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Abstract Growth (resp. atrophy) describes the physical processes by which a ma-
terial of solid body increases (resp. decreases) its size by addition (resp. removal)
of mass. In the present contribution, we propose a sound mathematical analysis
of growth, relying on the decomposition of the geometric deformation tensor into
the product of a growth tensor describing the local addition of material and an
elastic tensor which is characterizing the reorganization of the body. The Blatz-Co
hyperelastic constitutive model is adopted for an isotropic body, satisfying con-
vexity conditions (resp. concavity conditions) with respect to the transformation
gradient (resp. temperature). The evolution law for the transplant is obtained from
the natural assumption that the evolution of the material is independent of the
reference frame. It involves a modified Eshelby tensor based on the specific free
energy density. The heat flux is dependent upon the transplant. The model con-
sists of the constitutive equation, the energy balance, and the evolution law for the
transplant. It is completed by suitable boundary conditions for the displacement,
temperature and transplant tensor. The existence of locally unique solutions is
obtained, for sufficiently smooth data close to the stable equilibrium. The ques-
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tion of the global existence is examined in the simplified situation of quasistatic
isothermal equations of linear elasticity under the assumption of isotropic growth.

Keywords Volumetric growth · Mathematical analysis · local existence of
solutions

1 Introduction

Growth (resp. atrophy) describes the physical processes by which a material of
solid body increases (resp. decreases) its size by addition (resp. removal) of mass.
A clear distinction is generally made between growth per se, remodeling (change of
properties), and morphogenesis (shape changes), a classification suggested by [17]
Taber (1995). The advantages and drawbacks of the existing growth models are
exposed in the recent contribution [10](Menzel and Kuhl, 2012). They can be clas-
sified as follows: The kinematic models with an evolution towards an homeostatic
state rely on the kinematic decomposition of the transformation gradient into a
generally incompatible mapping and an elastic mapping; they were historically
introduced by [15] Rodriguez et al. (1994). The growth transformation evolves in
time as a function of the difference between a stress measure and a corresponding
measure associated to the surmised homeostatic state ([17] Taber, 1998 ; [16] Ro-
driguez et al., 2007 ; [1] Alford et al., 2008 ; [21] Vignes et Papadopoulos, 2010).
This first class of models is criticized due to the absence of a rational mechanical
framework. Approaches analogous to elastoplasticity have been developed in a ra-
tional framework basing on the writing of the second principle of thermodynamics
for open systems, in order to identify the evolution laws of growth ([7] Kuhl et al.,
2007 ; [9] Menzel, 2007 ; [11] Olsson et Klarbring, 2008). It is important to note
the prominent role of Eshelby stress in relation to the material driving forces for
growth ([5], [6] Ganghoffer, 2010, 2011; [7] Kuhl et al., 2007), relying on Eshelby
pioneering approach ([4] Eshelby, 1957). Central here is the idea to separate the
shape variation due to the physical motion from the microstructural evolutions
due to growth and remodeling phenomena occurring in the evolutive reference
configuration.

The mathematical analysis of nonlinear models is described in great detail in
the monograph [12] for the fluid dynamics equations. We thereby advocate a novel
contribution, since this is the first attempt to lay down a sound mathematical
framework for growth models in solid continuum mechanics.

2 Problem formulation

The present work deals with the mathematical modeling of volumetric growth in
thermoelastic bodies. The mechanical models are based on the general idea that
growth can be taken into account by considering that deformations of a solid
body can be due to both changes of mass end elastic deformation. The most
important statement of the theory ([14]) is that the geometric deformation tensor
is decomposed into the product of a growth tensor describing the local addition
of material and an elastic tensor characterizing the reorganization of the body.
The rigorous foundation of the volumetric growth theory was given in [3]; our
considerations are based on equations formulated in this last work. The state of
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the material is characterized by a displacement vector field u, the density ̺, the
temperature θ, and a matrix-valued transplant K, from the reference crystal to
a tangent neighbourhood of any material point X. It is supposed that the state
variables are functions of the reference configuration variable X ∈ Ω ⊂ R

3 and
the temporal variables t ∈ [0, T ]. Furthermore, we assume that the reference set
Ω is a bounded domain in R

d with a boundary of class C∞. In this framework,
the motion of material is a one-parametric family of diffeomorphisms Ω × (0, T ) ∋
(X, t) 7→ u(x, t). At every moment, x = u(X, t) is the physical position in the real
Euclidian space of the material particle labeled by the reference coordinate X.
Hence, the evolution of the material is completely determined by the vector field

u : Ω × (0, T ) → R
d,

the Kelvin temperature,

θ : Ω × R → R+

and the transplant tensor field

K : Ω × (0, T ) → R
d2

.

