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DIRICHLET EIGENVALUES OF CONES IN THE SMALL

APERTURE LIMIT

THOMAS OURMIÈRES-BONAFOS

Abstract

We are interested in finite cones of fixed height 1 parametrized by their opening angle. We

study the eigenpairs of the Dirichlet Laplacian in such domains when their apertures tend to 0.

We provide multi-scale asymptotics for eigenpairs associated with the lowest eigenvalues of each

fibers of the Dirichlet Laplacian. To do so, we investigate the family of their one-dimensional

Born-Oppenheimer approximations. The eigenvalue asymptotics involves powers of the cube root

of the aperture, while the eigenvectors include simultaneously two scales.

1 Introduction

1.1 Motivations and related questions

Finding an explicit expression of the first Dirichlet eigenvalues in two or three dimensional domains

is not an easy task, in general. We know how to proceed when the domain is a tensor product reducing

the problem to solving ordinary differential equations. Nevertheless, even for simple two dimensional

domains like triangles this question is still complicated. This specific question is detailed in [14] where

a finite term asymptotics is provided in the regime θ goes to 0 (where θ is the aperture of the triangle).

More recently [10] gives a complete asymptotics for right-angled triangles.

In the latter paper, the aim of the authors was the study of a broken waveguide with corner in the

small angle regime. The knowledge on triangles with small aperture leads to a comparison between

the waveguide and a triangle. The question of waveguides with corners has already been investigated

for the L-shape waveguide in [13]. For an arbitrary angle [3] provides an asymptotics of the lowest

eigenvalues when the angle goes to π/2. The regime with small angle limit has been studied in [5] and

more recently in [9, 10]. The question of waveguides with corner arises naturally because it is studied

for smooth waveguide in [11, 6, 7] where we learn, among other things, that curvature induces bound

states below the essential spectrum. The idea is that a corner can be seen as an infinite curvature.

The aim of the present paper is to obtain asymptotics for three dimensional cones in the small

aperture limit. As in two dimensions, this question naturally appears when looking for the ground states

in the small aperture regime of the conical layer studied in [12].

We can apply our result to obtain asymptotics for geometrical domains close enough of cones.

Hence a spherical sector being the union of a cone and a spherical skullcap we have a finite terms

asymptotics resulting of the asymptotics on cones. It echoes to [14] in a higher dimension : it is

the three dimensional equivalent of the circular sector, the Bessel functions playing a similar role as

trigonometric functions.
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1.2 The Dirichlet Laplacian on conical families

Let us denote by (x1, x2, x3) the Cartesian coordinates of the space R3 and by 0 = (0, 0, 0) the

origin. The positive Laplace operator is given by −∂2
1 −∂2

2 −∂2
3 . We are interested in domains delimited

by a finite open cone. For θ ∈ (0, π
2
], we introduce the cone Co(θ) defined by:

Co(θ) :=
{
(x1, x2, x3) ∈ R

3 : −1 < x3 < 0 and cot2 θ(x2
1 + x2

2) < (x3 + 1)2
}
.

The angle θ represents the half opening angle of the cone. The aim of this paper is the investigation of

the lowest eigenvalues of each fibers of the positive Dirichlet Laplacian −∆Dir
Co(θ) in the small aperture

limit.

Remark 1 Co(θ) being a convex domain, we know that Dom
(
−∆Dir

Co(θ)

)
= H2 (Co(θ))∩H1

0 (Co(θ)).

△

Co(θ)
θ

x3

x2

x1

(0, tan θ, 0)

(0, 0,−1) O•

Figure 1: The cone Co(θ)

1.3 Structure of the paper

One can show that after the use of adapted coordinates and a Fourier transform the Dirichlet

Laplacian on the cone Co(θ) reduces to a countable family of two dimensional operators. This is

discussed in Section 2.

In Section 3 we state the main theorem and we apply it to a spherical sector. We also go about the

so called Born-Oppenheimer approximation [8]. Numerical experiments motivate and illustrate the

study.

Afterwards, in Section 4, we perform a change of variables that transforms the meridian triangle

into a rectangle. The operator is more complicated but we deal with a simpler geometrical domain.

Thanks to this substitution we can construct quasimodes for each operator of the countable family

using some lemmas which are adapted from the Fredholm alternative. We have Agmon estimates [1, 2]

for those operators, localizing the eigenfunctions. The proof of Theorem 3 about the asymptotics of

the first eigenvalues of the cone is over, when, using a Feshbach-Grushin projection, we justify that

the Born-Oppenheimer approximation is actually an approximation of our problem and we apply the

classical technical background for the separation of the eigenvalues.
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We conclude by Section A illustrating by numerical experiments the shape of the eigenfunctions

which illustrates some theorical results obtained all along the paper.

2 Fiber decomposition

In this section, we describe the fiber decomposition of the Dirichlet Laplacian on the cone Co(θ).
We use the terminology detailed in [15, Section XIII.16].

2.1 Partial wave decomposition

We are interested in the positive Laplace operator on the cone Co(θ) which writes

−∆Dir
Co(θ) = −∂2

1 − ∂2
2 − ∂2

3 .

We can describe the domain Co(θ) using cylindrical coordinates. Let us perform the change of variables

and introduce (r, φ, z) such that

r =
√
x2

1 + x2
2, φ = arctan

x2

x1

, z = x3. (1)

The cartesian domain Co(θ) is transformed into Tri(θ) × S1 where the meridian domain Tri(θ) is:

Tri(θ) :=
{
(r, z) ∈ R

2 : −1 < z < 0 and 0 < r < tan θ (z + 1)
}
.

θ
Tri(θ)

(tan θ, 0)

(0,−1) z

r

•O

Figure 2: Meridian domain Tri(θ)

Performing the change of variables the Dirichlet Laplacian is written, on the geometrical domain

Tri(θ) × S1, as the operator :

HTri(θ)×S1 := −1

r
∂r (r∂r) −

1

r2
∂2

φ − ∂2
z ,

its domain being deduced by the change of variables (1).

The domain Tri(θ) × S1 being axisymmetric we perform a Fourier transform and we have the

constant fiber direct sum:

L2(Tri(θ) × S
1, rdrdφdz) = L2(Tri(θ), rdrdz) ⊗ L2(S1) =

⊕

m∈Z

L2(Tri(θ), rdrdz),
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where L2(S1) refers to functions on the unit circle with the orthonormal basis
{
e2iπmφ : m ∈ Z

}
. The

operator HTri(θ)×S1 decomposes as

HTri(θ)×S1 =
⊕

m∈Z

H[m]
Tri(θ), with H[m]

Tri(θ) = −1

r
∂r (r∂r) − ∂2

z +
m2

r2
, (2)

where the H[m]
Tri(θ) are the fibers of HTri(θ) and their domains Dom(H[m]

Tri(θ)) are implicitly defined by the

decomposition. This yields :

S
(
HTri(θ)×S1

)
= ∪

m∈Z

S

(
H[m]

Tri(θ)

)
. (3)

And thus, if we denote by µ
[m]
n (θ) the nth eigenvalue of H[m]

Tri(θ) we have the following description of the

sprectum:

S
(
HTri(θ)×S1

)
= ∪

(n,m)∈N∗×Z

{
µ[m]

n (θ)
}
.

