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3D Contour Closing: A local operator based on Chamfer distance transformation

Introduction

Contour detection strategy plays an important role in the computer vision community, it is driven by the structure of images. Especially, in the case of three dimensional medical images, a local context of a contour significantly affects the global saliency of the contours.

Classically, there are a lot of known contour detection methods that have been developed during the past decade. A simple global thresholding, based on gradient edge detection will give us poor results even when we choose an optimal threshold value. Indeed, there exist many other structures with high grey level values. Global thresholding may keep noise if threshold is too low, and we may loose some information if threshold is too large. That is the reason why we have to perform contour closing algorithms.

One of the simple closing algorithm is hysteresis thresholding method, that is usually adopted in the Canny detector. With hysteresis thresholding, the obtained object boundaries given are usually more complete and continuous then those given by pixel based techniques. However, it gives some false features of detected image. In particular, two threshold values determination creates a lot of false pixels around objects contour shapes. We cite [START_REF] Tran | 3D image analysis with variational methods and wavelets -Applications to medical image processing[END_REF] for further results and examples.

We now study another local operator that has been proposed to close contours. The method is described in [START_REF] Milgram | Fermeture des contours par un opérateur local[END_REF]. The "chamfer" distance measures distance between elements. In what follows a contrast point is a point where the image intensity gradient is high. Contour points are contrast points if we precisely define what "high" means.

The basic idea of the method of [START_REF] Milgram | Fermeture des contours par un opérateur local[END_REF] is the following scheme:

(a) Generate a distance Table where the intensity (grey level) of a point is replaced by the distance to nearest contrast point. (e) Remove the contour points that do not close any the "meaningful" area.

Therefore the first step is the contrast points extraction. In this section, the concept of distance transformation and some of their properties, applications are described. We start with the two dimensional distance transform (DT), and the generation of distance transform to higher dimensions (three dimensions in particular) will be given. The distance transform was described in [START_REF] Borgefors | Distance transformations in Arbitrary Dimensions[END_REF] and we just give hereafter some discrete definitions and implementations of DT. 

Image Distance Transform

DT : p → DT (p) = min d (p, q) , q ∈ Ō .
In other terms, the value assigned at any point p is the shortest distance from p to all points in O. Depending upon various applications, the distance function may be defined in different ways, some most important kinds of function that are included in [START_REF] Borgefors | Distance transformations in Arbitrary Dimensions[END_REF]. For example, the n-neighbor distances, they are 4-and 8-neighbor distance (for two dimensional case) and 6-, 18-and 26-neighbor distance (for three dimensional case), the Euclidean distance, octagonal distance, and the chamfer distance ... Throughout this paper, we are interested in choosing of chamfer distances map for a binary image respectively.

In two dimensions, each pixel has two kinds of neighbors. The first kind is 4 horizontal/vertical neighbors, the neighbors joined by a line. The second kind is the 4 diagonal neighbors, the neighbors joined only by a point. The global distance is computed from the local distances between neighbors. The distance between horizontal/vertical neighbors is denoted d 1 , and the distance between diagonal neighbors is denoted d 2 .

For example, in [START_REF] Borgefors | Distance transformations in Arbitrary Dimensions[END_REF], with 4-neighbors distance we have d 1 = 1 and d 2 = ∞ (this means that all sums including d 2 can be ignored), the discs of this distance are diamonds; for 8-neighbors distance d 1 = 1 and d 2 = 1, the discs of this distance are squares.

The (2D) chamfer distance transform has real values based on d 1 (horizontal) and d 2 (vertical) as well. The name of this distance transform comes from the two-pass process for obtaining the distances, which is known as chamfering. However, in most applications real numbers are not desirable. The good integer approximations of the optimal values are found, d 1 = 2, d 2 = 3, the incremental distance values of 2 and 3 provide relative distances that approximate the Euclidean distances 1 and the square root of 2. This is why it is an euclidian pseudo-distance.
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Table 1: The forward pass (left) and backward pass (right) from I(i, j), by chamfer algorithm.