The important kinematic characteristics are the transformation gradient F(X, t)
and the velocity field v(X, t), defined by

F = ∇u =
(

∂ui
∂Xj

)

i,j
, v =

∂u

∂t
, (2.1)

with u the displacement field. In order to derive the governing equations, we have
to formulate the constitutive relations which gives the expressions for stresses,
internal energy, and heat flux in terms of u, θ, K. Furthermore, we assume that
the material is hyperelastic.

The behavior of a hyperelastic material is completely described by the specific

free energy density function Ψ(F, θ). Usually, Ψ : Rd2

× R → R is smooth, convex
in F and concave in θ. A typical example is given by the following expression

Ψ(F, θ) = −cT θ ln θ + θ W (F), (2.2)

where the convex or polyconvex scalar valued function W represents the stored
elastic energy density per unit referential volume. For example, for biological tis-
sues, the Blatz-Co hyperelastic model is commonly adopted with the stored energy
density given by

W (F) =
ν

2

[

(

tr (FT
F)− 3

)

)−
2

q

(

( det F)q − 1
) ]

.

The Blatz-Co stored energy is polyconvex for q < 1, and it is coercitive for q < 2/3.

The specific free energy density Ψ is a thermodynamical potential, and all
thermodynamical quantities can be represented in terms of Ψ ; we accordingly
have the following formulae for the internal energy E and entropy S

E = Ψ(F, θ)− θ
∂Ψ(F, θ)

∂θ
, S = −

∂Ψ(F, θ)

∂θ
. (2.3)
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The most important postulate of the hyperelasticity theory is that the nominal
stress tensor T conjugate to F is defined by the formula

T =
∂Ψ(F, ϑ)

∂F
(2.4)

Here, the notation ∂Ψ/∂F stands for the matrix

∂Ψ(F, ϑ)

∂F
=

(∂Ψ(F, ϑ)

∂Fi,j

)

i,j
.

The mass flux for an hyperelastic material is zero, and the heat flux Q can be
taken in the standard form of the Fourier law

Q = κ∇
(1

θ

)

with κ the scalar heat conductivity for an isotropic heat conduction model.
The main assumptions of volumetric growth theory is that the strain tensor

is a product of the elastic strain tensor ant the transplant tensor, which leads to
the following representation for the density of the specific free energy Ψg of the
growing material

Ψg(F, θ,K) =
1

JK
Ψ(FK, θ), (2.5)

with JK = det (K) the Jacobian of the transplant tensor. Previous expression of
the density means that the constitutive law is now written from the fixed reference
crystal, which entails consequences as to the constitutive law. The formulae for
the internal energy and stress tensor are now

Eg = Ψg − θ
∂Ψg

∂θ
, Tg =

1

JK

∂Ψ(FK, θ)

∂F
. (2.6)

If we now introduce the tensor Φ =: FK, then the stress tensor can be rewritten
in the form

Tg =
1

JK

∂Ψ(Φ, θ)

∂Φ
K

⊤. (2.7)

The heat flux for the growing material becomes

Q =
κ

JK
∇
(

K
⊤

K
1

θ

)

. (2.8)

Following [3] the governing equations represents the mass conservation law, the
linear momentum conservation law, and the energy balance equation. Notice that
in accordance with [3], the mass balance equation for the first order model has the
form

∂

∂t

(

̺JK
)

= 0 in Ω × (0, T ). (2.9)

In other words, the product ̺(x, t)JK(x, t) equals some function which is inde-
pendent of the temporal variable and completely defined by the initial data. This
equality means that the density of the reference crystal is constant; it results from
the consideration of the mass balance in the reference configuration, equality

∂

∂t

(

̺0) + ̺0trLK = 0 in Ω × (0, T ). (2.10)
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together with the equalities ̺0 = ̺cJK
−1 and ∂

∂tJK = JKtrLK. Without loss of
generality and for simplicity of the analysis, we can assume that ̺JK = 1, and by
doing so eliminate the material density ̺. In this case, the governing equations of
the first order growth theory read

Model A

1

JK

∂2u

∂t2
− div

( 1

JK

∂Ψ(Φ, θ)

∂Φ
K

⊤
)

= f in Ω × (0, T ), (2.11a)

∂

∂t

( 1

JK

(

Ψ(Φ, θ)− θ
∂Ψ(Φ, θ)

∂θ

))

+ div
(

κ

JK
K

⊤
K∇

(1

θ

))

=

tr
( 1

JK

∂Ψ(Φ, θ)

∂Φ
K

⊤ ∂∇u

∂t

)

in Ω × (0, T ),

(2.11b)

where
Φ = ∇u K, JK = det K, (2.11c)

f is a given vector field of exterior bulk forces. Notice that the angular momentum
conservation law is equivalent to the equality

∂Ψ(Φ, θ)

∂Φ
Φ⊤ = Φ

(∂Ψ(Φ, θ)