Remark 2 Let ψ ∈ Dom(H[m]
Tri(θ)), then we have the Dirichlet boundary condition ψ(r, 0) = 0 and

ψ ((z + 1) tan θ, z) = 0.

If m 6= 0, we have for integrability reasons ψ(0, z) = 0. We refer to [4, Chapt. II] for more

information.

△

2.2 Rescaling of the meridian domain Tri(θ)

We rescale the integration domain in order to avoid its dependence on θ. It transfers this dependence

in the coefficients of the operator and it ease the study of the asymptotics θ → 0. For this reason, let us

perform the following linear change of coordinates:

x = z, y =
1

tan θ
r, (4)

which maps Tri(θ) onto Tri
(

π
4

)
. That is why we set for simplicity:

Tri := Tri
(π

4

)
. (5)

Then, for each m ∈ Z, H[m]
Tri(θ) is unitary equivalent to the operator with the new integration domain Tri:

D[m](θ) := −∂2
x −

1

tan2 θy
∂y (y∂y) +

m2

tan2 θy2
.

with implicit boundary conditions as in Remark 2. We let h = tan θ; after a multiplication by tan2 θ,

we get the new operator:

L[m](h) := −h2∂2
x −

1

y
∂y (y∂y) +

m2

y2
. (6)
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3 Numerical motivations and main results

3.1 Asymptotic expansion of eigenvalues

According to the structure of the spectrum established in (3), we recall that we denote by µ
[m]
n (θ) the

nth eigenvalue of the mth fiber of HCo(θ). In order to get more detailed information about the behavior

of µ
[m]
n (θ) we can, at first, study it numerically. We carried out the computation with the operator

L[m](tan θ) defined in (6).

Figures 3 suggests that, for m = 0, 1, 2, the eigenvalues converge to a certain limit as the aperture θ
goes to 0. Moreover, this value is near j2

m,1, where we denote by jm,1 the first zero of the mth Bessel

function of first kind, represented by black dots. This result have to be connected to the one established

in [12] where, studying a conical layer, the value
j2
0,1

π2
play a similar role. In this paper, they only

consider the operator from the fiber of order 0 beacause in this case the other fibers have only essential

spectrum (the factor
1

π2
being a normalization constant). One can see that for θ large enough the

eigenvalues cross and althought µ
[m]
n represents the nth eigenvalue of the mth fiber of HCo(θ) it is clear

that µ
[0]
n (θ) is not necessarily the nth eigenvalue of HCo(θ). We will see in Appendix B that the other

Bessel zeros jm,k could explain some structure of the eigenvectors outside the semi-classical limit

θ → 0.

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

Figure 3: This figure represents the dependence of the first ten eigenvalues µ
[m]
n (m = 0, 1, 2) on the

aperture θ [◦]. We computed each eigenvalue for 80 values of θ.

The main result of this paper is not only the convergence illustrated in Figure 3 but an asymptotic

expansion of these eigenvalues. Indeed, the lowest eigenvalues of each angular component of HCo(θ)

admit expansions at any order in powers of θ1/3. We first state the result for the scaled operators L[m](h)
introduced in (6):
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Theorem 3 If we denote by zA(n) the nth zero of the reversed Airy function, the eigenvalues of L[m](h),

denoted by λ
[m]
n (h), admit the expansions:

λ[m]
n (h) ∼

h→0

∑

k≥0

β
[m]
k,nh

k/3 with β
[m]
0,n = j2

m,1, β
[m]
1,n = 0, β

[m]
2,n =

(
2 j2

m,1

)2/3
zA(n),

the terms of odd rank being zero for j ≤ 8. The corresponding eigenvectors have expansions in powers

of h1/3 with both scales x/h2/3 et x/h.

In terms of the physical domain Tri(θ), we immediately deduce from the previous theorem that the

eigenvalues of each angular component m of −∆Dir
Co(θ) admit the expansions:

µ[m]
n (θ) ∼

θ→0

1

θ2

∑

k≥0

β
[m],∆
k,n θk/3 with β

[m],∆
0,n = j2

m,1, β
[m],∆
1,n = 0, β

[m],∆
2,n = (2 jm,1)

2/3 zA(n).

3.2 Application to the spherical cone

Theorem 3 on the cone Co(θ) is closely related to the Dirichlet problem on a spherical cone. We

denote by Sph(θ) the spherical cone of radius 1 and aperture θ with center in (0, 0,−1) depicted in

Figure 4. We have

−∆Dir
Sph(θ) := −∂2

1 − ∂2
2 − ∂2

3 .

We perform the change of variables

ρ =

√
x2

1 + x2
2 + (x3 + 1)2, α = arcos

(
x3 + 1

ρ

)
, β =





arcos

(
x1√
x2

1 + x2
2

)
if x2 ≥ 0,

2π − arcos

(
x1√
x2

1 + x2
2

)
if x2 < 0.

(7)

Hence the domain Sph(θ) is transformed into

Ŝph(θ) = Ĉirc(θ) × S
1,

where Ĉirc(θ) is the circular meridian domain in the coordinates (ρ, α).

Remark 4 If instead of the change of variables (7) we change into cylindrical coordinates as in (1), the

meridian circular sector Circ(θ) associated is the one of Figure 5. One can pass from Ĉirc(θ) to Circ(θ)
by the change of variables

r = ρ cosα− 1, z = ρ sinα,

which links those two domains without the intermediary cartesian domain. △

The Dirichlet Laplacian HdSph(θ) writes in spherical coordinates

HdSph(θ) := − 1

ρ2
∂ρ

(
ρ2∂ρ

)
− 1

ρ2 sinα
∂α (sinα∂α) − 1

ρ2 sin2 α
∂2

β,
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on L2(Ŝph(θ), ρ2 sinαdρdαdβ). As in Section 2 we have the constant fiber direct sum:

L2
(
Ŝph(θ), ρ2 sinαdρdαdβ

)
=
⊕

m∈Z

L2
(
Ĉirc(θ), ρ2 sinαdρdα

)
,

and HdSph(θ) decomposes in fibers :

HdSph(θ) =
⊕

m∈Z

H[m]
dCirc(θ)

,

where

H[m]
dCirc(θ)

:= − 1

ρ2
∂ρ

(
ρ2∂ρ

)
− 1

ρ2 sinα
∂α (sinα∂α) +

m2

ρ2 sin2 α
,

with implicit domains and boundary conditions. Let (µ,Ψ) be an eigenpair of H[m]
dCirc(θ)

, with

Ψ(ρ, α) = R(ρ)M(α). It should satisfy the following system of differential equations :





[
∂ρ

(
ρ2∂ρ

)
+
(
c(θ) − µρ2

)]
R(ρ) = 0,[

− 1

sinα
∂α (sinα∂α) +

m2

sin2 α

]
M(α) = c(θ)M(α).

(8)

Remark 5 We are not interested here in solving those equations. Nevertheless one can see that

formally, when θ → 0 the angle α is small and the last equation of (8) looks like the Bessel equation.