The algorithm for distance transformation can be described by masks in Table 1. Inside these masks, two passes over the picture are necessary:

• During the forward pass the mask starts at the upper left corner of the picture, moves row-by-row to perform computation on image I from left to right, and from top to bottom to find the partial distance value d(i, j) for every pixel (i, j). The local distances, d 1 and d 2 , in the maskpixels are added to the pixel values in I, and new value of the zero pixel is the minimum of five sums. During the forward pass, the optimal distance for the pixel (i, j) of the mask is updated by the formula:

d (i, j) = min            d (i, j) ; d (i, j -1) + d 1 ; d (i -1, j -1) + d 2 ; d (i -1, j) + d 1 ; d (i -1, j + 1) + d 2            . (2.1)
• Similarly, in the backward pass the mask starts in the lower right corner, executes from right to left, and from bottom to top to find the second partial distance value d(i, j) for each pixel (i, j). The distance for pixel (i, j) of the mask can be calculated in terms of:

d (i, j) = min            d (i, j) ; d (i, j + 1) + d 1 ; d (i + 1, j -1) + d 2 ; d (i + 1, j) + d 1 ; d (i + 1, j + 1) + d 2            . (2.2)
Table 2 gives an example, shows the results of different settings of 2D distance transformation for a certain 5 × 5 image where the black pixel is the object. the value of the voxel it covers is computed, and the new value of the zero voxel is the minimum of these sums.

As remarked before in two-dimensions, the values of d 1 , d 2 and d 3 are set dependently on which kind of distance transformation. For example, in [START_REF] Borgefors | Distance transformations in Arbitrary Dimensions[END_REF] we have:

• 6-neighbor distance: d 1 = 1, d 2 = d 3 = ∞.
• 18-neighbor distance:

d 1 = 1, d 2 = 1 and d 3 = ∞.
• 26-neighbor distance:

d 1 = d 2 = d 3 = 1.
• Chamfer distance: as 2D case, it is often desirable to use only integers. A very good integer approximation of the optimal local chamfer distances is d 1 = 3, d 2 = 4, and d 3 = 5. We can refer to [START_REF] Milgram | Fermeture des contours par un opérateur local[END_REF] for a detailed explanation, and this chamfer [START_REF] Petrova | Edge detection in medical image using the Wavelet transform[END_REF][START_REF] Borgefors | Distance transformations in Arbitrary Dimensions[END_REF][START_REF] Milgram | Fermeture des contours par un opérateur local[END_REF] distance is used in this chapter. 

min x max y f (x, y) = max y min x f (x, y) = f (a, b) (3.1)
Proof. Recall the definition, ∀(x 0 , y 0 ) we have:

max y f (x 0 , y) ≥ f (x 0 , y 0 ) ≥ min x f (x, y 0 ) (3.2)
We can conclude the proposition since the above inequality still holds when we move to min and max on the left and right, so the saddle point definition is equivalent to:

max y f (x 0 , y) ≥ f (x 0 , y 0 ) ≥ min x f (x, y 0 ) (3.3)
We give thereafter equivalent formulations: Consider now an open bounded subset K of Ω (K will play the role of contour points in our saddle point method). Let a function f K : Ω → R be defined as:

f K (x, y) = min {d ((x, y) , (u, v)) | (u, v) ∈ K} = d ((x, y) , K)
We say that P ∈ Ω is a saddle point if there exist two directions d 1 and d 2 in R 2 such that f (P ) is the maximum in direction d 1 and the minimum in d 2 : Let K be a finite union of segments in space and A, B be two end (distinct) points of two segments in K. Let P be the medium of (A, B) and r = d(A, P ) = d(B, P ). We denote D(M, t) the closed disk with center M and radius t. Suppose that we have:

∃d 1 , d 2 ∈ R 2 , ∃r > 0, ∀λ : |λ| ≤ r ⇒ f (P + λd 1 ) < f (P ) f (P + λd 2 ) > f (P ) ( 
(a) D(P, t) ∩ K = {A, B}. (b) ∃ε > 0, D (P, r + ε) ∩ K = {(A, A ) , (B, B )}.
Then, P is the saddle point of f K , that means:

• f K (P ) is the local minimum respect to direction d 1 .

• f K (P ) is the local maximum respect to direction d 2 .

This proposition is well proved in [START_REF] Milgram | Fermeture des contours par un opérateur local[END_REF].

