 j 2 m,1 1/3 s + z A (n) C[m] n ∈ R being a normalization constant a normalized eigenfunction of the operator -∂ 2 s -2 j 2 m,1 s with Dirichlet condition on R -associated with the eigenvalue j 2 m,1 2/3 z A (n). Let f = f (s) be a function in L 2 exp (R -) and let c ∈ R.
Then there exists a unique β ∈ R such that the problem:

-∂ 2 s -2 j 2 m,1 s -j 2 m,1 2/3 z A (n) g = f + βa [m] n in R -, with g(0) = c, has a unique solution in H 2 exp (R -).

Remark 14

The key in proving Lemmas 11 and 12 is the decomposition as a tensor product of L 2 (Hst, tdσdt) and L 2 (Hst, tdsdt). One can see that L 2 (Hst, tdσdt) = L 2 (R -, dσ) ⊗L 2 ((0, 1), tdt) and L 2 (Hst, tdsdt) = L 2 (R -, ds) ⊗L 2 ((0, 1), tdt). We know that (b

[m]
n ) n∈N * is an orthonormal basis of L 2 ((0, 1), tdt). Then, we construct solutions Φ and Ψ decomposed in this orthonormal basis. Lemma 13 is an application of the Fredholm alternative after changing the function g to obtain an homogeneous Dirichlet condition at s = 0. △ Determination of the profiles Now, we can start the construction of the Ansatz [START_REF] Exner | On existence of a bound state in an L-shaped waveguide[END_REF].

Terms in h 0 The constant terms yield:

L [m] 0 Ψ [m] 0 = β [m] 0 Ψ [m] 0 , N [m] 0 Φ [m] 0 = β [m] 0 Φ [m] 0
with boundary conditions ( 18)-( 19) for j = 0. We choose β

[m] 0 = j 2 m,1 . Moreover Ψ [m] 0 is a tensor product so, Ψ [m] 0 = g [m] 0 (s)b [m]
1 (t). The boundary condition [START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF] yields :

Ψ [m] 0 (0, t) = -g [m] 0 (0)b [m] 1 (t). Lemma 11 gives g [m] 0 (0) = 0 and Φ [m] 0 ≡ 0. The function g [m]
0 will be determined later.

Terms in h 1/3 Collecting the terms of order h 1/3 we have:

L [m] 0 -β [m] 0 Ψ [m] 1 = β [m] 1 Ψ [m] 0 -L [m] 1 Ψ [m] 0 = β [m] 1 Ψ [m] 0 and N [m] 0 -β [m] 0 Φ [m] 1 = [m] 1 Φ [m] 0 -N [m] 1 Φ [m] 0 = 0,
with boundary conditions ( 18)-( 19) for j = 1. Lemma 12 yields β

[m] 1

= 0 which leads to the following form for the function

Ψ [m] 1 (s, t) = g [m] 1 (s)b [m]
1 (t). The boundary condition [START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF] yields :

Ψ [m] 1 (0, t) = -g [m] 1 (0)b [m] 1 (t). Lemma 11 gives g [m] 1 (0) = 0 and Φ [m] 1 ≡ 0.
Terms in h 2/3 Collecting the terms of order h 2/3 we have:

L [m] 0 -β [m] 0 Ψ [m] 2 = β [m] 2 Ψ [m] 0 -L [m] 2 Ψ [m] 0 and N [m] 0 -β [m] 0 Φ [m] 2 = 0
where

L [m] 2 = -∂ 2 s + 2s 1 t ∂ t (t∂ t ) - m 2
t 2 and boundary conditions ( 18)-( 19) for j = 2. Lemma 12 yields the following equation in the s-variable:

(β [m] 2 -L [m] 2 )Ψ [m] 0 (s, •), b [m] 1 t = 0, s < 0. Nevertheless Ψ 0 (s, t) = g [m] 0 (s)b [m]
1 (t), consequently this equation becomes:

-∂ 2 s -2 j 2 m,1 s g [m] 0 (s) = β [m] 2 g [m] 0 (s), s < 0.
This equation leads to