This could be a lead to find an asymptotic expansion at any order of µ when θ → 0. △

However thanks to Theorem 3 we have easily a finite term asymptotic for the eigenvalues of −∆Dir
Sph(θ).

Let Co(θ, cos θ) be the set Co(θ) up to a dilatation of ratio cos θ. We have the set inclusion in R3

Co(θ, cos θ) ⊂ Sph(θ) ⊂ Co(θ).

Let µ̆n(θ) be the nth eigenvalue of the Dirichlet Laplacian on Sph(θ) and µn(θ) the one on the cone

Co(θ), the monotonicity of the Dirichlet Laplacian yields:

(
1 + tan2 θ

)
µn(θ) ≥ µ̆n(θ) ≥ µn(θ). (9)

If µ̆
[m]
n (θ) denotes the nth eigenvalue of the mth fiber of the Dirichlet Laplacian, (9) yields for small θ

(
1 + tan2 θ

)
µ[0]

n (θ) ≥ µ̆[0]
n (θ) ≥ µ[0]

n (θ).

To deal with higher fibers we can apply the exact same argument on the meridian circular sector Cir(θ)
and the meridian triangle Tri(θ) because :

Tri(θ, cos θ) ⊂ Cir(θ) ⊂ Tri(θ).

As for m ≥ 1 there is a Dirichlet boundary condition everywhere (see Remark 2) we have :

(
1 + tan2 θ

)
µ[m]

n (θ) ≥ µ̆[m]
n (θ) ≥ µ[m]

n (θ).

Those inequalities provide the first terms in the asymptotics of µ̆
[m]
n (θ).
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θ

Sph(θ)

(0, 0,−1)

(sin θ, 0, cos θ − 1)

x3

x1

x2

•O

Figure 4: The spherical cone Sph(θ)

θ Cir(θ)

(0,−1) z

r

(sin θ, cos θ − 1)

•O

Figure 5: Meridian domain Cir(θ)

3.3 Schrödinger operators in one dimension

In the analysis of L[m](h) we will see that its so called Born-Oppenheimer approximation will play

an important role, that is why we define

l
[m]
BO(h) := −h2∂2

x + v[m](x), (10)

where the effective potential v[m] is obtained by replacing −1

y
∂y (y∂y) +

m2

y2
in the expression of

L[m](h) by its lowest eigenvalue on each slice of Tri at fixed x. One can see that

v[m](x) =
j2
m,1

(x+ 1)2
for x ∈ (−1, 0).

By construction, for any m, the operator (10) can be seen as a lower bound of the operator L[m](h).
As it is shown in subsection 4.4, the choice of this approximation gives us informations about the

eigenvalues of HTri(θ)×S1 . We have the

Proposition 6 The eigenvalues of l
[m]
BO(h), denoted by λ

[m]
BO,n(h), admit the expansion:

λ
[m]
BO,n(h) ∼

h→0

∑

k≥0

β̂
[m]
k,nh

2j/3, with β̂
[m]
0,n = j2

m,1 and β̂
[m]
1,n =

(
2 j2

m,1

)2/3
zA(n).

The shape of the effective potential v[m] is the same as in [10, Section 3], we then deduce Proposition 6

from [10, Th 4.1.]. The key is the construction of quasimodes at the scale h2/3 which naturally arises
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expanding the effective potential v[m] and recognizing the Airy operator at first order. It yields an

upper bound of the eigenvalues of l
[m]
BO(h). To obtain a lower bound we then need the Agmon estimates

of Propositions 7 and 8 (see [1, 2]) and to apply the min-max principle and get the separation of

eigenvalues.

The Agmon estimates near x = 0 being the

Proposition 7 Let Γ0 > 0. There exist h0 > 0, C0 > 0 and η0 > 0 such that for any h ∈ (0, h0) and

all eigenpair (λ, ψ) of l
[m]
BO(h) satisfying

∣∣λ− j2
m,1

∣∣ ≤ Γ0h
2/3, we have:

∫ 0

−1

eη0h−1|x|3/2 (|ψ|2 + |h2/3∂xψ|2
)
dx ≤ C0||ψ||2.

And the Agmon estimates near x = −1 being the

Proposition 8 Let Γ0 > 0 and ρ0 ∈ (0, jm,1). There exist h0 > 0, C0 > 0 such that for any h ∈ (0, h0)

and all eigenpair (λ, ψ) of l
[m]
BO(h) satisfying

∣∣λ− j2
m,1

∣∣ ≤ Γ0h
2/3, we have:

∫ 0

−1

(x+ 1)−ρ0/h
(
|ψ|2 + |h∂xψ|2

)
dx ≤ C0||ψ||2.

We denote by µ
[m]
BO,n(θ) the nth eigenvalue of the operator l

[m]
BO(tan θ). Hence, we can compare the

eigenvalues µ
[m]
n (θ) and the one of the Born-Oppenheimer approximation denoted by µ

[m]
BO,n(θ) in terms

of geometrical datas. Figure 6 depicts that for small apertures θ, the Born-Oppenheimer approximation

seems to be an accurate approximation of the two dimensional operator (6). The director coefficient

being numerically close of 2/3, we deduce that their difference is of order θ2/3.

4 Meridian triangle Tri with Dirichlet boundary condition

The aim of this section is to prove Theorem 3. The proof will be divided into two main steps : a

construction of quasimodes and the use of the true eigenfunctions of L[m](h) as quasimodes for the

Born-Oppenheimer approximation in order to obtain a lower bound for true eigenvalues. We first

perform a change of variables to transform the triangle into a square:

u = x ∈ (−1, 0), t =
y

x+ 1
∈ (0, 1). (11)

The meridian triangle Tri is transformed into a square Sq

Sq := (−1, 0) × (0, 1). (12)

The operator L[m](h) becomes:

L[m]
Sq (h)(u, t; ∂u, ∂t) :=

1

(u+ 1)2

(
−1

t
∂t (t∂t) +

m2

t2

)
− h2∂2

u

− h2t2

(u+ 1)2
∂2

t +
2h2t

u+ 1
∂t∂u −

2h2t

(u+ 1)2
∂t,

(13)
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Figure 6: This figure represents the dependence of the difference between the four first eigenvalues µ
[0]
n

and µ
[0]
BO,non the aperture θ [◦] in a log-log scale.

on L2 (Sq, t(u+ 1)2dudt) with Dirichlet boundary condition on the faces {(0, t) : 0 < t < 1} and

{(u, 1) : −1 < u < 0}. The equation L[m](h)ψ
[m]
h = λ

[m]
h ψ

[m]
h is transformed into the equation

L[m]
Sq (h)ψ̂

[m]
h = λ

[m]
h ψ̂

[m]
h with ψ̂

[m]
h (u, t) = ψ

[m]
h (x, y).

In what follows we denote by 〈·, ·〉t the scalar product on L2 ((0, 1), tdt).

4.1 Quasimodes

This section is devoted to the proof of the following proposition.