Numerical Saddle Points Discretization

We now consider the 2D discrete case corresponding to a scanned image (the whole Ω) and a set of contour points (the points of contrast). In this case, we look for the discretized saddle points y using 8-neighbor pixels of pixel P . The point P is called a (discretized) saddle point if there exists four points I, J, Q, R such that:

(1) I, J and P are aligned.

(2) Q, R and P are aligned.

(3) The segments (I, J) and (Q, R) intersect each other.

(4) f K (I) ≤ f K (P ) and f K (J) ≤ f K (P ).

(

) f K (Q) ≥ f K (P ) and f K (R) ≥ f K (P ). 5 
(6) At least three of the inequalities represented by ( 4) and ( 5) are strict.

Let us give an example in Table 4:

I → 1 4 2 Q → 4 3 5 → R 7 4 2 → J I 3 3 3 R → 4 4 5 → Q 3 3 3 J Table 4
: Some example of a 2D discretized saddle point.

Contour Closing Algorithm

Let K 0 the set of all contrast points (closed contour positions) that need to be updated, and let f represents the Chamfer distance transform of our considered image, which is described in Definition 3.4.

We have f 0 (M ) = f K 0 (M ) = d(M, K 0 ) (we want to check if M is the saddle point or not).

1.

Step 1: K = K 0 , for initial set of saddle points.

2.

Step 2: Compute P(f K ), is the set of all saddle points of image f K .

3.

Step 3: If P(f K ) = ∅ then go to step 4. If not, update K = K ∪ P(f K ) and repeat step 2.

4.

Step 4: Stop.

The process of found and replaced saddle points by the contour positions is iterated until a contour is reached or until a fixed number of iterations is attained. Let consider an example in Table as following, which represents two segments. We obtain how this algorithm performs for closing them. For this simple example, we test with a 2D local 10 × 10 image, it can be supposed that by our detection method, the unclosed contours are presented as black pixels in Table 5 

Numerical Experiments

In this section, we consider that the object has been successfully segmented once we have a closed contour approaching this set of unconnected points. A small remark that our detection method was chosen as a local histogram shape based thresholding, see more in [START_REF] Tran | 3D image analysis with variational methods and wavelets -Applications to medical image processing[END_REF].

The Chamfer distance operator could be applied for closing contours after contour detection step. Moreover, this step-contour-detector is well-suited to extract contour shapes, especially our three-dimensional medical images consideration.

Test on 2D MRI scan

Here we apply our closing contour method and present numerical results tested for 2D MRI scan. This MRI scan models the eye-blood vessel. Test image is shown in figure 4.1(a), the zoom of image can also be considered, shown in Figure 4.1(d). On the second column of the same figure, we present detected contour applied thresholding step. Experimental results can be represented in the Figure 4.1(c) and (f). In the zoom figure of blood vessels 4.1(f), the efficiency has been also evaluated. In particular, a lot of the contour pixels which were not detected in segmented process are found. It requires little computation. The presence of saddle points is taken during a second scan of the image. The obtained results are good and allow the closure of majority of gaps of 5 and 10 pixels after a few iterations. This method can be used to perform preprocessing during image segmentation operations.

We also perform tests on different type of images, and this paper displays more on colored image containing many complicated filament structures, the blood vessel of human heart surgery, example on textured image in figures 4.2 and 4.3. Because of the discretization process, there are some cases with false detection. It is proposed to catch neighboring pixels that mark contours. Finally, we must perform a selection process of contour positions accurately to find all true contours. This problem can be resolved by making two types of filtering at each iterations.

• When these false detections occur for distant points of the contours, it can be carried out by setting a minimum distance of intervention of the operator;

• Assuming that the contours separate regions homogeneous grayscale, false saddlepoints do not correspond to contrast points. Gradient variations at these points are low, this can be used to not validate them.

