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DIRICHLET EIGENVALUES OF CONES IN THE SMALL

APERTURE LIMIT

THOMAS OURMIÈRES-BONAFOS*

Abstract

We are interested in finite cones of fixed height 1 parametrized by their opening angle. We

study the eigenpairs of the Dirichlet Laplacian in such domains when their apertures tend to 0. We

provide multi-scale asymptotics for eigenpairs associated with the lowest eigenvalues of each fiber

of the Dirichlet Laplacian. In order to do this, we investigate the family of their one-dimensional

Born-Oppenheimer approximations. The eigenvalue asymptotics involves powers of the cube root

of the aperture, while the eigenfunctions include simultaneously two scales.

1 Introduction

1.1 Motivations and related questions

Finding an explicit expression of the first Dirichlet eigenvalues in two or three dimensional domains

is not an easy task, in general. We know how to proceed when the domain is a product reducing the

problem to solving ordinary differential equations. Nevertheless, even for simple two dimensional

domains like triangles this question is still complicated. This specific question is detailed in [17] where

a finite term asymptotics is provided in the regime θ goes to 0 (where θ is the aperture of the triangle).

More recently [11] gives a complete asymptotics for right-angled triangles.

In the latter paper, the aim of the authors was the study of a broken waveguide with corner in the

small angle regime. The knowledge on triangles with small aperture leads to a comparison between

the waveguide and a triangle. The question of waveguides with corners has already been investigated

for the L-shape waveguide in [15]. For an arbitrary angle [3] provides an asymptotics of the lowest

eigenvalues when the angle goes to π/2. The regime with small angle limit has been studied in [5] and

more recently in [10, 11]. The question of waveguides with corner arises naturally because it is studied

for smooth waveguides in [13, 6, 7] where we learn, among other things, that curvature induces bound

states below the essential spectrum. The idea is that a corner can be seen as an infinite curvature.

The aim of the present paper is to obtain asymptotics for three dimensional cones in the small

aperture limit. As in two dimensions, this question naturally appears when looking for the ground states

in the small aperture regime of the conical layer studied in [14].
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We can apply our result to obtain asymptotics for geometrical domains close enough to cones,

as spherical sectors, for instance. It yields results in the spirit of [17] in a higher dimension: it is

the three dimensional equivalent of the circular sector, the Bessel functions playing a similar role as

trigonometric functions.

1.2 The Dirichlet Laplacian on conical families

Let us denote by (x1, x2, x3) the Cartesian coordinates of the space R3 and by 0 = (0, 0, 0) the

origin. The positive Laplace operator is given by −∂2
1 −∂

2
2 −∂

2
3 . We are interested in domains delimited

by a finite cone. For θ ∈ (0, π
2
], we introduce the filled cone Co(θ) defined by:

Co(θ) :=
{
(x1, x2, x3) ∈ R

3 : −1 < x3 < 0 and (x2
1 + x2

2) cot2 θ < (x3 + 1)2
}
.

The angle θ represents the half opening angle of the filled cone. The aim of this paper is the investigation

of the lowest eigenvalues of each fibers of the positive Dirichlet Laplacian −∆Dir
Co(θ) in the small aperture

limit.

Remark 1 Co(θ) being a convex domain, we know that Dom
(
−∆Dir

Co(θ)

)
= H2 (Co(θ))∩H1

0 (Co(θ)).

△

Co(θ)
θ

x3

x2

x1

(0, tan θ, 0)

(0, 0,−1) O
•

Figure 1: The cone Co(θ)

1.3 Structure of the paper

One can show that after the use of adapted coordinates and a Fourier transform the Dirichlet

Laplacian on the cone Co(θ) reduces to a countable family of two dimensional semi-classical operators.

This is discussed in Section 2.

In Section 3 we state the main theorem and we apply it to a spherical sector. We also go about the

so called Born-Oppenheimer approximation. Numerical experiments motivate and illustrate the study.

Afterwards, in Section 4, we perform a change of variables that transforms the meridian triangle

into a rectangle. The operator is more complicated but we deal with a simpler geometrical domain.

Thanks to this substitution we can construct quasimodes for each operator of the countable family using
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some lemmas which are adapted from the Fredholm alternative. The proof of Theorem 3 about the

asymptotics of the first eigenvalues of the cone is over, when, using a Feshbach-Grushin projection, we

justify that the Born-Oppenheimer approximation is actually an approximation of our problem and we

obtain the separation of the eigenvalues.

We conclude by Section A illustrating by numerical experiments the shape of the eigenfunctions

which illustrates some theoretical results obtained all along the paper.

2 Fiber decomposition

In this section, we describe the fiber decomposition of the Dirichlet Laplacian on the cone Co(θ).
We use the terminology detailed in [23, Section XIII.16].

2.1 Partial wave decomposition

We are interested in the positive Laplace operator on the cone Co(θ) which writes

−∆Dir
Co(θ) = −∂2

1 − ∂2
2 − ∂2

3 .

We can describe the domain Co(θ) using cylindrical coordinates. Let us perform the change of variables

and introduce (r, φ, z) such that

r =
√
x2

1 + x2
2, φ = arctan

x2

x1

, z = x3. (1)

The cartesian domain Co(θ) is transformed into Tri(θ) × S1 where the meridian domain Tri(θ) is:

Tri(θ) :=
{
(r, z) ∈ R

2 : −1 < z < 0 and 0 < r < (z + 1) tan θ
}
.

θ
Tri(θ)

(tan θ, 0)

(0,−1) z

r

•O

Figure 2: Meridian domain Tri(θ)

Performing the change of variables the Dirichlet Laplacian is written, on the geometrical domain

Tri(θ) × S1, as the operator :

HTri(θ)×S1 := −
1

r
∂r (r∂r) −

1

r2
∂2

φ − ∂2
z ,

its domain being deduced by the change of variables (1).

3



The domain Tri(θ) × S1 being axisymmetric we perform a Fourier transform and we have the

constant fiber direct sum:

L2(Tri(θ) × S
1, rdrdφdz) = L2(Tri(θ), rdrdz) ⊗ L2(S1) =

⊕

m∈Z

L2(Tri(θ), rdrdz),

where L2(S1) refers to functions on the unit circle with the orthonormal basis
{
e2iπmφ : m ∈ Z

}
. The

operator HTri(θ)×S1 decomposes as

HTri(θ)×S1 =
⊕

m∈Z

H[m]
Tri(θ), with H[m]

Tri(θ) = −
1

r
∂r (r∂r) − ∂2

z +
m2

r2
, (2)

where the H[m]
Tri(θ) are the fibers of HTri(θ)×S1 and their domains Dom(H[m]

Tri(θ)) are implicitly defined by

the decomposition. The fibers H[m]
Tri(θ) have compact resolvent, consequently their spectra S

(
H[m]

Tri(θ)

)

consist in non-decreasing sequences of eigenvalues. We have :

S
(
HTri(θ)×S1

)
= ∪

m∈Z

S

(
H[m]

Tri(θ)

)
. (3)

Thus, if we denote by µ
[m]
n (θ) the nth eigenvalue of H[m]

Tri(θ) we have the following description of the

sprectum:

S
(
HTri(θ)×S1

)
= ∪

(n,m)∈N∗×Z

{
µ[m]

n (θ)
}
.