β [m] 2 = 2 j 2 m,1 2/3 z A (n) and g [m] 0 ≡ a [m]
n . We deduce that (L

[m] 0 -β [m] 0 )Ψ [m] 2 = 0 and the Ψ [m] 2 has the form Ψ [m] 2 = g [m] 2 (s)b [m]
1 (t). The boundary condition [START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF] yields :

Ψ [m] 2 (0, t) = -g [m] 2 (0)(s)b [m] 1 (t). Lemma 11 gives g [m] 2 (0) = 0 and Φ [m] 2 ≡ 0.
Terms in h 3/3 Collecting the terms of order h 3/3 we have:

L [m] 0 -β [m] 0 Ψ [m] 3 = β [m] 3 Ψ [m] 0 + β [m] 2 Ψ [m] 1 -L [m] 2 Ψ [m] 1 and N [m] 0 -β [m] 0 Φ [m] 3 = 0
with boundary conditions ( 18)-( 19) for j = 3. The scalar product with b

[m] 1 (Lemma 12) and then the scalar product with g

[m] 0 (Lemma 13) yield that β

[m] 3 = 0 and g [m] 1 is parallel to g [m] 0 . We choose g [m] 1 ≡ 0. As a consequence Ψ [m] 3 has the form Ψ [m] 3 (s, t) = g [m] 3 (s)b [m] 1 (t). Lemma 11 gives g [m] 3 (0) = 0 and Φ [m] 3 ≡ 0.
Terms in h 4/3 Collecting the terms of order h 4/3 we have:

L [m] 0 -β [m] 0 Ψ [m] 4 = β [m] 4 Ψ [m] 0 + β [m] 2 Ψ [m] 2 -L [m] 4 Ψ [m] 0 -L [m] 2 Ψ [m] 2
and

N [m] 0 -β [m] 0 Φ [m] 4 = 0 where L [m] 4 = 2∂ t ∂ s - 3s 2 2 1 t ∂ t (t∂ t ) - m 2 t 2
with boundary conditions ( 18)-( 19) for j = 4. The scalar product with b Continuation We can construct the further terms by induction along the same lines. This leads to define the quasimodes for L [m] (h):

β [m,J] h = J j=0 β [m] j h j/3 , (22) 
ψ h (x, y) [m,J] = χ lef (x) J j=0 Ψ [m] j x h 2/3 , y x + 1 + Φ [m] j x h , y x + 1 h j/3 , (23) 
where χ lef is a smooth cut-off function such that:

χ lef (x) = 1 for x ∈ - 1 2 , 0 and χ lef (x) = 0 for x ≤ - 3 4 . ( 24 
)
The spectral theorem yields the conclusion.

Agmon estimates

On our way to prove Theorem 3, we now state Agmon estimates like for l

[m] BO (h). Let us first notice that, due to Proposition 9, the N 0 lowest eigenvalues λ of L [m] (h) satisfy:

λ -j 2 m,1 ≤ Γ 0 h 2/3 , (25) 
for some positive constant Γ 0 depending on N 0 . If we denote by

Q [m]
h the quadratic form associated with L [m] (h) we have, for all ψ ∈ Dom(Q

[m]
h ), the following lower bound:

Q [m] h (ψ) ≥ Tri h 2 |∂ x ψ| 2 + j 2 m,1 (x + 1) 2 |ψ| 2 ydxdy. (26) 
Thus, the analysis giving Propositions 7 and 8 applies exactly in the same way and we obtain:

Proposition 15 Let Γ 0 > 0.
There exist h 0 > 0, C 0 > 0 and η 0 > 0 such that for h ∈ (0, h 0 ) and all eigenpair (λ, ψ) of L [m] (h) satisfying λj 2 m,1 ≤ Γ 0 h 2/3 , we have:

Tri e η 0 h -1 |x| 3/2 |ψ| 2 + |h 2/3 ∂ x ψ| 2 ydxdy ≤ C 0 ||ψ|| 2 .
Proposition 16 Let Γ 0 > 0. There exist h 0 > 0, C 0 > 0 and ρ 0 ∈ (0, j m,1 ) such that for h ∈ (0, h 0 ) and all eigenpair (λ, ψ) of L [m] (h) satisfying λj 2 m,1 ≤ Γ 0 h 2/3 , we have:

Tri (x + 1) -ρ 0 /h |ψ| 2 + |h∂ x ψ| 2 ydxdy ≤ C 0 ||ψ|| 2 .
Remark 17 Propositions 15 and 16 are also verified when ψ is a finite linear combination of eigenfunctions associated with eigenvalues satisfying (25). △

Approximation of the first eigenfunctions by tensor products

In this subsection we will work with the operator L

[m]

Sq (h) rather than L [m] (h). Let us consider the first N 0 eigenvalues of L

[m]

Sq (h) (shortly denoted by λ n (h)). In each corresponding eigenspace we choose a normalized eigenfunction ψn so that ψn , ψp = 0 if n = p. We introduce:

S N 0 (h) = span( ψ1 , . . . , ψN 0 ). Let us define Q 0,[m] Sq the following quadratic form: Q 0,[m] Sq ( ψ) = Sq |∂ t ψ| 2 + m 2 t 2 | ψ| 2 -j 2 m,1 | ψ| 2 t(u + 1) 2 dudt, associated with the operator L 0,[m] Sq = Id u ⊗ - 1 t ∂ t (t∂ t ) + m 2 t 2 -j 2 m,1
on L 2 (Sq, t(u + 1) 2 dudt).

We consider the Feshbach-Grushin projection on the eigenspace associated with the eigenvalue 0 of

- 1 t ∂ t (t∂ t ) + m 2 t 2 -j 2 m,1 : Π [m] 1 ψ(u, t) = ψ(u, •), b [m] 1 t b [m] 1 (t). (27) 
We can now state a first approximation result:

Proposition 18 There exist h 0 > 0 and C > 0 such that for h ∈ (0, h 0 ) and all ψ ∈ S N 0 (h):

0 ≤ Q 0,[m] Sq ( ψ) ≤ Ch 2/3 || ψ|| 2 and Id -Π [m] 1 ψ + 1 t Id -Π [m] 1 ψ + ∂ t Id -Π [m] 1 ψ ≤ Ch 1/3 || ψ||.
Moreover we have, Π

[m] 1 : S N 0 (h) → Π [m] 1 ( S N 0 (h)) is an isomorphism. Proof: If ψ = ψn we have: Q [m] Sq,h ( ψn ) = λ n || ψn || 2 . From this we infer: Q [m] Sq,h ( ψn ) ≤ j 2 m,1 + Ch 2/3 || ψn || 2 .
The orthogonality of the ψn (in L 2 and for the quadratic form) allows to extend this inequality to ψ ∈ S N 0 (h):

Q 0,[m] Sq ( ψ) ≤ Ch 2/3 || ψ|| 2 . Moreover Π [m] 1 ψ being in the kernel of L 0,[m]
Sq , we have:

Q 0,[m] Sq ( ψ) = L 0,[m] Sq Π [m] 1 ψ + (Id -Π [m] 1 ) ψ , ψ) = L 0,[m] Sq Id -Π [m] 1 ψ, ψ = Q 0,[m] Sq (Id -Π [m] 1 ) ψ .
If µ 2 denotes the second eigenvalue of the one dimensional operator -1 t ∂ t (t∂ t ) + m 2 t 2j 2 m,1 we have, for all u ∈ (-1, 0), thanks to the min-max principle:

1 0 ∂ t (Id -Π [m] 1 ) ψ 2 + m 2 t 2 (Id -Π [m] 1 ) ψ 2 -j 2 m,1 (Id -Π [m] 1 ) ψ 2 tdt ≥ µ 2 1 0 Id -Π [m] 1 ψ 2 tdt.
Multiplying by (u + 1) 2 and taking the integral over u ∈ (-1, 0), we obtain:

Q 0,[m] Sq (Id -Π [m] 1 ) ψ ≥ µ 2 Id -Π [m] 1 ψ 2 .
We deduce that:

0 ≤ Q 0,[m] Rec ( ψ) ≤ Ch 2/3 || ψ|| 2 ; 1 t Id -Π [m] 1 ψ + ∂ t Id -Π [m] 1 ψ ≤ Ch 1/3 || ψ||.
We also have:

Id -Π [m] 1 ψ ≤ Ch 1/3 || ψ||,
which yields Proposition 18.

for some C 1 > 0. Using Proposition 15 expressed in the Square Sq coordinates, there exists C 2 > 0 such that:

Sq ∂ u ψ - 1 (u + 1) 2 ∂ t ψ 2 t(u + 1) 2 dtdu ≤ C 2 h -4/3 ψ 2 .
For some C 3 > 0, equation (28) yields

Sq ∂ u ψ 2 t(u + 1) 2 dtdu ≤ C 3 h -4/3 ψ 2 ,
which achieves the proof of the lemma.

To have estimates in L 2 (Sq, tdtdu) instead of L 2 (Sq, t(u + 1) 2 dtdu) we will need the Lemma 21 Let ψ be in S N 0 (h). There exists h 0 > 0 and C > 0 such that for all h ∈ (0, h 0 )

h 2 Sq ∂ u ψ 2 utdtdu ≤ Ch 4/3 ψ 2 ; Sq |u| ψ 2 utdtdu ≤ Ch 4/3 ψ 2 .
Proof: We express each integral in the meridian domain Tri and we use the Agmon estimate of Proposition 15 for getting the lemma.

We can now prove the Proposition 22 Let ψ ∈ S N 0 (h). There exists h 0 > 0 and C > 0 such that for all h ∈ (0, h 0 ) Proof: Let us consider ψ ∈ S N 0 (h). As the (ψ i ) i∈{1,...,N 0 } are orthogonal, we have: Performing the change of variable [START_REF] Dauge | Plane waveguides with corners in the small angle limit[END_REF] and thanks to Lemmas 20 and 21, we obtain in the square Sq: .

Q [m] h (ψ) ≤ λ N 0 (h) ||ψ|| 2 .

Equation (26) leads to

Moreover we obtain

Q [m] A,h ( ψ) = Q [m] A,h Π [m] 1 ψ + Q [m]
A,h (Id -Π Finally we have , it is a funtion in the only u-variable and we have in one dimension:

Q [m] A,h Π [m] 1 ψ ≤ λ N 0 (h) -j 2 m,1 Π [m] 1
q [m]
A,h (π ψ are taken on L 2 ((-1, 0), du).

Let us consider a smooth cut-off function χ such that:

χ(u) = 1 for u ∈ - 1 2
, 0 and χ(u) = 0 for u ≤ -3 4 .

Proposition 15 gives q [m]

A,h χπ

[m] 1 ψ + O(h ∞ ) π [m] 1 ψ 2 ≤ q [m]
A,h (π

[m]
1 ψ), and π

[m] 1

ψ 2 = (1 + O(h ∞ )) χπ [m] 1 ψ 2 .

So it holds q [m]

A,h (χπ Jointly with Proposition 9 this finishes the proof of Theorem 3.
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 1 Figure 1: The cone Co(θ)
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 3 Figure 3: This figure represents the dependence of the first ten eigenvalues λ [m]

Remark 4

 4 If instead of the change of variables[START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF] we change into cylindrical coordinates as in (1), the associated meridian circular sector Circ(θ) is the one of Figure6. One can pass from Circ(θ) to Circ(θ) by the change of variables r = ρ cos α -1, z = ρ sin α, which links those two domains without the cartesian domain.
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 4 Figure 4: This figure represents the convergence rate of the first six eigenvalues λ [0]

Sq h 2 ∂ u ψ 2 + j 2 m,1 |u| ψ 2 tdtdu 2 m, 1 ψ 2 + 4 /3 ψ 2 .