∂Φ

)⊤

, (2.11d)

which can be regarded as the structural restriction to the density of specific free
energy. The balance equations should be supplemented with an evolution equation
for the transplant K. For a nonconservative model, this equation can be taken in
the form

∂K

∂t
= K g(∇u, θ,K) (2.11e)

The main problem is a specification of the function g: some structural condi-
tions can be obtained from the natural assumption that the material evolution is
independent of the reference frame, see [3]. It was shown in [3] that the frame-
independence principle leads to the representation

g = K

(

g0(Ii,K)I + g1(Ii,K)B + g2(Ii,K)B2
)

, (2.11f)

where B is the modified Eshelby tensor

B = Ψ(Φ, θ)I −
∂Ψ(Φ, θ)

∂Φ
Φ, (2.11g)

Ii are the principal invariants of the tensor B, and gi is an arbitrary scalar function.
The previously defined Eshelby stress is highlighted as the driving force for

growth; observe that it incorporates both a mechanical and a thermal contribution,
as reflected by the form of the strain energy density. The set of equations (2.11)
forms the complete thermodynamically consistent system of differential equations
for modeling of the volumetric grows. In most applications, the most important is
the quasistatic problem since the inertia forces are not essential for the growth of
biological tissues (they can be discarded). Next, we can linearize the heat flux in
the energy balance equation near some equilibrium value of the temperature θeq,
that can be taken as θeq = 1 in a dimensionless formulation. Thus, we come to the
following more precisely
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Model B

div
( 1

JK

∂Ψ(Φ, θ)

∂Φ
K

⊤
)

+ f = 0 in Ω × (0, T ), (2.12a)

∂

∂t

( 1

JK

(

Ψ(Φ, θ)− θ
∂Ψ(Φ, θ)

∂θ

)

)

+ div
(

κ

JK
K

⊤
K∇θ

)

=

tr
( 1

JK

∂Ψ(Φ, θ)

∂Φ
K

⊤
)

∂∇u

∂t

)

in Ω × (0, T ),

(2.12b)

∂K

∂t
= g(∇u, θ,K). (2.12c)

The governing equations should be supplemented by boundary and initial con-
ditions. The first is the mixed boundary condition for strain and stresses, which
can be formulated as follows. Assume that the boundary of ∂Ω is decomposed
into two disjoint sets ∂Ω = Σ0 ∩Σ1. It is supposed that the displacement field is
prescribed at Σ0 and the normal stresses are prescribed on Σn, i.e.

u = U in Σ0 × (0, T ),
1

JK

(∂Ψ(Φ, θ)

∂Φ
K

⊤
)

n = h on Σ1 × (0, T ), (2.12d)

where U(X, t) is a given displacement field, h is a given normal stress, and n is
the outward normal vector to ∂Ω.

The most general condition for the temperature is the radiation condition

1

Jk
K

T
K∇θ · n + λθ = q, (2.12e)

where q is the given exterior heat flux. At initial time, the temperature and trans-
plant distributions are prescribed, thus

θ(X, 0) = θ0(X), K(X, 0) = K0(X) in Ω. (2.12f)

Here, θ0 and K0 are given functions. The further simplification can be obtained if
we neglect the heat effect and consider the isothermal traction problem, assuming
that Ψ = Ψ(Φ). In this case, equations (2.12) become

Model C

div
( 1

JK

∂Ψ(Φ)

∂Φ
K

⊤
)

= f in Ω × (0, T ), (2.13a)

∂K

∂t
= g(∇u,K). (2.13b)

1

JK

(∂Ψ(Φ)

∂Φ
K

⊤
)

n = h on ∂Ω, (2.13c)

K(X, 0) = K0(x) in Ω. (2.13d)

3 Local existence and uniqueness of solutions. Preliminaries

We refer to the basic question if Model C is well posed: recall that the problem is
well posed if it has, at least locally, a unique solution for all smooth data. In this
paper, we give a positive answer to this question. Namely, we establish the local
existence and uniqueness theorem for problem (2.13) for sufficiently smooth data
close to the stable equilibrium. In order to formulate the result, we recall the basic
hypotheses of the finite elasticity; we refer to monographs [2] and [20] for precise
definitions and proofs.
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Finite elasticity. Constitutive assumptions. Linearized equations. We will assume
that the reference configuration Ω ⊂ R3 is a bounded domain with the boundary
∂Ω of the class C∞. Without loss of generality, we may assume that the mass
center is located at the origin

∫

Ω

Xi dX = 0, i = 1, 2,3. (3.1)

Recall that for any deformation u : Ω → R
3, ∇u denotes the Jacobian matrix with

the entries (∇u)ij = ∂xjui, i, j = 1, 2, 3. Introduce the elastic stress tensor

T =
∂Ψ(Φ)

∂Φ
with the entries Tij =

∂Ψ(Φ)

∂Φij
, Φ = ∇u. (3.2)

Next, we introduce the quadratic form of the second differential of the elastic
stored energy

L(Φ)ξ · ξ ≡ Lij,pq(Φ) ξij ξpq for all matrices ξ, (3.3)

where

Lij,pq(Φ) =
∂2Ψ(Φ)

∂Φij ∂Φpq
(3.4)

Condition 1 We will make the following assumptions.