Test on 3D MRI biological mice vessels network

Let us first describe the three dimensional model of the brain vessels network. This volume taken from CBM Laboratory1 in Orléans. The vessels of mice brain stack is composed of 51 two dimensional MRI slices. In this case, biologists want to recover the network of filament structures. The Figure 4.4 describes the whole 3D volume visualization. In [START_REF] Tran | 3D image analysis with variational methods and wavelets -Applications to medical image processing[END_REF], we note that contours are well identified and a threshold parameter is used to obtain a binary segmented image. Binary results are shown in Figure 4.5 below, we can cite [START_REF] Tran | 3D image analysis with variational methods and wavelets -Applications to medical image processing[END_REF] for the applied contour detection methods. The Figure 4.5 shows that the detected contour shapes give us a good reconstructed vessel structure and topology inside. It can be seen that the vessel's network is almost recovered though the structures are not connected enough. Vessels contrast is detected with a remarkable robustness, and most structures of vessels networks are preserved.

Depending on the success of our current strategy in two dimensions, we optimistic that we will be able to achieve closed contours in three dimensions. The closed contour detection is displayed in Figure 4.6, which is comparable to the detected contour shapes presented in 4.5. 

Conclusion

In this paper, we have designed an algorithm of contour closing which based on the Chamfer distance transform. The segmentation method is studied based on image distance transform and theory of saddle points, that requires a little of image calculation. Method gives the results that are good and enable the effective closure of the majority of gaps 5 to 10 pixels after the detection process.

This paper makes a good sense to close the contours in both 2D and 3D once our applied segmentation method does not give us connected contours. In particular, we are considering especially the images with a complex filament structures, texture components such as the blood vessels, detailed tecture images, and other medical images.

Moreover, we conclude that such algorithm based on Chamfer distance transform is able to extend the contours along the gradient norm with candidate belonging to the image path. This method is well adapted to any types of two dimensional images, even if it includes textured or non-textured areas. Further testing on more demanding tasks such as vessel of mice brain segmentation are being conducted, especially in the case of

( b )

 b Find the saddle-points of the intensity function. (c) Eliminate the points which associated distance is too large; (d) Add those saddle points to contrast points and repeat steps (a), (b), (c) and (d) as far as possible;

2. 1

 1 Two dimensional Distance Transform Definition 2.1. [5], [4] Discrete Distance Let E = Z N , N ≥ 2. An image I is an application defined on E. We call d : E × E → N the discrete distance if it verifies: ∀A, B, C ∈ E 1. d(A, B) ≥ 0; d(A, B) = 0 ⇔ A = B: positive; 2. d(A, B) = d(B, A): symmetric; 3. d(A, B) ≤ d(A, C) + d(C, B): triangular inequality. Definition 2.2. [5], [4] Distance Transformation Let d be a distance on R 2 , I be 2D binary image and O ⊂ I. For each pixel in the background Ō := I\O, the distance transformation image denoted DT is defined as following:

Figure 2 . 1 :

 21 Figure 2.1: A 2D example for distance transformation.

Definition 3 . 1 . [ 2 ]Proposition 3 . 2 . [ 2 ]

 312322 Let f : V × W → R ∪ {∞} be a function defined on V × W , where V and W are vector spaces. A point (a, b) ∈ V × W is called a saddle point of f if: The point (a, b) is a saddle point of f if and only if:

Definition 3 . 3 . [ 5 ]

 335 Let f (x, y) be a real function of two variables defined over a real open subspace Ω ⊂ R 2 and differentiable with respect to these two variables on Ω. We say that the point (a, b) ∈ Ω is the saddle point of f if: (a, b) is neither a local maximum nor a local minimum of f . Definition 3.4.[START_REF] Milgram | Fermeture des contours par un opérateur local[END_REF] 

  a) Example for the 1 st and 2 nd definition of Saddle point, with z = x 2 -y 2 , M (0, 0) is the saddle point. (b) The 3 rd definition of Saddle point.

Figure 3 . 1 :

 31 Figure 3.1: The saddle point example presentations.

  Zoom of closed contour.

Figure 4 . 1 :

 41 Figure 4.1: An example black-white image containing filament structures, contours found by Chamfer distance transform closing method.

  (a) 2D colored human blood in heart surgery, image taken on the website http://www.telegraph.co.uk . (b) Unclosed contour detection.(c) Closing contour found by our method, 3452 saddle points have been found.

Figure 4 . 2 :

 42 Figure 4.2: An example on colored image containing many complicated filament structures, applied to 2D human blood in heart surgery.