Remark 2 For ψ ∈ Dom(H[m]
Tri(θ)), we have the Dirichlet boundary condition ψ(r, 0) = 0 and

ψ ((z + 1) tan θ, z) = 0.

If m 6= 0, we have for integrability reasons ψ(0, z) = 0. We refer to [4, Chapt. II] for more

information.

△

2.2 Rescaling of the meridian domain Tri(θ)

We rescale the integration domain in order to avoid its dependence on θ. Therefore, this dependence

is transferred in the coefficients of the operator. For this reason, let us perform the following linear

change of coordinates:

x = z, y =
1

tan θ
r, (4)

which maps Tri(θ) onto Tri
(

π
4

)
. That is why we set for simplicity:

Tri := Tri
(π

4

)
. (5)

Then, for each m ∈ Z, H[m]
Tri(θ) is unitary equivalent to the operator with the new integration domain Tri:

D[m](θ) := −∂2
x −

1

y tan2 θ
∂y (y∂y) +

m2

y2 tan2 θ
.

with implicit boundary conditions as in Remark 2. We let h = tan θ; after a multiplication by tan2 θ,

we get the new operator:
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L[m](h) := −h2∂2
x −

1

y
∂y (y∂y) +

m2

y2
. (6)

This operator is partially semi-classical in x. It is the shape of L[m](h) that leads us in each steps of

our study. That is why, in Subsection 3.3, we first consider its Born-Oppenheimer approximation (see

[8, 20, 22]). Then our reasoning is inspired by the philosophy presented in [16, 19, 18].

3 Numerical motivations and main results

3.1 Asymptotic expansion of eigenvalues

According to the structure of the spectrum established in (3), we recall that we denote by µ
[m]
n (θ) the

nth eigenvalue of the mth fiber of HCo(θ). In order to get more detailed information about the behavior

of µ
[m]
n (θ) we can, at first, study it numerically. We carried out the computation with the operator

L[m](tan θ) defined in (6) and we pictured its eigenvalues denoted λ
[m]
n (tan θ).

Figures 3 suggests that, for m = 0, 1, 2, the eigenvalues converge to a certain limit as the aperture θ
goes to 0. Moreover, this value is near j2

m,1, where we denote by jm,1 the first zero of the mth Bessel

function of first kind, represented by black dots. This result has to be connected to the one established

in [14] where, studying a conical layer, the value
j2
0,1

π2
plays a similar role. In that paper, they only

consider the operator from the fiber of order 0 because in this case the other fibers have only essential

spectrum (the factor
1

π2
being a normalization constant). One can see that for θ large enough the

eigenvalues cross and although λ
[m]
n represents the nth eigenvalue of the mth fiber of L[m](tan θ) it is

clear that λ
[0]
n (tan θ) is not necessarily its nth eigenvalue.

The main result of this paper is not only the convergence of the eigenvalues as θ → 0 illustrated

in Figure 3 but an asymptotic expansion of these eigenvalues. Indeed, the lowest eigenvalues of each

fiber of HCo(θ) admit expansions at any order in powers of θ1/3. We first state the result for the scaled

operators L[m](h) introduced in (6):

Theorem 3 If we denote by zA(n) the nth zero of the reversed Airy function, the eigenvalues of L[m](h),

denoted by λ
[m]
n (h), admit the expansions:

λ[m]
n (h) ∼

h→0

∑

k≥0

β
[m]
k,nh

k/3 with β
[m]
0,n = j2

m,1, β
[m]
1,n = 0, β

[m]
2,n =

(
2 j2

m,1

)2/3
zA(n),

the terms of odd rank being zero for j ≤ 8. The corresponding eigenfunctions have expansions in

powers of h1/3 with both scales x/h2/3 and x/h.

In terms of the physical domain Tri(θ), we immediately deduce from the previous theorem that the

eigenvalues of the m−th fiber of −∆Dir
Co(θ) admit the expansions:

µ[m]
n (θ) ∼

θ→0

1

θ2

∑

k≥0

β
[m],∆
k,n θk/3 with β

[m],∆
0,n = j2

m,1, β
[m],∆
1,n = 0, β

[m],∆
2,n = (2 jm,1)

2/3 zA(n).

Figure 4 depicts that for small aperture θ, the numerical eigenvalues λ
[0]
n (tan θ) match with the

theoretical expected behavior deduced from Theorem 3. The stalling for very small values of the

aperture is due to numerical difficulties when θ → 0.
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Figure 3: This figure represents the dependence of the first ten eigenvalues λ
[m]
n (tan θ) (m = 0, 1, 2) on

the aperture θ (in degrees). We computed each eigenvalue for 80 values of θ.

3.2 Application to the spherical cone

Theorem 3 on the cone Co(θ) is closely related to the Dirichlet problem on a spherical cone. We

denote by Sph(θ) the spherical cone of radius 1 and aperture θ with center in (0, 0,−1) described in

Figure 5. We have

−∆Dir
Sph(θ) := −∂2

1 − ∂2
2 − ∂2

3 .

We perform the change of variables

ρ =

√
x2

1 + x2
2 + (x3 + 1)2, α = arcos

(
x3 + 1

ρ

)
, β =





arcos

(
x1√
x2

1 + x2
2

)
if x2 ≥ 0,

2π − arcos

(
x1√
x2

1 + x2
2

)
if x2 < 0.

(7)

Hence the domain Sph(θ) is transformed into

Ŝph(θ) = Ĉirc(θ) × S
1,

where Ĉirc(θ) is the circular meridian domain in the coordinates (ρ, α).

Remark 4 If instead of the change of variables (7) we change into cylindrical coordinates as in (1), the

associated meridian circular sector Circ(θ) is the one of Figure 6. One can pass from Ĉirc(θ) to Circ(θ)
by the change of variables

r = ρ cosα− 1, z = ρ sinα,

which links those two domains without the cartesian domain. △
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Figure 4: This figure represents the convergence rate of the first six eigenvalues λ
[0]
n (tan θ) to the two

first terms of the theoretical asymptotics on the aperture θ (in degrees). The black line represents the

value 4/3.