Proposition 9 There are sequences (β
[m]
j,n )j≥0 for any integer n ≥ 1 so that there holds: for allN0 ∈ N∗

and J ∈ N, there exist h0 > 0 and C > 0 such that for h ∈ (0, h0)

dist

(
Sdis(L[m](h)),

J∑

j=0

β
[m]
j,n h

j/3

)
≤ Ch(J+1)/3, n = 1, . . . , N0. (14)

Moreover, we have: β
[m]
0,n = j2

m,1, β
[m]
1,n = 0, and β

[m]
2,n =

(
2 j2

m,1

)2/3
zA(n).

Proof: The proof is divided into three parts. The first one explains the shape of the Ansatz chosen to

construct quasimodes. The second part deals with three lemmas about operators which appears in the

first part. The third part is the determination of the profiles of the Ansatz.
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Shape of the Ansatz We want to construct quasimodes (β
[m]
h , ψ

[m]
h ) for the operator L[m](h)(x, y; ∂x, ∂y).

It will be more convenient to work on the square Sq with the operator L[m]
Sq (h)(u, t; ∂u, ∂t). We introduce

the new scales

s = h−2/3u and σ = h−1u,

and we look for quasimodes (β
[m]
h , ψ̂

[m]
h ) in the form series

β
[m]
h ∼

∑

j≥0

β
[m]
j hj/3 and ψ̂

[m]
h (u, t) ∼

∑

j≥0

(
Ψ

[m]
j (s, t) + Φ

[m]
j (σ, t)

)
hj/3 (15)

in order to solve L[m]
Sq (h)ψ̂

[m]
h = β

[m]
h ψ̂

[m]
h in the sense of formal series. An Ansatz containing only

scale h−2/3 is not sufficient to construct quasimodes for L[m]
Sq (h) because one can see that the system is

overdetermined. Expanding the operator in powers of h2/3 we obtain the formal series:

L[m]
Sq (h)(h2/3s, t;h−2/3∂s, ∂t) ∼

∑

j≥0

L[m]
2j h

2j/3 with leading term L[m]
0 = −1

t
∂t(t∂t) +

m2

t2
, (16)

and in power of h:

L[m]
Sq (h)(hσ, t;h−1∂σ, ∂t) ∼

∑

j≥0

N [m]
3j hj with leading term N [m]

0 =

(
−1

t
∂t(t∂t) +

m2

t2

)
− ∂2

σ.

(17)

In what follows, in order to ensure the Dirichlet condition on Tri \ (−π
√

2, 0) × {0} we will require

for our Ansatz the boundary condition, for any j ∈ N:

Ψ
[m]
j (0, t) + Φ

[m]
j (0, t) = 0, 0 ≤ t ≤ 1, (18)

Ψ
[m]
j (s, 1) = 0, s < 0 and Φ

[m]
j (σ, 1) = 0, σ ≤ 0. (19)

More specifically, we are interested in the ground energy λ = j2
m,1 of the Dirichlet problem at 1 for

L[m]
0 on the interval (0, 1). Thus, we have to solve the Dirichlet problem for the operators N [m]

0 − j2
m,1

and L[m]
0 − j2

m,1 on the half-strip

Hst = R− × (0, 1), (20)

and look for exponentially decreasing solutions. Our aim is to apply the spectral theorem to the

truncated series ψ̂
[m]
h (u, t) restricted in the square Sq thanks to a cut-off function.

Lemmas To start the construction of our Ansatz we will need the three next lemmas. Lemmas 11

and 12 are consequences of the Fredholm alternative.

Lemma 10 We denote the nth normalized eigenfunction of L[m]
0 by b

[m]
n :

b[m]
n (t) = C [m]

n Jm(jm,nt)
(
C [m]

n ∈ R being a normalization constant
)
,

where Jm is the mth Bessel function of first kind. Let F = F (σ, t) be a function in L2(Hst, tdσdt) with

exponential decay with respect to σ and let G ∈ H3/2 ((0, 1), tdt) be a function of t with G(1) = 0.

Then there exists a unique γ ∈ R such that the problem

(
N [m]

0 − j2
m,1

)
Φ = F, Φ(σ, 1) = 0,Φ(0, t) = G(t) + γb

[m]
1 (t)

11



admits a unique solution in H2(Hst, tdσdt) with exponential decay. There holds

γ = −
∫ 0

−∞

∫ 1

0

F (σ, t)σb
[m]
1 (t)tdtdσ −

∫ 1

0

G(t)b
[m]
1 (t)tdt. (21)

Lemma 11 Let F = F (s, t) be a function in L2(Hst, tdsdt) with exponential decay with respect to s.
Then, there exists solution(s) Ψ such that:

(
L[m]

0 − j2
m,1

)
Ψ = F in Hst, Ψ(s, 1) = 0

if and only if 〈F (s, ·), b[m]
1 〉t = 0 for all s < 0. In this case, Ψ(s, t) = Ψ⊥(s, t) + g(s)b

[m]
1 (t) where Ψ⊥

satisfies 〈Ψ(s, ·)⊥, b[m]
1 〉t ≡ 0 and has also exponential decay.

Lemma 12 Let n ≥ 1. We recall that zA(n) is the nth zero of the Airy reverse function, and we denote

by

a[m]
n (s) = C̃ [m]

n A
((

2 j2
m,1

)1/3
s+ zA(n)

) (
C̃ [m]

n ∈ R being a normalization constant
)

a normalized eigenvector of the operator −∂2
s −

(
2 j2

m,1

)
s with Dirichlet condition on R− associated

with the eigenvalue
(
j2
m,1

)2/3
zA(n). Let f = f(s) be a function in L2(R−) with exponential decay and

let c ∈ R. Then there exists a unique β ∈ R such that the problem:

(
−∂2

s − 2 j2
m,1s−

(
j2
m,1

)2/3
zA(n)

)
g = f + βa[m]

n in R−, with g(0) = c,

has a unique solution in H2(R−) with exponential decay.

Remark 13 The key in proving Lemmas 10 and 11 are the decomposition as a tensor products of

L2 (Hst, tdσdt) and L2 (Hst, tdsdt). One can see that L2 (Hst, tdσdt) = L2 (R−, dσ)⊗ L2 ((0, 1), tdt)
and L2 (Hst, tdsdt) = L2 (R−, ds) ⊗ L2 ((0, 1), tdt). An orhtonormal basis of L2 ((0, 1), tdt) being

(b
[m]
n )n∈N∗ . We then look for solution Φ and Ψ decomposed in this orthonormal basis. Lemma 12 is

an application of the Fredholm alternative after changing the function g to obtain an homogeneous

Dirichlet condition at s = 0. △

Determination of the profiles Now we can start the construction of the Ansatz (15).

Terms in h0 The constant terms yields:

L[m]
0 Ψ

[m]
0 = β

[m]
0 Ψ

[m]
0 , N [m]

0 Φ
[m]
0 = β

[m]
0 Φ

[m]
0

with boundary conditions (18)-(19) for j = 0. We choose β
[m]
0 = j2

m,1, moreover Ψ
[m]
0 is a tensor

product so, Ψ
[m]
0 = g

[m]
0 (s)b

[m]
1 (t). The boundary condition (18) yields : Ψ

[m]
0 (0, t) = −g[m]

0 (0)b
[m]
1 (t).