  (a) Texture Image, the zebra. (b) Unclosed contour detection.(c) Closing contour found by our method, more than 5000 saddle points have been found.

Figure 4 . 3 :

 43 Figure 4.3: An example on textured image, applied to Zebra's face.

  Remark 4.1.

  (a) 3D Vessels data. (b) Vessels, along xy cross direction. (c) Vessels, along yz cross direction. (d) Vessels, along xz cross direction.

Figure 4 . 4 :

 44 Figure 4.4: The 3D vessel volume.

  (a) 3D volume. (b) xy cross direction. (c) yz cross direction. (d) xz cross direction.

Figure 4 . 5 :

 45 Figure 4.5: Unclosed detected contour shapes of 3D vessel volume.

  xy cross direction (c) yz cross direction (d) xz cross direction

Figure 4 . 6 :

 46 Figure 4.6: Closed contour shapes of 3D vessels volume based on our method.

Table 2 :

 2 Three-dimensional elements that are corresponding to two-dimensional case, are usually called voxels, and there are 6-, 18-or 26-neighbor distances may be considered. For instance, with 26-neighbor distance, voxel has 26 neighbors of three different kinds. The first, closest, kind of neighbors is the 6 ones joined to the voxel by a plane, the second kind is the 12 neighbors joined by a line, and the third kind is the 8 neighbors joined by only a point. The three different local distances are denoted d 1 , d 2 and d 3 . As in two dimensions, the algorithm can be illustrated by the same masks as in Table3by using d 1 , d 2 and d 3 , and two passes over the volume are needed. The forward mask is moved over the volume left to right, top to bottom, and front to back. The backward mask is moved in the opposite way. In each position, the sum of the local distance in each maskvoxel and +d 3 +d 2 +d 3 +d 2 +d 1 +d 2 +d 3 +d 2 +d 3 +d 2 +d 3 +d 3 +d 1 0 0 +d 1 +d 2 +d 1 +d 2 +d 3 +d 2 +d 3 +d 2 +d 1 +d 2 +d 3 +d 2 +d 3

Results of different settings distance transformations. From left to right: the first Table is the 5 × 5 image with black pixel is an object; the second one is the result after 4-neighbor distance; next after 8-neighbor distance and the last one is result after chamfer distance transformation.

2.2 Three dimensional Distance Transform

Table 3 :

 3 The forward pass (first row) and backward pass (second row) in 3D case, by chamfer algorithm.

Table 5 :

 5 on left. Its Chamfer distance transform could be calculated and presented on the right image, in which the image takes zero values at all our available contour positions need to be closed. Left: Object that need to be closed with two black segments. Right: The Chamfer distance transformation of the object.
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	10 10 10 10 10 8 6	5	3	2 0
	8	8	8	8	9	7 5	3	2 0	2
	6	6	6	6	7	6 4	2 0	2	3
	4	4	4	4	5	6 0	3	2	3	5
	2	2	2	2	3 0	6	5	4	5	6
	0	0	0	0	2	4 6	7	6	7	8
	4	2	2	2	3	5 7	9	8	9 10
	∞ 4	4	4	5	6 8 10 10 11 12

Table 6 :

 6 Closing result of the object in Table5after one iteration, two saddle points are found and replaced.

	10 10 10 10 10 8 6	5	3	2 0
	8	8	8	8	9	7 5	3	2 0	2
	6	6	6	6	5	3 2 0	0	2	3
	4	4	4	4	3	2 0	0	2	3	5
	2	2	2	2 0	0	2	3	4	5	6
	0	0	0	0	0	2 3	5	6	7	8
	4	2	2	2	3	4 5	6	8	9 10
	∞ 4	4	4	5	6 8 10 10 11 12

Table 7 :

 7 Closing result of the object in Table5after two iterations, four next saddle points are found and replaced. At this time we have P(f K ) = ∅, we stop.

CNRS/CBM: Centre de biophysique moléculaire http://cbm.cnrs-orleans.fr/

three dimensional space. However, it could be noticed that our method may give some cases with false detection in discretization process, that need to be considered respect to the image histogram, that need to be approached automatically in the near future.