The Dirichlet Laplacian HdSph(θ) writes in spherical coordinates

HdSph(θ) := −
1

ρ2
∂ρ

(
ρ2∂ρ

)
−

1

ρ2 sinα
∂α (sinα∂α) −

1

ρ2 sin2 α
∂2

β,

on L2(Ŝph(θ), ρ2 sinαdρdαdβ). As in Section 2 we have the constant fiber direct sum:

L2
(
Ŝph(θ), ρ2 sinαdρdαdβ

)
=
⊕

m∈Z

L2
(
Ĉirc(θ), ρ2 sinαdρdα

)
,

and HdSph(θ) decomposes in fibers :

HdSph(θ) =
⊕

m∈Z

H[m]
dCirc(θ)

,

where

H[m]
dCirc(θ)

:= −
1

ρ2
∂ρ

(
ρ2∂ρ

)
−

1

ρ2 sinα
∂α (sinα∂α) +

m2

ρ2 sin2 α
,

with implicit domains and boundary conditions. Let (µ,Ψ) be an eigenpair of H[m]
dCirc(θ)

, with

Ψ(ρ, α) = R(ρ)M(α). It should satisfy the following system of differential equations :





[
∂ρ

(
ρ2∂ρ

)
+
(
c(θ) − µρ2

)]
R(ρ) = 0,[

−
1

sinα
∂α (sinα∂α) +

m2

sin2 α

]
M(α) = c(θ)M(α).

(8)
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Remark 5 We are not interested here in solving those equations. Nevertheless one can see that

formally, when θ → 0 the angle α is small and the last equation of (8) looks like the Bessel equation.

This could be a lead to find an asymptotic expansion at any order of µ when θ → 0. △

However, thanks to Theorem 3, we have easily a finite term asymptotic for the eigenvalues of −∆Dir
Sph(θ).

Let Co(θ, cos θ) be the set Co(θ) up to a dilatation of ratio cos θ. We have the set inclusion in R3

Co(θ, cos θ) ⊂ Sph(θ) ⊂ Co(θ).

Let µ̆n(θ) be the nth eigenvalue of the Dirichlet Laplacian on Sph(θ) and µn(θ) the one on the cone

Co(θ), the monotonicity of the Dirichlet Laplacian yields:

(
1 + tan2 θ

)
µn(θ) ≥ µ̆n(θ) ≥ µn(θ). (9)

If µ̆
[m]
n (θ) denotes the nth eigenvalue of the mth fiber of the Dirichlet Laplacian, (9) yields for small θ

(
1 + tan2 θ

)
µ[0]

n (θ) ≥ µ̆[0]
n (θ) ≥ µ[0]

n (θ).

To deal with higher fibers we can apply the exact same argument on the meridian circular sector Cir(θ)
and the meridian triangle Tri(θ) because :

Tri(θ, cos θ) ⊂ Cir(θ) ⊂ Tri(θ).

As for m ≥ 1, there is a Dirichlet boundary condition everywhere (see Remark 2) we have :

(
1 + tan2 θ

)
µ[m]

n (θ) ≥ µ̆[m]
n (θ) ≥ µ[m]

n (θ).

Those inequalities provide the first terms in the asymptotics of µ̆
[m]
n (θ).

θ

Sph(θ)

(0, 0,−1)

(sin θ, 0, cos θ − 1)

x3

x1

x2

•
O

Figure 5: The spherical cone Sph(θ)

3.3 Schrödinger operators in one dimension

In the analysis of L[m](h) we will see that its so called Born-Oppenheimer approximation will play

an important role. That is why we define

l
[m]
BO(h) := −h2∂2

x + v[m](x), (10)
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θ Cir(θ)

(0,−1) z

r

(sin θ, cos θ − 1)

•O

Figure 6: Meridian domain Cir(θ)

where the effective potential v[m] is obtained by replacing −
1

y
∂y (y∂y) +

m2

y2
in the expression of

L[m](h) by its lowest eigenvalue on each slice of Tri at fixed x. One can see that

v[m](x) =
j2
m,1

(x+ 1)2
for x ∈ (−1, 0).

By construction, for any m, the operator (10) can be seen as a lower bound of the operator L[m](h).
As it is shown in subsection 4.4, the choice of this approximation gives us informations about the

eigenvalues of HTri(θ)×S1 . We have the

Proposition 6 The eigenvalues of l
[m]
BO(h), denoted by λ

[m]
BO,n(h), admit the expansion:

λ
[m]
BO,n(h) ∼

h→0

∑

k≥0

β̂
[m]
k,nh

2j/3, with β̂
[m]
0,n = j2

m,1 and β̂
[m]
1,n =

(
2 j2

m,1

)2/3
zA(n).

The shape of the effective potential v[m] is the same as in [11, Section 3]. Then, we deduce Proposition

6 from [11, Th 4.1.]. The key is the construction of quasimodes at the scale h2/3 which naturally arises

by expanding the effective potential v[m] and recognizing the Airy operator at first order. This method

is adapted from the harmonic approximation for regular potentials with a well (see [24], [9, Chapt. 11]

and [12, Chapt. 4]). It yields an upper bound of the eigenvalues of l
[m]
BO(h). To obtain a lower bound we

then need the Agmon estimates of Propositions 7 and 8 and to apply the min-max principle and get the

separation of eigenvalues.

The Agmon estimates near x = 0 take the following form

Proposition 7 Let Γ0 > 0. There exist h0 > 0, C0 > 0 and η0 > 0 such that for any h ∈ (0, h0) and

all eigenpair (λ, ψ) of l
[m]
BO(h) satisfying

∣∣λ− j2
m,1

∣∣ ≤ Γ0h
2/3, we have:

∫ 0

−1

eη0h−1|x|3/2 (
|ψ|2 + |h2/3∂xψ|

2
)
dx ≤ C0||ψ||

2.

And the Agmon estimates near x = −1 take the following form

Proposition 8 Let Γ0 > 0 and ρ0 ∈ (0, jm,1). There exist h0 > 0, C0 > 0 such that for any h ∈ (0, h0)

and all eigenpair (λ, ψ) of l
[m]
BO(h) satisfying

∣∣λ− j2
m,1

∣∣ ≤ Γ0h
2/3, we have:

∫ 0

−1

(x+ 1)−ρ0/h
(
|ψ|2 + |h∂xψ|

2
)
dx ≤ C0||ψ||

2.
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These semiclassical Agmon estimates (see [1, 2]) are obtained using the technical background of

[12, Chapt. 6] and [19].