H.1 The function Ψ(Φ) belongs to the class C∞(A), where A is the domain

A = {Φ : 1/2 ≤ |Φ| ≤ 1, det Φ > 0}.

H.2 For every Φ ∈ A, the tensor T satisfies the symmetry condition

T(Φ)Φ⊤ = ΦT(Φ)⊤. (3.5)

H.3 For any orthogonal matrix R ∈ A and Φ ∈ A,

T(RΦ) = RT(Φ). (3.6)

H.4 The reference configuration Ω is unstressed, i.e., T(I) = 0. It follows from this and

(H.3) that T(R) = 0 for all orthogonal matrices R ∈ A.

H.5 There is c > 0 such that for all symmetric matrices S,

L(I)S · S ≥ c |S|2. (3.7)

Notice that Condition 1 (H.2) and (H.3) express the momentum balance and the
”observer independence” principle, see [20]. It follows from Condition 1 (H.2)-(H.4)
that the elastic stress tensor has the following symmetry properties

∂T(R)

∂Rqp
R is symmetric if R is an orthogonal matrix, (3.8)

∂T

∂Φqp
(I) =

∂T⊤

∂Φqp
(I),

∂T

∂Φqp
(I) =

∂T

∂Φpq
(I), (3.9)

which directly follow from Condition 1 (H.2) and (H.3), see Chapter III in [20].
Notice also that relations (3.8), (3.9) and inequality (3.7) imply the nonnegativity
of the form L(I) on the space of all 3× 3 matrices:

L(I) ξ · ξ ≥ c |ξ + ξ⊤|2. (3.10)

The symmetry conditions (3.5) and (3.8) imply the more general inequality

L(R) ξ · ξ ≥ c |R⊤ξ + (R⊤ξ)⊤|2. (3.11)
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3.1 The Korn inequality. Linearized problem.

The local analysis of nonlinear elasticity problems relies on the well-posedness of
basic boundary problems of linear elastostatic. In turn, the proof of solvability
and uniqueness of solutions to linear elasticity boundary value problems is based
on the Korn-type inequalities. In this paper, we will use the following version of
the second Korn inequality. Let Ω be a bounded Lipschitz domain Ω, there is a
constant c > 0, depending only on Ω, such that the inequality

‖v‖2H1,2(Ω) ≤ c

∫

Ω

|∇v + (∇v)⊤|2 dX (3.12)

holds for all vector fields v : Ω → R
3 satisfying

∫

Ω

v dX = 0,

∫

Ω

(∂Xi
vj − ∂Xj

vi) dX = 0. (3.13)

The proof is given in Chapter III of [20].

The Korn inequality leads to the following result on solvability of the linear
boundary problem

∂Xj

(

Lij,pq(I) ∂Xq
vp

)

= fi, in Ω,
(

Lij,pq(I) ∂Xq
vp

)

nj = hi, on ∂Ω.
(3.14)

These equations can be equivalently rewritten in the following vector form

div
(

L(I)∇v
)

= f , in Ω,
(

L(I)∇v
)

n = h, on ∂Ω.
(3.15)

Assume that the given forces f and h satisfy the following solvability condition:

Condition 2

∫

Ω

f dX +

∫

∂Ω

h ds = 0,

∫

Ω

(fiXj − fjXi) dX +

∫

∂Ω

(hiXj − hjXi) ds = 0,

(3.16)

for all i, j = 1, 2,3. In this case, we say that the couple (f ,h) is equilibrated.

As it was shown in Chapter III of [20], Condition 2 guarantees the solvability of
problem (3.14); more precisely, the following existence result is obtained.

Proposition 1 Let Ω be a bounded domain with C∞ boundary ∂Ω and let an integer

m ≥ 0, and p > 3. Then for every (f ,h) ∈ Wm,p(Ω)×Wm+1−1/p,p(∂Ω) satisfying the

orthogonality conditions (3.16) problem (3.14) has a unique solution v ∈ Wm+2,p(Ω)
satisfying condition (3.13).
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3.2 Growth stress tensor.