Lemma 10 gives g
[m]
0 (0) = 0 and Φ

[m]
0 ≡ 0. The function g

[m]
0 will be determined later. �

12



Terms in h1/3 Collecting the terms of order h1/3 we have:

(
L[m]

0 − β
[m]
0

)
Ψ

[m]
1 = β

[m]
1 Ψ

[m]
0 − L[m]

1 Ψ
[m]
0 = β

[m]
1 Ψ

[m]
0

and (
N [m]

0 − β
[m]
0

)
Φ

[m]
1 = β

[m]
1 Φ

[m]
0 −N [m]

1 Φ
[m]
0 = 0,

with boundary conditions (18)-(19) for j = 1. Lemma 11 yields β
[m]
1 = 0 which leads to the

following form for the function Ψ
[m]
1 (s, t) = g

[m]
1 (s)b

[m]
1 (t). The boundary condition (18) yields :

Ψ
[m]
1 (0, t) = −g[m]

1 (0)b
[m]
1 (t). Lemma 10 gives g

[m]
1 (0) = 0 and Φ

[m]
1 ≡ 0.

Terms in h2/3 Collecting terms of order h2/3 we have:

(
L[m]

0 − β
[m]
0

)
Ψ

[m]
2 = β

[m]
2 Ψ

[m]
0 − L[m]

2 Ψ
[m]
0

and (
N [m]

0 − β
[m]
0

)
Φ

[m]
2 = 0

where L[m]
2 = −∂2

s + 2s

(
1

t
∂t(t∂t) −

m2

t2

)
and boundary conditions (18)-(19) for j = 2. Lemma 11

yields the following equation in the s-variable:

〈
(β

[m]
2 − L[m]

2 )Ψ
[m]
0 (s, ·), b[m]

1

〉
t
= 0, s < 0.

Nevertheless Ψ0(s, t) = g
[m]
0 (s)b

[m]
1 (t), consequently this equation becomes:

(
−∂2

s − 2 j2
m,1s

)
g

[m]
0 (s) = β

[m]
2 g

[m]
0 (s), s < 0.

This equation leads to β
[m]
2 ≡

(
2 j2

m,1

)2/3
zA(n) and g

[m]
0 ≡ a

[m]
n .

We deduce that (L[m]
0 − β

[m]
0 )Ψ

[m]
2 = 0 and the Ψ

[m]
2 has the form Ψ

[m]
2 = g

[m]
2 (s)b

[m]
1 (t). The boundary

condition (18) yields : Ψ
[m]
2 (0, t) = −g[m]

2 (0)(s)b
[m]
1 (t). Lemma 10 gives g

[m]
2 (0) = 0 and Φ

[m]
2 ≡ 0.

Terms in h3/3 Collecting the terms of order h3/3 we have:

(
L[m]

0 − β
[m]
0

)
Ψ

[m]
3 = β

[m]
3 Ψ

[m]
0 + β

[m]
2 Ψ

[m]
1 − L[m]

2 Ψ
[m]
1

and (
N [m]

0 − β
[m]
0

)
Φ

[m]
3 = 0

with boundary conditions (18)-(19) for j = 3. The scalar product with b
[m]
1 (Lemma 11) then the

scalar product with g
[m]
0 (Lemma 12) give β

[m]
3 = 0 and g

[m]
1 is parallel to g

[m]
0 . We choose g

[m]
1 ≡ 0.

As a consequence Ψ
[m]
3 has the form Ψ

[m]
3 (s, t) = g

[m]
3 (s)b

[m]
1 (t). Lemma 10 gives g

[m]
3 (0) = 0 and

Φ
[m]
3 ≡= 0.

13



Terms in h4/3 Collecting the terms of order h4/3 we have:

(
L[m]

0 − β
[m]
0

)
Ψ

[m]
4 = β

[m]
4 Ψ

[m]
0 + β

[m]
2 Ψ

[m]
2 − L[m]

4 Ψ
[m]
0 − L[m]

2 Ψ
[m]
2

and (
N [m]

0 − β
[m]
0

)
Φ

[m]
4 = 0

where

L[m]
4 = 2∂t∂s −

3s2

2

(
1

t
∂t(t∂t) −

m2

t2

)

with boundary conditions (18)-(19) for j = 4. The scalar product with b
[m]
1 (Lemma 11) yields an

equation for g
[m]
2 and the scalar product with g

[m]
0 (Lemma 12) determined β

[m]
4 . Thanks to Lemma 11,

Ψ
[m]
4 has the form Ψ

[m]
4 = Ψ

[m]⊥
4 + g

[m]
4 (s)b

[m]
1 (t) with Ψ

[m]⊥
4 which can be nonzero. Lemma 10 yields

g
[m]
4 (0) = 0, moreover

〈
Ψ

[m]⊥
4 (0, ·), b[m]

1

〉
t
= 0 and we have a solution Φ

[m]
4 with exponential decay.

Continuation We can construct the further terms by induction along the same lines. This leads to

define the quasimodes for L[m](h):

β
[m,J ]
h =

J∑

j=0

β
[m]
j hj/3, (22)

ψh(x, y)
[m,J ] = χlef(x)

J∑

j=0

(
Ψ

[m]
j

(
x

h2/3
,

y

x+ 1

)
+ Φ

[m]
j

(
x

h
,

y

x+ 1

))
hj/3, (23)

where χlef is a smooth cut-off function such that:

χlef(x) = 1 for x ∈
(
−1

2
, 0

)
and χlef(x) = 0 for x ≤ −3

4
. (24)

The spectral theorem yields the conclusion.

4.2 Agmon estimates

In our way to prove Theorem 3, we now state Agmon estimates like for l
[m]
BO(h). Let us first notice

that, due to Proposition 9, the N0 lowest eigenvalues λ of L[m](h) satisfy:

∣∣λ− j2
m,1

∣∣ ≤ Γ0h
2/3, (25)

for some positive constant Γ0 depending on N0.

If we denote by Q
[m]
h the quadratic form associated to L[m](h) we have, for all ψ ∈ Dom(Q

[m]
h ), the

following lower bound:

Q
[m]
h (ψ) ≥

∫

Tri

(
h2|∂xψ|2 +

j2
m,1

(x+ 1)2
|ψ|2

)
ydxdy. (26)

Thus, the analysis giving Propositions 7 and 8 applies exactly in the same way and we obtain:

14



Proposition 14 Let Γ0 > 0. There exist h0 > 0, C0 > 0 and η0 > 0 such that for h ∈ (0, h0) and all

eigenpair (λ, ψ) of L[m](h) satisfying
∣∣λ− j2

m,1

∣∣ ≤ Γ0h
2/3, we have:

∫

Tri

eη0h−1|x|3/2 (|ψ|2 + |h2/3∂xψ|2
)
ydxdy ≤ C0||ψ||2.