4 Meridian triangle Tri with Dirichlet boundary condition

The aim of this section is to prove Theorem 3. The proof will be divided into two main steps : a

construction of quasimodes and the use of the true eigenfunctions of L[m](h) as quasimodes for the

Born-Oppenheimer approximation in order to obtain a lower bound for true eigenvalues. We first

perform a change of variables to transform the triangle into the square:

u = x ∈ (−1, 0), t =
y

x+ 1
∈ (0, 1). (11)

The meridian triangle Tri is transformed into a square Sq

Sq := (−1, 0) × (0, 1). (12)

The operator L[m](h) becomes:

L[m]
Sq (h)(u, t; ∂u, ∂t) :=

1

(u+ 1)2

(
−

1

t
∂t (t∂t) +

m2

t2

)
− h2∂2

u

−
h2t2

(u+ 1)2
∂2

t +
2h2t

u+ 1
∂t∂u −

2h2t

(u+ 1)2
∂t,

(13)

on L2 (Sq, t(u+ 1)2dudt) with Dirichlet boundary condition on the faces {(0, t) : 0 < t < 1} and

{(u, 1) : −1 < u < 0}. The equation L[m](h)ψ
[m]
h = λ

[m]
h ψ

[m]
h is transformed into the equation

L[m]
Sq (h)ψ̂

[m]
h = λ

[m]
h ψ̂

[m]
h with ψ̂

[m]
h (u, t) = ψ

[m]
h (x, y).

In what follows we denote by 〈·, ·〉t the scalar product on L2 ((0, 1), tdt).

4.1 Quasimodes

This section is devoted to the proof of the following proposition.

Proposition 9 If S(L[m](h)) denotes the spectrum of L[m](h), there are sequences (β
[m]
j,n )j≥0 for any

integer n ≥ 1 so that there holds: for all N0 ∈ N∗ and J ∈ N, there exist h0 > 0 and C > 0 such that

for h ∈ (0, h0)

dist

(
S(L[m](h)),

J∑

j=0

β
[m]
j,n h

j/3

)
≤ Ch(J+1)/3, n = 1, . . . , N0. (14)

Moreover, we have: β
[m]
0,n = j2

m,1, β
[m]
1,n = 0, and β

[m]
2,n =

(
2 j2

m,1

)2/3
zA(n).

Proof: The proof is divided into three parts. The first one deals with the form of the Ansatz chosen to

construct quasimodes. The second part deals with three lemmas about operators which appear in the

first part. The third part is the determination of the profiles of the Ansatz.
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Shape of the Ansatz We want to construct quasimodes (β
[m]
h , ψ

[m]
h ) for the operator L[m](h)(x, y; ∂x, ∂y).

It will be more convenient to work on the square Sq with the operator L[m]
Sq (h)(u, t; ∂u, ∂t). We introduce

the new scales

s = h−2/3u and σ = h−1u,

and we look for quasimodes (β
[m]
h , ψ̂

[m]
h ) in the form of series

β
[m]
h ∼

∑

j≥0

β
[m]
j hj/3 and ψ̂

[m]
h (u, t) ∼

∑

j≥0

(
Ψ

[m]
j (s, t) + Φ

[m]
j (σ, t)

)
hj/3 (15)

in order to solve L[m]
Sq (h)ψ̂

[m]
h = β

[m]
h ψ̂

[m]
h in the sense of formal series. An Ansatz containing only the

scale h−2/3 is not sufficient to construct quasimodes for L[m]
Sq (h) because one can see that the system is

overdetermined. Expanding the operator in powers of h2/3 we obtain the formal series:

L[m]
Sq (h)(h2/3s, t;h−2/3∂s, ∂t) ∼

∑

j≥0

L[m]
2j h

2j/3 with leading term L[m]
0 = −

1

t
∂t(t∂t) +

m2

t2
, (16)

and in power of h:

L[m]
Sq (h)(hσ, t;h−1∂σ, ∂t) ∼

∑

j≥0

N [m]
3j hj with leading term N [m]

0 =

(
−

1

t
∂t(t∂t) +

m2

t2

)
− ∂2

σ.

(17)

In what follows, in order to ensure the Dirichlet condition on Tri \ (−1, 0) × {0} we will require for

our Ansatz the boundary condition, for any j ∈ N:

Ψ
[m]
j (0, t) + Φ

[m]
j (0, t) = 0, 0 ≤ t ≤ 1, (18)

Ψ
[m]
j (s, 1) = 0, s < 0 and Φ

[m]
j (σ, 1) = 0, σ ≤ 0. (19)

More specifically, we are interested in the ground energy λ = j2
m,1 of the Dirichlet problem at 1 for

L[m]
0 on the interval (0, 1). Thus, we have to solve the Dirichlet problem for the operators N [m]

0 − j2
m,1

and L[m]
0 − j2

m,1 on the half-strip

Hst = R− × (0, 1), (20)

and look for solutions exponentially decaying (see Remark 10). Our aim is to apply the spectral theorem

to the truncated series ψ̂
[m]
h (u, t) restricted in the square Sq thanks to a cut-off function.

Remark 10 In the following part, we will need to use exponentially decaying functions.Then, we

define the spaces:

L2
exp (R−) :=

{
f ∈ L2 (R−) : ∃ α > 0 such that eα|s|f ∈ L2 (R−)

}
,

H2
exp (R−) :=

{
f ∈ H2 (R−) : ∃ α > 0 such that eα|s|f ∈ H2 (R−)

}
,

L2
exp (Hst, tdudt) :=

{
f ∈ L2 (Hst, tdudt) : ∃ α > 0 such that eα|u|f ∈ L2 (Hst, tdudt)

}
,

H2
exp (Hst, tdudt) :=

{
f ∈ H2 (Hst, tdudt) : ∃ α > 0 such that eα|u|f ∈ H2 (Hst, tdudt)

}
.

△
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Three lemmas

To start the construction of our Ansatz we will need the three next lemmas. Lemmas 12 and 13 are

consequences of the Fredholm alternative.

Lemma 11 We denote the nth normalized eigenfunction of L[m]
0 by b

[m]
n :

b[m]
n (t) = C [m]

n Jm(jm,nt)
(
C [m]

n ∈ R being a normalization constant
)
,

where Jm is the mth Bessel function of first kind. Let F = F (σ, t) be a function in L2
exp(Hst, tdσdt)

and let G ∈ H3/2 ((0, 1), tdt) be a function of t with G(1) = 0. Then there exists a unique γ ∈ R such

that the problem

(
N [m]

0 − j2
m,1

)
Φ = F, Φ(σ, 1) = 0,Φ(0, t) = G(t) + γb

[m]
1 (t)

admits a unique solution in H2
exp(Hst, tdσdt). Moreover γ is given by:

γ = −

∫ 0

−∞

∫ 1

0

F (σ, t)σb
[m]
1 (t)tdtdσ −

∫ 1

0

G(t)b
[m]
1 (t)tdt. (21)

Lemma 12 Let F = F (s, t) be a function in L2
exp(Hst, tdsdt). Then, there exists solution(s) Ψ such

that: (
L[m]

0 − j2
m,1

)
Ψ = F in Hst, Ψ(s, 1) = 0

if and only if 〈F (s, ·), b[m]
1 〉t = 0 for all s < 0. In this case, Ψ(s, t) = Ψ⊥(s, t) + g(s)b

[m]
1 (t) where Ψ⊥

satisfies 〈Ψ(s, ·)⊥, b[m]
1 〉t ≡ 0 and Ψ belongs to H2

exp (Hst, tdsdt).