For growing material, the stress tensor depends on the transplant tensor K, and
it is defined by

Tg(∇u,K) =
1

JK

∂Ψ(∇u K)

∂∇u
=

1

JK

∂Ψ(Φ)

∂Φ
K

⊤ ≡
1

JK
T(Φ)K

⊤, (3.17)

where Φ = ∇uK. Notice that in the general case the reference configuration is not
unstressed due to residual stresses, since Tg(I,K) 6= 0 for general matrices K. The
only exception is the case of orthogonal transplant tensors K(X) = R(X) with
R(X)−1 = R(X)⊤.

The quadratic form of the second differential for the mapping ∇u → Ψ(∇uK)
reads

Lg(∇u,K)ξ · ξ = Lg,ij,pq(∇u,K) ξij ξpq for all matrices ξ, (3.18)

where

Lg,ij,pq(Φ) =
1

JK

∂2Ψ(Φ)

∂Φil ∂Φpm
KqmKjl, Φ = ∇uK. (3.19)

The expression for Lg can be rewritten in the equivalent form

Lg(∇u,K)ξ · ξ =
1

JK
L(Φ) (ξK) · (ξK), (3.20)

It follows this and (3.11) that for an orthogonal transplant K(X) = R(X) with
R(X)−1 = R(X)⊤, that corresponds to the unstressed reference configuration, we
have

Lg(I,K)ξ · ξ ≥ c|K⊤ξK + (K⊤ξK)⊤|2, (3.21)

where c > 0 is independent of K. In particular, we have for any v ∈ W 1,2(Ω) and
orthogonal K,

∫

Ω

Lg(I,K)∇v · ∇v dx ≥ c

∫

Ω

|K⊤∇vK + (K⊤∇vK)⊤|2 dX. (3.22)

Unfortunately, the Korn inequality (3.12)-(3.13) can not be directly extended to
the case of variable coefficients and the question on well-posedness of linearized
traction problem for growingmaterials remains open. However, the Korn inequality
with variable coefficients holds true for vector fields v satisfying the Dirichlet
boundary condition, see [13]. In particular, for any continuous orthogonal K(x),
there is a positive constant c, depending only on Ω and K, such that the inequality

‖v‖2H1,2(Ω) ≤ c

∫

Ω

|K⊤∇vK + (K⊤∇vK)⊤|2 dX (3.23)

holds for all functions v ∈ H1,2
0 (Ω). This leads to the following version of Propo-

sition 1 for the Dirichlet boundary value problem

Proposition 2 Let Ω be a bounded domain with C∞ boundary ∂Ω and let an integer

m ≥ 0, and p > 3. Furthermore, assume that R ∈ Wm+1,p(Ω), and R(X) is orthog-

onal for every X ∈ Ω. Then, for every (f ,h) ∈ Wm,p(Ω) × Wm+2−1/p,p(∂Ω) the

problem

div
(

Lg(I,R)∇v
)

= f , in Ω,

v = h, on ∂Ω
(3.24)

has a unique solution v ∈ Wm+2,p(Ω).
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3.3 A transplant rate

The evolution of transplant is described by equation (2.13b). Furthermore, we
assume that the function g in this equation is smooth.

Condition 3 The function g belongs to the class C∞(A×A)

For the traction problem, we assume in addition that the growth is isotropic.

Condition 4 The function g admits the representation

g = gI(∇u,K) I, (3.25)

where the scalar function gI ∈ C∞(A×A).

4 Traction and Dirichlet problems. Local existence and uniqueness of

solutions.

We are now in a position to formulate and prove the local solvability of the traction
problem (2.13) with isotropic growth. Let us consider the boundary value problem
for a deformation u and a transplant K

div Tg(∇u,K) = λf in Ω × (0, T ), (4.1a)

Tg(∇u,K)n = λh on ∂Ω × (0, T ), (4.1b)

K = KI,
∂K

∂t
= gI(∇u,K) in Ω × (0, T ), (4.1c)

K(X, 0) = K0(X) in Ω. (4.1d)

Here, the stress tensor Tg is defined by the relations (3.17), with λ is a small
parameter. For every integer m ≥ 0 and p > 1, let denote by Um,p the closed
subspace of Wm,p(Ω) which consists of all vector fields v ∈ Wm,p(Ω) satisfying
the orthogonality condition (3.13). We also denote by V m,p the closed subspace
of Wm,p(Ω) × Wm+1−1/p(∂Ω), which consists of all equilibrated couples (f ,h) ∈

Wm,p(Ω) satisfying the orthogonality conditions (3.16). The following theorem is
the main result of this section.

Theorem 1 Let conditions 1-4 be satisfied. Furthermore, we assume that the vector

functions (f ,h) belong to the class C(0, T ;Wm,p(Ω))×C(0,T ;Wm+1−1/p,p(Ω)), m ≥

0 , p > 3, and satisfy the nondegeneracy condition

inf
[0,T ]

∣

∣Cii(t) + Cjj(t)
∣

∣ ≥ ν > 0 for i 6= j, (4.2)

where C(t) is the matrix with the entries

Cij(t) =

∫

Ω

(Xifj(X, t) +Xjfi(X, t)) dX +

∫

∂Ω

Xihj(X, t) +Xjhi(X, t) dX.