Proposition 15 Let Γ0 > 0. There exist h0 > 0, C0 > 0 and ρ0 ∈ (0, jm,1) such that for h ∈ (0, h0)
and all eigenpair (λ, ψ) of L[m](h) satisfying

∣∣λ− j2
m,1

∣∣ ≤ Γ0h
2/3, we have:

∫

Tri

(x+ 1)−ρ0/h
(
|ψ|2 + |h∂xψ|2

)
ydxdy ≤ C0||ψ||2.

Remark 16 Propositions 14 and 15 are also verified for ψ being a finite linear combination of eigen-

fuctions associated to eigenvalues satisfying (25). One can show that considering both the positive

quadratic forms on the left sides of the inequalities in Propositions 14 and 15 and using the Cauchy-

Schwarz inequality for those quadratic forms. △

4.3 Approximation of the first eigenfunctions by tensor products

In this subsection we will work with the operator L[m]
Sq (h) rather than L[m](h). Let us consider the

first N0 eigenvalues of L[m]
Sq (h) (shortly denoted λn(h)). In each corresponding eigenspace we choose a

normalized eigenfunction ψ̂n so that 〈ψ̂n, ψ̂p〉 = 0 if n 6= p. We introduce:

ŜN0
(h) = span(ψ̂1, . . . , ψ̂N0

).

Let us define Q
0,[m]
Sq the following quadratic form:

Q
0,[m]
Sq (ψ̂) =

∫

Sq

(
|∂tψ̂|2 +

m2

t2
|ψ̂|2 − j2

m,1|ψ̂|2
)
t(u+ 1)2dudt,

associated with the operator L0,[m]
Sq = Idu ⊗

(
−1

t
∂t(t∂t) +

m2

t2
− j2

m,1

)
on L2(Sq, t(u + 1)2dudt).

We consider the Feshbach-Grushin projection on the eigenspace associated with the eigenvalue 0 of

−1

t
∂t(t∂t) +

m2

t2
− j2

m,1:

Π
[m]
1 ψ̂(u, t) =

〈
ψ̂(u, ·), b[m]

1

〉
t
b
[m]
1 (t). (27)

We can now state a first approximation result:

Proposition 17 There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all ψ̂ ∈ ŜN0
(h):

0 ≤ Q
0,[m]
Sq (ψ̂) ≤ Ch2/3||ψ̂||2

and ∣∣∣
∣∣∣
(
Id− Π

[m]
1

)
ψ̂
∣∣∣
∣∣∣+
∣∣∣∣
∣∣∣∣
1

t

(
Id− Π

[m]
1

)
ψ̂

∣∣∣∣
∣∣∣∣+
∣∣∣
∣∣∣∂t

(
Id− Π

[m]
1

)
ψ̂
∣∣∣
∣∣∣ ≤ Ch1/3||ψ̂||.

Moreover, Π
[m]
1 : ŜN0

(h) → Π
[m]
1 (ŜN0

(h)) is an isomorphism.
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Proof: If ψ̂ = ψ̂n we have:

Q
[m]
Sq,h(ψ̂n) = λn||ψ̂n||2.

From this we infer:

Q
[m]
Sq,h(ψ̂n) ≤

(
j2
m,1 + Ch2/3

)
||ψ̂n||2.

The orthogonality of the ψ̂n (in L2 and for the quadratic form) allows to extend this inequality to

ψ̂ ∈ ŜN0
(h):

Q
0,[m]
Sq (ψ̂) ≤ Ch2/3||ψ̂||2.

Moreover Π
[m]
1 ψ̂ being in the kernel of L0,[m]

Sq , we have:

Q
0,[m]
Sq (ψ̂) =

〈
L0,[m]

Sq

(
Π

[m]
1 ψ̂ + (Id− Π

[m]
1 )ψ̂

)
, ψ̂)
〉

=
〈
L0,[m]

Sq

(
Id− Π

[m]
1

)
ψ̂, ψ̂

〉

= Q
0,[m]
Sq

(
(Id− Π

[m]
1 )ψ̂

)
.

If µ2 denotes the second eigenvalue of the one dimensional operator −1

t
∂t(t∂t) +

m2

t2
− j2

m,1 we have,

for all u ∈ (−1, 0), thanks to the min-max principle:

∫ 1

0

∣∣∣∂t

(
(Id− Π

[m]
1 )ψ̂

)∣∣∣
2

+
m2

t2

∣∣∣(Id− Π
[m]
1 )ψ̂

∣∣∣
2

−j2
m,1

∣∣∣(Id− Π
[m]
1 )ψ̂

∣∣∣
2

tdt ≥ µ2

∫ 1

0

∣∣∣
(
Id− Π

[m]
1

)
ψ̂
∣∣∣
2

tdt.

Multiplying by (u+ 1)2 and taking the integral over u ∈ (−1, 0), we obtain:

Q
0,[m]
Sq

(
(Id− Π

[m]
1 )ψ̂

)
≥ µ2

∣∣∣
∣∣∣
(
Id− Π

[m]
1

)
ψ̂
∣∣∣
∣∣∣
2

.

We deduce that:

0 ≤ Q
0,[m]
Rec (ψ̂) ≤ Ch2/3||ψ̂||2 ;

∣∣∣∣
∣∣∣∣
1

t

(
Id− Π

[m]
1

)
ψ̂

∣∣∣∣
∣∣∣∣+
∣∣∣
∣∣∣∂t

(
Id− Π

[m]
1

)
ψ̂
∣∣∣
∣∣∣ ≤ Ch1/3||ψ̂||.

We also have: ∣∣∣
∣∣∣
(
Id− Π

[m]
1

)
ψ̂
∣∣∣
∣∣∣ ≤ Ch1/3||ψ̂||,

which yields the Proposition 17. �

4.4 Reduction to the Born-Oppenheimer approximation

The aim of this subsection is to prove Theorem 3 using the projections of the true eigenfunctions

(Π
[m]
1 ψ̂n) as test functions for the quadratic form of the Airy operator. It justifies that l

[m]
BO(h) is an

actual approximation of L[m](h). Let us consider ψ̂ ∈ ŜN0
(h), we will need a few lemmas to estimate

the quadratic form of the Airy operator tested on Π
[m]
1 ψ̂. The first lemma is an estimate in the triangle

Tri, we let ψ̂(u, t) = ψ(x, y) and we consider the space SN0
(h)

SN0
(h) := span (ψ1, . . . , ψN0

) ,

then we have the
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Lemma 18 For all ψ ∈ SN0
(h) and for all k ∈ N, there exist h0 > 0 and C > 0 such that we have,

for h ∈ (0, h0): ∫

Tri

(x+ 1)−k|∂yψ|2ydxdy ≤ C||ψ||2.

Proof: First let ψ = ψj for some j ∈ {1, . . . , N0}. It satisfies the equation:

(
−h2∂2

x −
1

y
∂y(y∂y) +

m2

y2

)
ψj = λj(h)ψj.

Multiplying by (x+ 1)−k, taking the scalar product with ψj and integrating by parts we find:
∫

Tri

(x+ 1)−k|∂yψj|2ydxdy ≤ C

∫

Tri

(x+ 1)−k
(
|ψj|2 + h2(x+ 1)−1|ψj||∂xψj|

)
ydxdy.