 222221242 ≤ λ N 0 (h)j Ch

Tri h 2 |∂ x ψ| 2 + j 2 m, 1 (x + 1 )

 2211 2 |ψ| 2 ydxdy ≤ λ N 0 (h) ||ψ|| 2 .Using the convexity of the functionx → 1 (x + 1) 2 we get Tri h 2 |∂ x ψ| 2 + j 2 m,1 |x| |ψ| 2 ydxdy ≤ λ N 0 (h)j 2 m,1 ||ψ|| 2 .

Sq h 2 ∂ u ψ 2 + j 2 m,1 |u| ψ 2 tdtdu 2 m, 1 ψ 2 + 2 , 2 m, 1 ψ 2 + 2 m, 1 Π 2 L 2 (

 222221222122122 ≤ λ N 0 (h)j Ch 4/3 ψ which ends the proof of the proposition.Proof of Theorem 3The inequality of Proposition 22 can be written asQ [m]A,h ( ψ) ≤ λ N 0 (h)j Ch is the positive quadratic form associated with an Airy operator defined by Q ( ψ) ≤ λ N 0 (h)j Sq,tdtdu)

1 -h 2

 12 is the bilinear form associated withQ ∂ 2 u + j 2 m,1 |u| ψ , Id -Π

ψ 2 L 2 (

 22 Sq,tdtdu) 

2 .1 2 m, 1 + 2 j 2 m, 1 2

 22121 Then, we consider s N 0 (h) := span π ψN 0 and apply the min-max principal to the N 0 dimensional space χ s N 0 (h) which yieldsj /3 z A (N 0 )h 2/3 ≤ λ N 0 (h) + Ch 4/3 .
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Reduction to the Born-Oppenheimer approximation

The aim of this subsection is to prove Theorem 3 using the projections of the true eigenfunctions (Π

[m] 1 ψn ) as test functions for the quadratic form of the Airy operator. It justifies that l

[m]

BO (h) is a good approximation of L [m] (h). Let us consider ψ ∈ S N 0 (h), we will need a few lemmas to estimate the quadratic form of the Airy operator tested on Π

[m] 1 ψ. The first lemma is an estimate in the triangle Tri; we let ψ(u, t) = ψ(x, y) and we consider the space S N 0 (h)

Then we have the

Lemma 19 For all ψ ∈ S N 0 (h) and for all k ∈ N, there exist h 0 > 0 and C > 0 such that we have, for h ∈ (0, h 0 ):

Proof: First let ψ = ψ j for some j ∈ {1, . . . , N 0 }. It satisfies the equation:

Multiplying by (x + 1) -k , taking the scalar product with ψ j and integrating by parts we find:

Using the Agmon estimates of Proposition 16 with ρ 0 ≥ k + 1 we deduce the lemma for ψ = ψ j . For ψ ∈ S N 0 (h), we proceed as explained in Remark 17.

We can now prove:

Lemma 20 Let ψ be in S N 0 (h). There exists h 0 > 0 and C > 0 such that for all h ∈ (0, h 0 )

Proof: Thanks to the Cauchy-Schwartz inequality we have:

In the original coordinates on the meridian domain Tri we have:

Combining Lemma 19 with this equality we obtain

A Shape of the eigenfunctions in the semi-classical limit

To illustrate some properties of the eigenfunctions we compute some of them. These computations are performed in the scaled meridian domain Tri for the scaled operator L [m] (tan θ) defined in [START_REF] Carron | Topologically nontrivial quantum layers[END_REF].

Figure 7 pictures the dominant term in the construction [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF] : it is almost a tensor product of the Airy function of first kind and the Bessel function of first kind (respectively along the X-axis and Y-axis). In addition, the eigenfunctions are localized near the right boundary and away from the left corner. This matches the Agmon estimates of Propositions 15 and 16.

Figure 8 shows the localization for increasing values of m. As explained in Remark 2 for nonzero m, there is a Dirichlet boundary condition along the X-axis which induces a repulsion from this axis. The eigenfunction is localized in the top right corner. We observe that this repulsion increases with the value of m. We can interpret this phenomenon: the shape of the m th Bessel function of first kind determines the behavior along the Y-axis.