Then, there is ε > 0 and T ∗ ∈ (0, T ) such that for every K0 and λ satisfying the

conditions

‖K0 − 1‖Wm+1,p(Ω) ≤ ǫ, λ ∈ [−ε, ε],
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problem (4.1) has a solution u ∈ C(0, T ∗;Wm+2,p(Ω)), K ∈ C1(0, T ∗;Wm+1,p(Ω))
such that

∫

Ω

u dx = 0.

Moreover, this solution is locally unique.

Remark 1 The nondegeneracy condition for the stationary traction problem was
proposed in [19] in the form

|µi + µj | > 0 for i 6= j, (4.3)

where µj are the eigenvalues of the symmetric matrix C. This means that the
load (f ,h) admits no axis of equilibrium. Notice that the matrix C can be trans-
formed into the diagonal form, C = Odiag (µ1, µ2, µ3)O

⊤. For diagonal matrices,
conditions (4.2) and (4.3) coincide; hence, conditions (4.2) can be replaced by the
condition (4.3) in the stationary case.

In the nonstationary case, the orthogonal matrix O depends on t and these
conditions are not equivalent.

The proof of Theorem 2 is based on the following proposition on solvability of
the stationary traction problem for the deformation ∇u, while the transplant K

is fixed.

div Tg(∇u,K) = λf in Ω, (4.4a)

Tg(∇u,K)n = λh on ∂Ω. (4.4b)

Proposition 3 Let the couple (f ,h) ∈ Wm,p(Ω) × Wm+1−1/p(∂Ω), m ≥ 0, p > 3,
be equilibrated and satisfy nondegeneracy condition

∣

∣Cii + Cjj

∣

∣ ≥ ν > 0 for i 6= j, (4.5)

where C is the matrix with the entries

Cij =

∫

Ω

(Xifj(X) +Xjfi(X)) dX +

∫

∂Ω

Xihj(X, t) +Xjhi(X) dX.

Then there is ε > 0 such that for all λ ∈ [−ε, ε] and

K ∈ BK(ε) = {K : ‖1−K‖Wm+1,p(Ω) ≤ ε}

problem (4.4) has a solution u = Id+ w such that

w ∈ Bw(δ) = {w ∈ Wm+2,p(Ω) : ‖w‖Wm+2,p(Ω) ≤ δ,

∫

Ω

w dX = 0},

where δ(ε) → 0 as ε → 0. The solution is unique in the ball Bw(δ). Moreover, there is

a C1 mapping U : BK(ε)× [−ε, ε] → Bu(δ) such that w = U(K,λ).
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This proposition is a modification of the existence theorem for the traction problem
in nonlinear elasticity given in [8]. The proof of the proposition imitates the proof
of Theorem 3.1 in [8]; hence, we give only a sketch of the proof.

First, we establish the notation and present some auxiliary results.
For every m ≥ 0 and p > 3 denote by Um,p the closed subspace of Wm,p(Ω)

which consists of all vector fields v ∈ Wm,p(Ω) satisfying the orthogonality condi-
tion (3.13).

We also denote by V m,p the closed subspace of Wm,p(Ω) × Wm+1−1/p(∂Ω)
which consists of all equilibrated couples (f ,h) ∈ Wm,p(Ω)×Wm+1−1/p(∂Ω) sat-
isfying the orthogonality conditions (3.16).

Denote by S the Banach space of all skew-symmetric matrices S = −S⊤ sup-
plemented with the norm

‖S‖S =
(

∑

i,j

S2
ij

)1/2
.

We look for a solution to problem (4.1a)-(4.1b) in the form

u(X) = X + v(X) + SX, v ∈ Um+2,p, S ∈ S . (4.6)

Following [8], let choose an auxiliary vector field ϕ ∈ C∞(Ω) satisfying the condi-
tions

∫

Ω

ϕdX = 0,

∫

Ω

Xiϕj dx = 0, (i 6= j),

∫

Ω

(Xiϕi +Xjϕj) dX 6= 0, (i 6= j).

Next, introduce the matrix E(∇u,K) with the entries

Eij =
(

∫

Ω

(Xiϕi +Xjϕj) dX
)−1

∫

Ω

(Tg,ij
(

∇u, K)− Tg,ji(∇u,K)
)

dX. (4.7)

for i 6= j, and Eii = 0. In order to apply the Lyapunov-Schmidt reduction method,
we consider the modified problem

div Tg(∇u,K)− E(∇u,K) = λf in Ω, (4.8)

Tg(∇u,K)n = λh on ∂Ω.