Using the Agmon estimates of Propostion 15 with ρ0 ≥ k + 1 we deduce the lemma for ψ = ψj . For

ψ ∈ SN0
(h), we proceed as explained in the Remark 16. �

We can now prove:

Lemma 19 Let ψ̂ be in ŜN0
(h). It exists h0 > 0 and C > 0 such that for all h ∈ (0, h0)

∣∣∣∣h2

∫

Sq

1

(u+ 1)2
∂uψ̂∂tψ̂t(u+ 1)2dtdu

∣∣∣∣ ≤ Ch4/3
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

.

Proof: Thanks to the Cauchy-Schwartz inequality we have:

∣∣∣∣h2

∫

Sq

1

(u+ 1)2
∂uψ̂∂tψ̂t(u+ 1)2dtdu

∣∣∣∣
2

≤ h4

∫

Sq

∣∣∣∂uψ̂
∣∣∣
2

(u+1)2tdtdu

∫

Sq

1

(u+ 1)4

∣∣∣∂tψ̂
∣∣∣
2

t(u+1)2dtdu.

In the original coordinates on the merdidian domain Tri we have:
∫

Sq

1

(u+ 1)4

∣∣∣∂tψ̂
∣∣∣
2

t(u+ 1)2dtdu =

∫

Tri

(x+ 1)−4 |∂yψ|2 ydxdy.

Combining Lemma 18 with this equality we obtain
∫

Sq

1

(u+ 1)4

∣∣∣∂tψ̂
∣∣∣
2

t(u+ 1)2dtdu ≤ C1

∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

, (28)

for some C1 > 0. Using Proposition 14 expressed in the Square Sq coordinates, it exists C2 > 0 such

that: ∫

Sq

∣∣∣∣∂uψ̂ − 1

(u+ 1)2
∂tψ̂

∣∣∣∣
2

t(u+ 1)2dtdu ≤ C2h
−4/3

∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

.

For some C3 > 0, equation (28) yields
∫

Sq

∣∣∣∂uψ̂
∣∣∣
2

t(u+ 1)2dtdu ≤ C3h
−4/3

∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

,

which achieves the proof of the lemma. �

To have estimates in L2 (Sq, tdtdu) instead of L2 (Sq, t(u+ 1)2dtdu) we will need the
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Lemma 20 Let ψ̂ be in ŜN0
(h). It exists h0 > 0 and C > 0 such that for all h ∈ (0, h0)

∣∣∣∣h2

∫

Sq

∣∣∣∂uψ̂
∣∣∣
2

utdtdu

∣∣∣∣ ≤ Ch4/3
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

;

∣∣∣∣
∫

Sq

|u|
∣∣∣ψ̂
∣∣∣
2

utdtdu

∣∣∣∣ ≤ Ch4/3
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

.

Proof: We express each integral in the meridian domain Tri and we use the Agmon estimate of

Proposition 14 which gives us the lemma. �

We can now prove the

Proposition 21 Let ψ̂ ∈ ŜN0
(h). It exists h0 > 0 and C > 0 such that for all h ∈ (0, h0)

∫

Sq

(
h2
∣∣∣∂uψ̂

∣∣∣
2

+ j2
m,1|u|

∣∣∣ψ̂
∣∣∣
2
)
tdtdu ≤

(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

+ Ch4/3
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

.

Proof: Let ψ ∈ SN0
(h), the orthogonality of the (ψi)i∈{1,...,N0} yields

Q
[m]
h (ψ) ≤ λN0

(h) ||ψ||2 .

Equation (26) leads to

∫

Tri

h2 |∂xψ|2 +
j2
m,1

(x+ 1)2
|ψ|2 ydxdy ≤ λN0

(h) ||ψ||2 .

Using the convexity of

(
x 7→ 1

(x+ 1)2

)
we get

∫

Tri

(
h2 |∂xψ|2 + j2

m,1|x| |ψ|2
)
ydxdy ≤

(
λN0

(h) − j2
m,1

)
||ψ||2 .

Performing the change of variable (11) and thanks to Lemmas 19 and 20, we obtain in the square Sq:

∫

Sq

(
h2
∣∣∣∂uψ̂

∣∣∣
2

+ j2
m,1|u|

∣∣∣ψ̂
∣∣∣
2
)
tdtdu ≤

(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

+ Ch4/3
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

,

which ends the proof of the proposition. �

Proof of Theorem 3 The inequality of Proposition 21 can be written as

Q
[m]
A,h(ψ̂) ≤

(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

+ Ch4/3
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
2

,

where Q
[m]
A,h is the positive quadratic form associated to an Airy operator defined by

Q
[m]
A,h(ψ̂) :=

∫

Sq

(
h2
∣∣∣∂uψ̂

∣∣∣
2

+ j2
m,1|u|

∣∣∣ψ̂
∣∣∣
2
)
tdtdu.
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Proposition 17 and (25) give

Q
[m]
A,h(ψ̂) ≤

(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣Π[m]

1 ψ̂
∣∣∣
∣∣∣
2

L2(Sq,tdtdu)
+ Ch4/3

∣∣∣
∣∣∣Π[m]

1 ψ̂
∣∣∣
∣∣∣
2

L2(Sq,tdtdu)
.

Moreover we obtain

Q
[m]
A,h(ψ̂) = Q

[m]
A,h

(
Π

[m]
1 ψ̂

)
+Q

[m]
A,h

(
(Id− Π

[m]
1 )ψ̂

)
+ 2b

[m]
A,h

(
Π

[m]
1 ψ̂, (Id− Π

[m]
1 )ψ̂

)
,

where b
[m]
A,h is the bilinear form associated to Q

[m]
A,h. We remark that

b
[m]
A,h

(
Π

[m]
1 ψ̂, (Id− Π

[m]
1 )ψ̂

)
=

∫

u

〈
Π

[m]
1

((
−h2∂2

u + j2
m,1|u|

)
ψ̂
)
,
(
Id− Π

[m]
1

)
ψ̂
〉

t
du = 0.

Finally we have

Q
[m]
A,h

(
Π

[m]
1 ψ̂

)
≤
(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣Π[m]

1 ψ̂
∣∣∣
∣∣∣
2

L2(Sq,tdtdu)
+ Ch4/3

∣∣∣
∣∣∣Π[m]

1 ψ̂
∣∣∣
∣∣∣
2

L2(Sq,tdtdu)
.

Let us denote by π
[m]
1 ψ̂ :=

〈
Π

[m]
1 ψ̂, b

[m]
1

〉
t
, it is a funtion in the only u-variable and we have in one

dimension:

q
[m]
A,h(π

[m]
1 ψ̂) :=

∫ 0

−1

h2
∣∣∣∂uπ

[m]
1 ψ̂

∣∣∣
2

+j2
m,1|u|

∣∣∣π[m]
1 ψ̂

∣∣∣
2

du ≤
(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣π[m]

1 ψ̂
∣∣∣
∣∣∣
2

+Ch4/3
∣∣∣
∣∣∣π[m]

1 ψ̂
∣∣∣
∣∣∣
2

,

where the norms

∣∣∣
∣∣∣π[m]

1 ψ̂
∣∣∣
∣∣∣ are taken on L2 ((−1, 0), du).