Lemma 13 Let n ≥ 1. We recall that zA(n) is the nth zero of the Airy reverse function, and we denote

by

a[m]
n (s) = C̃ [m]

n A
((

2 j2
m,1

)1/3
s+ zA(n)

) (
C̃ [m]

n ∈ R being a normalization constant
)

a normalized eigenfunction of the operator −∂2
s −
(
2 j2

m,1

)
s with Dirichlet condition on R− associated

with the eigenvalue
(
j2
m,1

)2/3
zA(n). Let f = f(s) be a function in L2

exp(R−) and let c ∈ R. Then there

exists a unique β ∈ R such that the problem:

(
−∂2

s − 2 j2
m,1s−

(
j2
m,1

)2/3
zA(n)

)
g = f + βa[m]

n in R−, with g(0) = c,

has a unique solution in H2
exp(R−).

Remark 14 The key in proving Lemmas 11 and 12 is the decomposition as a tensor product of

L2 (Hst, tdσdt) and L2 (Hst, tdsdt). One can see that L2 (Hst, tdσdt) = L2 (R−, dσ) ⊗̂L2 ((0, 1), tdt)

and L2 (Hst, tdsdt) = L2 (R−, ds) ⊗̂L
2 ((0, 1), tdt). We know that (b

[m]
n )n∈N∗ is an orthonormal basis

of L2 ((0, 1), tdt). Then, we construct solutions Φ and Ψ decomposed in this orthonormal basis. Lemma

13 is an application of the Fredholm alternative after changing the function g to obtain an homogeneous

Dirichlet condition at s = 0. △
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Determination of the profiles

Now, we can start the construction of the Ansatz (15).

Terms in h0 The constant terms yield:

L[m]
0 Ψ

[m]
0 = β

[m]
0 Ψ

[m]
0 , N [m]

0 Φ
[m]
0 = β

[m]
0 Φ

[m]
0

with boundary conditions (18)-(19) for j = 0. We choose β
[m]
0 = j2

m,1. Moreover Ψ
[m]
0 is a tensor

product so, Ψ
[m]
0 = g

[m]
0 (s)b

[m]
1 (t). The boundary condition (18) yields : Ψ

[m]
0 (0, t) = −g[m]

0 (0)b
[m]
1 (t).

Lemma 11 gives g
[m]
0 (0) = 0 and Φ

[m]
0 ≡ 0. The function g

[m]
0 will be determined later.

Terms in h1/3 Collecting the terms of order h1/3 we have:

(
L[m]

0 − β
[m]
0

)
Ψ

[m]
1 = β

[m]
1 Ψ

[m]
0 − L[m]

1 Ψ
[m]
0 = β

[m]
1 Ψ

[m]
0

and (
N [m]

0 − β
[m]
0

)
Φ

[m]
1 = β

[m]
1 Φ

[m]
0 −N [m]

1 Φ
[m]
0 = 0,

with boundary conditions (18)-(19) for j = 1. Lemma 12 yields β
[m]
1 = 0 which leads to the

following form for the function Ψ
[m]
1 (s, t) = g

[m]
1 (s)b

[m]
1 (t). The boundary condition (18) yields :

Ψ
[m]
1 (0, t) = −g[m]

1 (0)b
[m]
1 (t). Lemma 11 gives g

[m]
1 (0) = 0 and Φ

[m]
1 ≡ 0.

Terms in h2/3 Collecting the terms of order h2/3 we have:

(
L[m]

0 − β
[m]
0

)
Ψ

[m]
2 = β

[m]
2 Ψ

[m]
0 − L[m]

2 Ψ
[m]
0

and (
N [m]

0 − β
[m]
0

)
Φ

[m]
2 = 0

where L[m]
2 = −∂2

s + 2s

(
1

t
∂t(t∂t) −

m2

t2

)
and boundary conditions (18)-(19) for j = 2. Lemma 12

yields the following equation in the s-variable:

〈
(β

[m]
2 − L[m]

2 )Ψ
[m]
0 (s, ·), b[m]

1

〉
t
= 0, s < 0.

Nevertheless Ψ0(s, t) = g
[m]
0 (s)b

[m]
1 (t), consequently this equation becomes:

(
−∂2

s − 2 j2
m,1s

)
g

[m]
0 (s) = β

[m]
2 g

[m]
0 (s), s < 0.

This equation leads to β
[m]
2 =

(
2 j2

m,1

)2/3
zA(n) and g

[m]
0 ≡ a

[m]
n .

We deduce that (L[m]
0 − β

[m]
0 )Ψ

[m]
2 = 0 and the Ψ

[m]
2 has the form Ψ

[m]
2 = g

[m]
2 (s)b

[m]
1 (t). The boundary

condition (18) yields : Ψ
[m]
2 (0, t) = −g[m]

2 (0)(s)b
[m]
1 (t). Lemma 11 gives g

[m]
2 (0) = 0 and Φ

[m]
2 ≡ 0.

13



Terms in h3/3 Collecting the terms of order h3/3 we have:

(
L[m]

0 − β
[m]
0

)
Ψ

[m]
3 = β

[m]
3 Ψ

[m]
0 + β

[m]
2 Ψ

[m]
1 − L[m]

2 Ψ
[m]
1

and (
N [m]

0 − β
[m]
0

)
Φ

[m]
3 = 0

with boundary conditions (18)-(19) for j = 3. The scalar product with b
[m]
1 (Lemma 12) and then the

scalar product with g
[m]
0 (Lemma 13) yield that β

[m]
3 = 0 and g

[m]
1 is parallel to g

[m]
0 . We choose g

[m]
1 ≡ 0.

As a consequence Ψ
[m]
3 has the form Ψ

[m]
3 (s, t) = g

[m]
3 (s)b

[m]
1 (t). Lemma 11 gives g

[m]
3 (0) = 0 and

Φ
[m]
3 ≡ 0.

Terms in h4/3 Collecting the terms of order h4/3 we have:

(
L[m]

0 − β
[m]
0

)
Ψ

[m]
4 = β

[m]
4 Ψ

[m]
0 + β

[m]
2 Ψ

[m]
2 − L[m]

4 Ψ
[m]
0 − L[m]

2 Ψ
[m]
2

and (
N [m]

0 − β
[m]
0

)
Φ

[m]
4 = 0

where

L[m]
4 = 2∂t∂s −

3s2

2

(
1

t
∂t(t∂t) −

m2

t2

)

with boundary conditions (18)-(19) for j = 4. The scalar product with b
[m]
1 (Lemma 12) yields an

equation for g
[m]
2 and the scalar product with g

[m]
0 (Lemma 13) determined β

[m]
4 . Thanks to Lemma 12,

Ψ
[m]
4 has the form Ψ

[m]
4 = Ψ

[m]⊥
4 + g

[m]
4 (s)b

[m]
1 (t) with Ψ

[m]⊥
4 which can be nonzero. Lemma 11 yields

g
[m]
4 (0) = 0; moreover

〈
Ψ

[m]⊥
4 (0, ·), b[m]

1

〉
t
= 0 and we have a solution Φ

[m]
4 with exponential decay.