Recalling decomposition (4.6), we can rewrite this boundary value problem in the
form of the operator equation

F(v, S,K, λ) ≡
(

div Tg(∇u,K)− E(∇u,K)− λf , Tg(∇u,K)n − λh

)

= 0. (4.9)

Here u is defined by the decomposition (4.6). For every r > 0, let define the balls

Bv(r) =
{

v ∈ Um+2,p : ‖v‖W 1,2(Ω) ≤ r
}

,

BK(r) =
{

K ∈ Wm+1,p(Ω) : ‖1−K‖W 1,2(Ω) ≤ r
}

,

BS(r) =
{

S ∈ S : ‖S‖S ≤ r
}

, Bλ(r) = [−r, r].
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Lemma 1 There is r > 0 such that the operator

F : Bv(r)×BS(r)×BK(r)×Bλ(r) → V m,p

is continuously differentiable. Moreover, its derivatives with respect to v and S admit

the representation

DvF(0, 0,1, λ)δv =
(

div
(

L(I)∇δv
)

,
(

L(I)∇δv
)

n

)

, (4.10)

DSF(0, 0,1, λ) = 0. (4.11)

Proof The differentiability of the operator F directly follows from the condition 1
(H.1) combined with the fact that Wm+1,p(Ω) is compactly embedded into C1(Ω),
hence Wm+1,p(Ω) is a Banach algebra, see [2] and [20] for the details and complete
proofs.

In view of (4.9), for every v, S, K and λ, the function F(v, S,K, λ) is simply
a couple of vector fields. It follows from the definition of the matrix E that this
couple is equilibrated. Hence, F takes it values in Vm,p. The formula for DvF is a
straightforward consequence of the expression for the quadratic forms L and Lg.
Next, it follows from the representation (4.6) and (4.9) that the derivative DvF

and DSF coincide. From this and the identity L(I)δS ≡ 0, we obtain (4.11). �

The next Lemma reduces the boundary value problem (4.4) to a system of non-
linear equations in three dimensional space S.

Lemma 2 Under the assumptions of Proposition 3, there exists ρ > 0 and a continu-

ously differentiable mapping V : BS(ρ)×BK(ρ)×Bλ(ρ) → Bv(r) such that

F
(

V(S,K, λ), S, K, λ) = 0.

Moreover, V(0,1,0) = 0 and DSV(0,1, 0) = 0.

Proof It follows from (4.10) and Proposition 1 that there exists the bounded oper-
ator (DvF(0, 0,1, λ))

−1 : V m,p → Um+2,p. Hence the existence of the C1 mapping
V is a straightforward consequence of the Implicit function theorem. It remains
to note that in view of Lemma 1 and (4.11),

DSV(0,1, 0) = −(DvF(0,0, 1, λ))
−1DSF(0,0, 1,0) = 0.

�

We are now in a position to complete the proof of Proposition 3.

Proof Notice that the function

u = Id+V(S,K, λ) + SX

satisfies the equations and boundary conditions (4.4) if and only if

E
(

V(S,K, λ) + SX, K
)

ϕ = 0. (4.12)

We can consider this relation as a finite system of scalar equations for the skew
symmetric matrix S. It is a remarkable fact of the theory, see [8], Th. 6.1, that
this equation can be written in the form

T(S,K, λ) ≡ B(S) +P(S,K, λ) = 0. (4.13)
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Here the operators B and P are defined by the equalities

B(S)ij = (Cii + Cjj)Sij

P =

∫

Ω

((v∗
jfi − v

∗
i fj) dX +

∫

∂Ω

((v∗
jhi − v

∗
i hj) ds,

v
∗ = V(S,K, λ).

In view of Lemma 2, the operator T : BS(ρ)×BK(ρ)×Bλ(ρ) → S is continuously
differentiable and DST(0,1, 0)δS = B(δS). On the other hand, the nondegenaracy
condition (4.5) implies the existence of the bounded operator B−1 : S → S. Ap-
plying the Implicit function theorem, we conclude that there exist ε > 0 and a
continuously differentiable operator S : BK(ε)×Bλ(ε) such that

T
(

S(K,λ), K, λ
)

= 0.

It remains to note that

u = Id+ U(K,λ) with U(K,λ) = V
(

S(K,λ),K, λ
)

+S(K,λ)X

is a desired solution to problem (4.4). �

The following propositions constitutes the existence and local uniqueness of
the solution to the traction problem (4.4) for the load (f ,h) depending on t.