Let us consider a smooth cut-off function such that:

χ(u) = 1 for x ∈
(
−1

2
, 0

)
and χ(u) = 0 for u ≤ −3

4
.

Proposition 14 gives

q
[m]
A,h

(
χπ

[m]
1 ψ̂

)
+ O(h∞)

∣∣∣
∣∣∣π[m]

1 ψ̂
∣∣∣
∣∣∣
2

≤ q
[m]
A,h(π

[m]
1 ψ̂), and

∣∣∣
∣∣∣π[m]

1 ψ̂
∣∣∣
∣∣∣
2

= (1 + O(h∞))
∣∣∣
∣∣∣χπ[m]

1 ψ̂
∣∣∣
∣∣∣
2

.

So it holds

q
[m]
A,h(χπ

[m]
1 ψ̂) ≤

(
λN0

(h) − j2
m,1

) ∣∣∣
∣∣∣χπ[m]

1 ψ̂
∣∣∣
∣∣∣
2

+ Ch4/3
∣∣∣
∣∣∣χπ[m]

1 ψ̂
∣∣∣
∣∣∣
2

,

and we can consider all the integrals over R−. We then consider ŝN0
(h) := span

(
π

[m]
1 ψ̂1, . . . , π

[m]
1 ψ̂N0

)

and apply the min-max principal to the N0 dimensional space χŝN0
(h) which yields

j2
m,1 +

(
2 j2

m,1

)2/3
zA(N0)h

2/3 ≤ λN0
(h) + Ch4/3,

and we have the separation of the eigenvalues.
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A Eigenvectors shape in the semi-classical limit

To illustrate some properties of the eigenvectors we compute some of them. These computations

are performed in the scaled meridian domain Tri for the scaled operator L[m](tan θ) defined in (6).

Figure 7 pictures the dominant term int the construction (23) : it is almost a tensor product of

the Airy function of first kind and the Bessel function of first kind (respectively along the X-axis and

Y-axis). In addition, the eigenvectors are localized near the right boundary and are ousted from the left

corner, it ties in the Agmon estimates of Propositions 14 and 15.

Figure 8 enlighten the localization for increasing values of m. As explained in Remark 2 for

nonzero m, there is a Dirichlet boundary condition along the X-axis which induces a repulsion of the

eigenvector in the top right corner. We observe that this repulsion increases with the value of m. We

can interpretate this phenomenon by the shape of the mth Bessel function of first kind which leads the

behavior along the Y-axis.

µ
[0]
1 (θ) = 7.199103 µ

[0]
2 (θ) = 8.425123 µ

[0]
3 (θ) = 9.546450

µ
[0]
4 (θ) = 10.631834 µ

[0]
5 (θ) = 11.706005 µ

[0]
6 (θ) = 12.781028

µ
[0]
7 (θ) = 13.863783 µ

[0]
8 (θ) = 14.958588 µ

[0]
9 (θ) = 16.068338

Figure 7: Computation for θ = 0.0226 ∗ π/2 ∼ 2◦. Numerical values of the nine first eigenvalues for

m = 0. Plots of the associated eigenvectors in the domain Tri.
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µ
[1]
1 (θ) = 17.255710 µ

[1]
2 (θ) = 19.400598 µ

[1]
3 (θ) = 21.309035

µ
[2]
1 (θ) = 30.134666 µ

[2]
2 (θ) = 33.208960 µ

[2]
3 (θ) = 35.906503

µ
[3]
1 (θ) = 45.692334 µ

[3]
2 (θ) = 49.719970 µ

[3]
3 (θ) = 53.222789

Figure 8: Computation for θ = 0.0226 ∗ π/2 ∼ 2◦. Numerical values of the three first eigenvalues for

m = 1, m = 2 and m = 3. Plots of the associated eigenvectors in the meridian domain Tri.

B Behaviour for higher values of the opening angle θ

Figure 9 brings out a phenomenon on the shape of the eigenvalues : the curves bend for some values

of the opening angle θ. At first glance we can think about crossing and avoidance of the eigenvalues.

Figure 10 represents a zoom of the Figure 9 and we see that what may be a crossing is an avoidance.

To understand how those avoidances act on the eigenfunctions we picture on Figure 11, for m = 0,

eigenfunctions after an avoidance. Even if we are not in the semi-classical regime θ → 0 anymore, the

sixth eigenfunction has still the shape expected. The seventh has two main nodal zones while there is

the shadow of other nodal zones. The eighth eigenfunction have seven nodal zones and the shape of

what is expected to be the seventh eigenfunction in the semi-classical limit. We observe the same kind

of phenomenon for the ninth and tenth eigenfunctions. To have an idea of what happens, we can think

about the first terms of Theorem 3. If j2
0,1 + (2j2

0,1)
2/3zA(7)h2/3 is near j2

0,2 + (2j2
0,2)

2/3zA(1)h2/3 we
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0

20

40

60

80

100

120

Figure 9: This figure reprensents the dependence of the first ten eigenvalues λ
[0]
n on the aperture θ [◦].We

computed each eigenvalue every 0.05◦.

7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9
39

40

41

42

43

44

45

Figure 10: This figure is a zoom of Figure 9. We computed each eigenvalue every 0.005◦.

can imagine that the other zeros of Bessel have to play a role. It could partially explain the structure

of Figures 11 detailed before. We see that it also happens for the terms j2
0,1 + (2j2

0,1)
2/3zA(8)h2/3 and

j2
0,2 + (2j2

0,2)
2/3zA(2)h2/3 for the ninth and tenth eigenfunctions.

Figure 12 represents the evolution of nodal zones along an avoidance in the meridian domain Tri(θ).
We chose this domain to spotlight the smooth structure of the nodal lines. The three nodal zones on
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λ
[0]
6 (θ) = 37.228884 λ

[0]
7 (θ) = 42.715651 λ

[0]
8 (θ) = 43.929985

λ
[0]
9 (θ) = 51.027072 λ

[0]
10(θ) = 53.927066

Figure 11: Computation for θ = 8.8◦. Numerical values of corresponding eigenvalues. Plots of the

associated eigenvectors in the meridian domain Tri.

the left side are unchanged. Nevertheless the two blue nodal zones of the right side are progressively

turned into one unique. We then observe the same effect on the two red nodal zones of the right side.

Finally we have on the left side the three initial nodal zones and two other, one above the other.

θ = 8.3◦ θ = 8.4◦

λ
[0]
7 (θ) = 41.219167 λ

[0]
7 (θ) = 41.726527

θ = 8.5◦ θ = 8.6◦

λ
[0]
7 (θ) = 42.182778 λ

[0]
7 (θ) = 42.445398

θ = 8.7◦ θ = 8.8◦

λ
[0]
7 (θ) = 42.591325 λ

[0]
7 (θ) = 42.715651

Figure 12: Computations for various θ. Numerical values of corresponding eigenvalues. Plots of the

associated nodal zones in the original meridian domain Tri(θ).
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