Continuation We can construct the further terms by induction along the same lines. This leads to

define the quasimodes for L[m](h):

β
[m,J ]
h =

J∑

j=0

β
[m]
j hj/3, (22)

ψh(x, y)
[m,J ] = χlef(x)

J∑

j=0

(
Ψ

[m]
j

(
x

h2/3
,

y

x+ 1

)
+ Φ

[m]
j

(
x

h
,

y

x+ 1

))
hj/3, (23)

where χlef is a smooth cut-off function such that:

χlef(x) = 1 for x ∈

(
−

1

2
, 0

)
and χlef(x) = 0 for x ≤ −

3

4
. (24)

The spectral theorem yields the conclusion. �
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4.2 Agmon estimates

On our way to prove Theorem 3, we now state Agmon estimates like for l
[m]
BO(h). Let us first notice

that, due to Proposition 9, the N0 lowest eigenvalues λ of L[m](h) satisfy:
∣∣λ− j2

m,1

∣∣ ≤ Γ0h
2/3, (25)

for some positive constant Γ0 depending on N0.

If we denote by Q
[m]
h the quadratic form associated with L[m](h) we have, for all ψ ∈ Dom(Q

[m]
h ), the

following lower bound:

Q
[m]
h (ψ) ≥

∫

Tri

(
h2|∂xψ|

2 +
j2
m,1

(x+ 1)2
|ψ|2

)
ydxdy. (26)

Thus, the analysis giving Propositions 7 and 8 applies exactly in the same way and we obtain:

Proposition 15 Let Γ0 > 0. There exist h0 > 0, C0 > 0 and η0 > 0 such that for h ∈ (0, h0) and all

eigenpair (λ, ψ) of L[m](h) satisfying
∣∣λ− j2

m,1

∣∣ ≤ Γ0h
2/3, we have:

∫

Tri

eη0h−1|x|3/2 (
|ψ|2 + |h2/3∂xψ|

2
)
ydxdy ≤ C0||ψ||

2.

Proposition 16 Let Γ0 > 0. There exist h0 > 0, C0 > 0 and ρ0 ∈ (0, jm,1) such that for h ∈ (0, h0)
and all eigenpair (λ, ψ) of L[m](h) satisfying

∣∣λ− j2
m,1

∣∣ ≤ Γ0h
2/3, we have:

∫

Tri

(x+ 1)−ρ0/h
(
|ψ|2 + |h∂xψ|

2
)
ydxdy ≤ C0||ψ||

2.

Remark 17 Propositions 15 and 16 are also verified when ψ is a finite linear combination of eigen-

functions associated with eigenvalues satisfying (25). △

4.3 Approximation of the first eigenfunctions by tensor products

In this subsection we will work with the operator L[m]
Sq (h) rather than L[m](h). Let us consider

the first N0 eigenvalues of L[m]
Sq (h) (shortly denoted by λn(h)). In each corresponding eigenspace we

choose a normalized eigenfunction ψ̂n so that 〈ψ̂n, ψ̂p〉 = 0 if n 6= p. We introduce:

ŜN0
(h) = span(ψ̂1, . . . , ψ̂N0

).

Let us define Q
0,[m]
Sq the following quadratic form:

Q
0,[m]
Sq (ψ̂) =

∫

Sq

(
|∂tψ̂|

2 +
m2

t2
|ψ̂|2 − j2

m,1|ψ̂|
2

)
t(u+ 1)2dudt,

associated with the operator L0,[m]
Sq = Idu ⊗

(
−

1

t
∂t(t∂t) +

m2

t2
− j2

m,1

)
on L2(Sq, t(u + 1)2dudt).

We consider the Feshbach-Grushin projection on the eigenspace associated with the eigenvalue 0 of

−
1

t
∂t(t∂t) +

m2

t2
− j2

m,1:

Π
[m]
1 ψ̂(u, t) =

〈
ψ̂(u, ·), b[m]

1

〉
t
b
[m]
1 (t). (27)

We can now state a first approximation result:
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Proposition 18 There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all ψ̂ ∈ ŜN0
(h):

0 ≤ Q
0,[m]
Sq (ψ̂) ≤ Ch2/3||ψ̂||2

and ∣∣∣
∣∣∣
(
Id− Π

[m]
1

)
ψ̂
∣∣∣
∣∣∣+
∣∣∣∣
∣∣∣∣
1

t

(
Id− Π

[m]
1

)
ψ̂

∣∣∣∣
∣∣∣∣+
∣∣∣
∣∣∣∂t

(
Id− Π

[m]
1

)
ψ̂
∣∣∣
∣∣∣ ≤ Ch1/3||ψ̂||.

Moreover we have, Π
[m]
1 : ŜN0

(h) → Π
[m]
1 (ŜN0

(h)) is an isomorphism.

Proof: If ψ̂ = ψ̂n we have:

Q
[m]
Sq,h(ψ̂n) = λn||ψ̂n||

2.

From this we infer:

Q
[m]
Sq,h(ψ̂n) ≤

(
j2
m,1 + Ch2/3

)
||ψ̂n||

2.

The orthogonality of the ψ̂n (in L2 and for the quadratic form) allows to extend this inequality to

ψ̂ ∈ ŜN0
(h):

Q
0,[m]
Sq (ψ̂) ≤ Ch2/3||ψ̂||2.

Moreover Π
[m]
1 ψ̂ being in the kernel of L0,[m]

Sq , we have:

Q
0,[m]
Sq (ψ̂) =

〈
L0,[m]

Sq

(
Π

[m]
1 ψ̂ + (Id− Π

[m]
1 )ψ̂

)
, ψ̂)
〉

=
〈
L0,[m]

Sq

(
Id− Π

[m]
1

)
ψ̂, ψ̂

〉

= Q
0,[m]
Sq

(
(Id− Π

[m]
1 )ψ̂

)
.

If µ2 denotes the second eigenvalue of the one dimensional operator −
1

t
∂t(t∂t) +

m2

t2
− j2

m,1 we have,

for all u ∈ (−1, 0), thanks to the min-max principle:

∫ 1

0

∣∣∣∂t

(
(Id− Π

[m]
1 )ψ̂

)∣∣∣
2

+
m2

t2

∣∣∣(Id− Π
[m]
1 )ψ̂

∣∣∣
2

−j2
m,1

∣∣∣(Id− Π
[m]
1 )ψ̂

∣∣∣
2

tdt ≥ µ2

∫ 1

0

∣∣∣
(
Id− Π

[m]
1

)
ψ̂
∣∣∣
2

tdt.