Proposition 4 Let the couple (f ,h) ∈ C(0, T ;Wm,p(Ω))×C(0,T ;Wm+1−1/p(∂Ω)),
m ≥ 0, p > 3, be equilibrated and satisfies the nondegeneracy condition (4.5) for every

t ∈ [0, T ]. Then there is ε > 0 such that for all λ ∈ (−ε, ε) and

K ∈ C(0, T ;Wm+1,p(Ω)), K(t) ∈ BK(ε) = {K : ‖1−K‖Wm+1,p(Ω) ≤ ε},

problem (4.4) has a solution u = Id+ w such that for every t ∈ [0, T ],

w(t) ∈ Bw(δ) = {w ∈ Wm+2,p(Ω) : ‖w‖Wm+2,p(Ω) ≤ δ,

∫

Ω

w dX = 0},

where δ(ε) → 0 as ε → 0. The solution is unique in the ball Bw(δ). Moreover, there is

a mapping U : BK(ε) × [−ε, ε] × [0, T ] → Bu(δ) such that w(t) = U(K(t), λ, t). The
mapping U is continuous in t and continuously differentiable with respect to K and λ.

Proof It suffices to note that for every t ∈ [0, T ], the load (f(X, t),h(X, t)) satisfies
all conditions of Proposition 3. �

It follows from Proposition 4 that equations (4.1) can be written in the form
of the Cauchy problem for differential operator equation in the Banach space
Wm+1,p(Ω)

∂K

∂t
= gI(I +∇U(K,λ, t),K) on [0, T ],

K(0) = K0

(4.14)

It follows from Proposition 4 and Condition 4 that the operator K → gI(I +
∇U(K,λ, t),K) satisfies the Lipschitz condition in the ball BK(ε). Moreover, the
Lipschitz constant is independent of t.

Hence, the existence of solutions to problem (4.1) on the small interval [0, T ∗]
is a consequence of the Picard Theorem. This completes the proof of Theorem 2.
�
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4.1 Dirichlet problem

In the case of the Dirichlet problem

div Tg(∇u,K) = λf in Ω × (0, T ), (4.15a)

u = λh on ∂Ω × (0, T ), (4.15b)

∂K

∂t
= g(∇u,K) in Ω × (0, T ), (4.15c)

K(X,0) = K0(X) in Ω, (4.15d)

We can get more general result than that for the traction problem. In particular,
for Problem (4.15), we do not need the isotropy assumptions for the transplant
and the solvability condition for the load f . The following theorem constitutes the
existence and local uniqueness of solutions to problem (4.15).

Theorem 2 Let Conditions 1, 3 be satisfied and vector functions (f ,h) belong to

the class C(0, T ;Wm,p(Ω)) × C(0, T ;Wm+2−1/p,p(Ω)), m ≥ 0 , p > 3. Let R ∈

Wm+1,p(Ω) be a matrix-valued function such that R(X) is orthogonal for all X ∈ Ω.

Then there is ε > 0 and T ∗ ∈ (0, T ) such that for every K0 and λ satisfying the

conditions

‖K0 − R‖Wm+1,p(Ω) ≤ ǫ, λ ∈ [−ε, ε],

problem (4.15) has a solution u ∈ C(0, T ∗;Wm+2,p(Ω)). Moreover this solution is

locally unique.

Proof The proof of this Theorem is the simplification of the proof of Theorem 2.
The only remark is that we have to replace the operator equation (4.9) by the
operator equation

D(u,K, λ) ≡
(

div Tg(∇u,K)− λf , u − λh

)

= 0.

It is easy to see that

DuD(Id,R, λ)δu =
(

div
(

Lg(I,R)∇δu
)

, δu
)

(4.16)

The existence of the bounded inverse operator

DuD(Id,R, λ)−1 : Wm,p(Ω)×Wm+2−1/p,p(∂Ω) → Wm+2,p(Ω)

follows from Proposition 2. Applying the Implicit function theorem, we conclude
that operator equation (4.16) has a solution in the form u = C(K, λ, t). Here the
operator C is continuously differentiable in the neighborhood of (R, 0). Thus we
come to the operator equation for K,

∂K

∂t
= g(C(K, λ, t),K).

The application of the Picard Theorem completes the proof. �
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5 Conclusion

In this contribution, we have set up models for the growth of continuum solid bod-
ies, viewed as a reorganization of the reference configuration leading to an overall
change of mass. The constitutive model for the growing body is expressed in a
reference crystal which is mapped to the reference configuration by a transplant
operation, in line with ideas advanced in [3]. The growth model is expressed in
terms of an evolution law for the transplant, which involves a modified Eshelby
stress as a driving force for growth. The Blatz-Co hyperelastic constitutive law is
adopted for the growing body. The model is formulated as a boundary value prob-
lem consisting of the balance of momentum and energy, the constitutive equation,
and the growth law. We have assumed that the heat flux depends on the trans-
plant. As a main thrust of this contribution, the mathematical aspects of a growth
model has been investigated. The existence of local solutions has been obtained,
for sufficiently smooth data close to the stable equilibrium.
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