Multiplying by (u+ 1)2 and taking the integral over u ∈ (−1, 0), we obtain:

Q
0,[m]
Sq

(
(Id− Π

[m]
1 )ψ̂

)
≥ µ2

∣∣∣
∣∣∣
(
Id− Π

[m]
1

)
ψ̂
∣∣∣
∣∣∣
2

.

We deduce that:

0 ≤ Q
0,[m]
Rec (ψ̂) ≤ Ch2/3||ψ̂||2 ;

∣∣∣∣
∣∣∣∣
1

t

(
Id− Π

[m]
1

)
ψ̂

∣∣∣∣
∣∣∣∣+
∣∣∣
∣∣∣∂t

(
Id− Π

[m]
1

)
ψ̂
∣∣∣
∣∣∣ ≤ Ch1/3||ψ̂||.

We also have: ∣∣∣
∣∣∣
(
Id− Π

[m]
1

)
ψ̂
∣∣∣
∣∣∣ ≤ Ch1/3||ψ̂||,

which yields Proposition 18. �
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4.4 Reduction to the Born-Oppenheimer approximation

The aim of this subsection is to prove Theorem 3 using the projections of the true eigenfunctions

(Π
[m]
1 ψ̂n) as test functions for the quadratic form of the Airy operator. It justifies that l

[m]
BO(h) is a good

approximation of L[m](h). Let us consider ψ̂ ∈ ŜN0
(h), we will need a few lemmas to estimate the

quadratic form of the Airy operator tested on Π
[m]
1 ψ̂. The first lemma is an estimate in the triangle Tri;

we let ψ̂(u, t) = ψ(x, y) and we consider the space SN0
(h)

SN0
(h) := span (ψ1, . . . , ψN0

) .

Then we have the

Lemma 19 For all ψ ∈ SN0
(h) and for all k ∈ N, there exist h0 > 0 and C > 0 such that we have,

for h ∈ (0, h0): ∫

Tri

(x+ 1)−k|∂yψ|
2ydxdy ≤ C||ψ||2.

Proof: First let ψ = ψj for some j ∈ {1, . . . , N0}. It satisfies the equation:

(
−h2∂2

x −
1

y
∂y(y∂y) +

m2

y2

)
ψj = λj(h)ψj.

Multiplying by (x+ 1)−k, taking the scalar product with ψj and integrating by parts we find:

∫

Tri

(x+ 1)−k|∂yψj|
2ydxdy ≤ C

∫

Tri

(x+ 1)−k
(
|ψj|

2 + h2(x+ 1)−1|ψj||∂xψj|
)
ydxdy.

Using the Agmon estimates of Proposition 16 with ρ0 ≥ k + 1 we deduce the lemma for ψ = ψj . For

ψ ∈ SN0
(h), we proceed as explained in Remark 17. �

We can now prove:

Lemma 20 Let ψ̂ be in ŜN0
(h). There exists h0 > 0 and C > 0 such that for all h ∈ (0, h0)

∣∣∣∣h2

∫

Sq

1

(u+ 1)2

(
∂uψ̂

)(
∂tψ̂
)
t(u+ 1)2dtdu

∣∣∣∣ ≤ Ch4/3
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

.

Proof: Thanks to the Cauchy-Schwartz inequality we have:

∣∣∣∣h2

∫

Sq

1

(u+ 1)2

(
∂uψ̂

)(
∂tψ̂
)
t(u+ 1)2dtdu

∣∣∣∣
2

≤ h4

∫

Sq

∣∣∣∂uψ̂
∣∣∣
2

(u+1)2tdtdu

∫

Sq

1

(u+ 1)4

∣∣∣∂tψ̂
∣∣∣
2

t(u+1)2dtdu.

In the original coordinates on the meridian domain Tri we have:
∫

Sq

1

(u+ 1)4

∣∣∣∂tψ̂
∣∣∣
2

t(u+ 1)2dtdu =

∫

Tri

(x+ 1)−4 |∂yψ|
2 ydxdy.

Combining Lemma 19 with this equality we obtain
∫

Sq

1

(u+ 1)4

∣∣∣∂tψ̂
∣∣∣
2

t(u+ 1)2dtdu ≤ C1

∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

, (28)
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for some C1 > 0. Using Proposition 15 expressed in the Square Sq coordinates, there exists C2 > 0
such that: ∫

Sq

∣∣∣∣∂uψ̂ −
1

(u+ 1)2
∂tψ̂

∣∣∣∣
2

t(u+ 1)2dtdu ≤ C2h
−4/3

∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

.

For some C3 > 0, equation (28) yields

∫

Sq

∣∣∣∂uψ̂
∣∣∣
2

t(u+ 1)2dtdu ≤ C3h
−4/3

∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

,

which achieves the proof of the lemma. �

To have estimates in L2 (Sq, tdtdu) instead of L2 (Sq, t(u+ 1)2dtdu) we will need the

Lemma 21 Let ψ̂ be in ŜN0
(h). There exists h0 > 0 and C > 0 such that for all h ∈ (0, h0)

∣∣∣∣h2

∫

Sq

∣∣∣∂uψ̂
∣∣∣
2

utdtdu

∣∣∣∣ ≤ Ch4/3
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

;

∣∣∣∣
∫

Sq

|u|
∣∣∣ψ̂
∣∣∣
2

utdtdu

∣∣∣∣ ≤ Ch4/3
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

.

Proof: We express each integral in the meridian domain Tri and we use the Agmon estimate of

Proposition 15 for getting the lemma. �

We can now prove the

Proposition 22 Let ψ̂ ∈ ŜN0
(h). There exists h0 > 0 and C > 0 such that for all h ∈ (0, h0)

∫

Sq

(
h2
∣∣∣∂uψ̂

∣∣∣
2

+ j2
m,1|u|

∣∣∣ψ̂
∣∣∣
2
)
tdtdu ≤

(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

+ Ch4/3
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

.

Proof: Let us consider ψ ∈ SN0
(h). As the (ψi)i∈{1,...,N0} are orthogonal, we have:

Q
[m]
h (ψ) ≤ λN0

(h) ||ψ||2 .

Equation (26) leads to

∫

Tri

h2 |∂xψ|
2 +

j2
m,1

(x+ 1)2
|ψ|2 ydxdy ≤ λN0

(h) ||ψ||2 .

Using the convexity of the function

(
x 7→

1

(x+ 1)2

)
we get

∫

Tri

(
h2 |∂xψ|

2 + j2
m,1|x| |ψ|

2) ydxdy ≤
(
λN0

(h) − j2
m,1

)
||ψ||2 .

Performing the change of variable (11) and thanks to Lemmas 20 and 21, we obtain in the square Sq:

∫

Sq

(
h2
∣∣∣∂uψ̂

∣∣∣
2

+ j2
m,1|u|

∣∣∣ψ̂
∣∣∣
2
)
tdtdu ≤

(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

+ Ch4/3
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

,

which ends the proof of the proposition. �
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Proof of Theorem 3 The inequality of Proposition 22 can be written as

Q
[m]
A,h(ψ̂) ≤

(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

+ Ch4/3
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

,

where Q
[m]
A,h is the positive quadratic form associated with an Airy operator defined by

Q
[m]
A,h(ψ̂) :=

∫

Sq

(
h2
∣∣∣∂uψ̂

∣∣∣
2

+ j2
m,1|u|

∣∣∣ψ̂
∣∣∣
2
)
tdtdu.

Proposition 18 and (25) give

Q
[m]
A,h(ψ̂) ≤

(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣Π[m]

1 ψ̂
∣∣∣
∣∣∣
2

L2(Sq,tdtdu)
+ Ch4/3

∣∣∣
∣∣∣Π[m]

1 ψ̂
∣∣∣
∣∣∣
2

L2(Sq,tdtdu)
.

Moreover we obtain

Q
[m]
A,h(ψ̂) = Q

[m]
A,h

(
Π

[m]
1 ψ̂

)
+Q

[m]
A,h

(
(Id− Π

[m]
1 )ψ̂

)
+ 2b

[m]
A,h

(
Π

[m]
1 ψ̂, (Id− Π

[m]
1 )ψ̂

)
,

where b
[m]
A,h is the bilinear form associated with Q

[m]
A,h.

We remark that

b
[m]
A,h

(
Π

[m]
1 ψ̂, (Id− Π

[m]
1 )ψ̂

)
=

∫

u

〈
Π

[m]
1

((
−h2∂2

u + j2
m,1|u|

)
ψ̂
)
,
(
Id− Π

[m]
1

)
ψ̂
〉

t
du = 0.

Finally we have

Q
[m]
A,h

(
Π

[m]
1 ψ̂

)
≤
(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣Π[m]

1 ψ̂
∣∣∣
∣∣∣
2

L2(Sq,tdtdu)
+ Ch4/3

∣∣∣
∣∣∣Π[m]

1 ψ̂
∣∣∣
∣∣∣
2

L2(Sq,tdtdu)
.

Let us denote by π
[m]
1 ψ̂ :=

〈
Π

[m]
1 ψ̂, b

[m]
1

〉
t
, it is a funtion in the only u-variable and we have in one

dimension:

q
[m]
A,h(π

[m]
1 ψ̂) :=

∫ 0

−1

h2
∣∣∣∂uπ

[m]
1 ψ̂

∣∣∣
2

+j2
m,1|u|

∣∣∣π[m]
1 ψ̂

∣∣∣
2

du ≤
(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣π[m]

1 ψ̂
∣∣∣
∣∣∣
2

+Ch4/3
∣∣∣
∣∣∣π[m]

1 ψ̂
∣∣∣
∣∣∣
2

,

where the norms

∣∣∣
∣∣∣π[m]

1 ψ̂
∣∣∣
∣∣∣ are taken on L2 ((−1, 0), du).

Let us consider a smooth cut-off function χ such that:

χ(u) = 1 for u ∈

(
−

1

2
, 0

)
and χ(u) = 0 for u ≤ −

3

4
.

Proposition 15 gives

q
[m]
A,h

(
χπ

[m]
1 ψ̂

)
+ O(h∞)

∣∣∣
∣∣∣π[m]

1 ψ̂
∣∣∣
∣∣∣
2

≤ q
[m]
A,h(π

[m]
1 ψ̂), and

∣∣∣
∣∣∣π[m]

1 ψ̂
∣∣∣
∣∣∣
2

= (1 + O(h∞))
∣∣∣
∣∣∣χπ[m]

1 ψ̂
∣∣∣
∣∣∣
2

.

So it holds

q
[m]
A,h(χπ

[m]
1 ψ̂) ≤

(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣χπ[m]

1 ψ̂
∣∣∣
∣∣∣
2

+ Ch4/3
∣∣∣
∣∣∣χπ[m]

1 ψ̂
∣∣∣
∣∣∣
2

.

Then, we consider ŝN0
(h) := span

(
π

[m]
1 ψ̂1, . . . , π

[m]
1 ψ̂N0

)
and apply the min-max principal to the N0

dimensional space χŝN0
(h) which yields

j2
m,1 +

(
2 j2

m,1

)2/3
zA(N0)h

2/3 ≤ λN0
(h) + Ch4/3.

Jointly with Proposition 9 this finishes the proof of Theorem 3. �
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A Shape of the eigenfunctions in the semi-classical limit

To illustrate some properties of the eigenfunctions we compute some of them. These computations

are performed in the scaled meridian domain Tri for the scaled operator L[m](tan θ) defined in (6).

Figure 7 pictures the dominant term in the construction (23) : it is almost a tensor product of the

Airy function of first kind and the Bessel function of first kind (respectively along the X-axis and

Y-axis). In addition, the eigenfunctions are localized near the right boundary and away from the left

corner. This matches the Agmon estimates of Propositions 15 and 16.

Figure 8 shows the localization for increasing values of m. As explained in Remark 2 for nonzero

m, there is a Dirichlet boundary condition along the X-axis which induces a repulsion from this axis.

The eigenfunction is localized in the top right corner. We observe that this repulsion increases with

the value of m. We can interpret this phenomenon: the shape of the mth Bessel function of first kind

determines the behavior along the Y-axis.

µ
[0]
1 (θ) = 7.199103 µ

[0]
2 (θ) = 8.425123 µ

[0]
3 (θ) = 9.546450

µ
[0]
4 (θ) = 10.631834 µ

[0]
5 (θ) = 11.706005 µ

[0]
6 (θ) = 12.781028

µ
[0]
7 (θ) = 13.863783 µ

[0]
8 (θ) = 14.958588 µ

[0]
9 (θ) = 16.068338

Figure 7: Computation for θ = 0.0226 ∗ π/2 ∼ 2◦. Numerical values of the nine first eigenvalues for

m = 0. Plots of the associated eigenfunctions in the domain Tri.
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µ
[1]
1 (θ) = 17.255710 µ

[1]
2 (θ) = 19.400598 µ

[1]
3 (θ) = 21.309035

µ
[2]
1 (θ) = 30.134666 µ

[2]
2 (θ) = 33.208960 µ

[2]
3 (θ) = 35.906503

µ
[3]
1 (θ) = 45.692334 µ

[3]
2 (θ) = 49.719970 µ

[3]
3 (θ) = 53.222789

Figure 8: Computation for θ = 0.0226 ∗ π/2 ∼ 2◦. Numerical values of the three first eigenvalues for

m = 1, m = 2 and m = 3. Plots of the associated eigenfunctions in the meridian domain Tri.
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