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Abstract

This study describes a simple analytical method to compute the azimuthal
modes appearing in annular combustion chambers and help analyzing exper-
imental, acoustic and LES (Large Eddy Simulation) data obtained in these
combustion chambers. It is based on a one-dimensional zero Mach number
formulation where N burners are connected to a single annular chamber. A
manipulation of the corresponding acoustic equations in this configuration
leads to a simple dispersion relation which can be solved by hand when the
interaction indices of the flame transfer function are small and numerically
when they are not. This simple tool is applied to multiple cases: (1) a single
burner connected to an annular chamber (N = 1), (2) two burners connected
to the chamber (N = 2), (3) four burners (N = 4). In this case, the tool
also allows to study passive control methods where two different types of
burners are mixed to control the azimuthal mode. Finally, a complete he-
licopter chamber (N = 15) is studied. For all cases, the analytical results
are compared to the predictions of a full three-dimensional Helmholtz solver
and a very good agreement is found. These results show that building very
simple analytical tools to study azimuthal modes in annular chambers is an
interesting path to control them.
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1. Introduction

Azimuthal modes are combustion instabilities which appear in annular
chambers of many gas turbines. These modes are powerful and can lead to
vibrations and structural damage [1, 2, 3]. They should be eliminated at the
design stage, something which is difficult today because fundamental issues
in terms of mechanisms and modeling are not mastered yet.

The first question is to know why these modes appear by studying their
linear stability characteristics. Most models used to predict stability in an-
nular chambers are based on one-dimensional network views of the chamber
[4, 5, 2] in which each burner is only influenced by the flow rate fluctuation
it is submitted to by the azimuthal acoustic mode. In most of this models all
burners are supposed to be independent from their neighbours and to have
the same transfer function (ie the same relation between inlet burner veloc-
ity variations u′ and total heat release rate fluctuations q′). This assumption
has been checked in one case corresponding to an annular helicopter chamber
using LES [6] but this may not be true in general: in liquid-fueled rocket en-
gines or more generally in burners containing multiple jets [7], the interaction
between neighbouring flames can lead to instability and transverse modes.
This may happen in gas turbines too and require other modeling approaches
than the existing ones.

Even if burners can be assumed to respond in a one-dimensional manner
to acoustic perturbations, determining their flame response (usually mea-
sured as a Flame Transfer Function) remains a challenge [8, 9, 10]. FTFs are
the key elements of the majority of acoustic solvers for combustion stability.
At some point, these solvers need to characterize the flame response to the
acoustic field [11, 12] and the FTF is the most common solution. The prob-
lem is that FTFs depend on multiple parameters (regime but also pulsation
amplitude, wall temperature, pilot flames, etc) so that an accurate descrip-
tion of FTF is often not available [13, 14]. A second difficulty is to exploit
FTF in an acoustic code taking into account the complexity of the geometry
[15, 16]. When such simulations are performed, another difficulty linked to
the structure of these modes arises [17]: in annular combustion chambers, the
first (and sometimes second) azimuthal acoustic mode is often the strongest
mode [18, 1, 19]. Azimuthal modes can appear as standing wave modes or
rotating modes and both are observed in gas turbines. Bifurcations between
standing and turning modes may be due to non-linear effects: Schuermans
et al. [2, 19] propose a non-linear theoretical approach showing that standing
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wave modes can be found at low oscillation amplitudes but that only one
rotating mode is found for large amplitude limit cycles. Other explanations
can be found in linear approaches: standing modes would appear only in per-
fectly axisymmetric configurations while any symmetry modification would
lead to rotating modes [20, 21].

Using experiments to study these issues is difficult because multiburner
combustion chamber rigs are expensive and rare. An elegant solution is
the azimuthal Rijke tubes system [22] where flames are replaced by electric
heaters even though some of the physics of real flames is probably lost. A
new approach is now possible using massively parallel computations and
Large Eddy Simulation (LES) [23, 24, 25]. Such LES solvers can predict
instabilities in a reacting flow configuration [12, 26] but their cost for full
annular chambers [6, 27] remains prohibitive. Moreover, these simulations
can not be repeated easily and can not be used to optimize chamber designs
to control azimuthal modes.

Independently of the exact structure of these modes, gas turbine experts
are mostly interested in avoiding them or controlling them. This usually
requires expensive tests, mainly because guidelines to look for a stable con-
figuration are often missing. Of course, fully active combustion instability
control [28, 29] would also be a solution and it has been successfully tested
on certain industrial gas turbines (Siemens for example). However, the cost
of active control and its difficult certification for aero engines make it less
attractive today than trying to understand azimuthal modes and building
combustors which are intrinsically stable. To reach this goal, both experi-
ments and simulations are too long and do not provide enough insight into the
sources of the coupling. In addition to simulation and experiments, simple
analytical models able to analyze the basic nature of azimuthal modes would
be very useful. The recent work of Moeck et al. [22] shows how theoretical
models can be used to understand azimuthal modes in a model annular com-
bustor where flames are replaced by electrical heaters. The present paper
describes an analytical approach for azimuthal instability modes in annu-
lar chambers which is even simpler than the method described in [22], but
captures enough of the physics of these instabilities to understand modes
observed experimentally and numerically and to analyze methods to control
these modes.

The model described here is based on a network view of annular chambers
[30, 31, 32]: it describes all acoustic waves as one-dimensional waves prop-
agating in an annular chamber fed by burners (Fig. 1). The analysis works
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for any number of burners connected to an annular chamber even though the
corresponding mathematics become more complex. The effects of flames are
described using a simple flame transfer function in each burner. While some
previous works take into account acoustic coupling between plenum and com-
bustion chamber [33], this is it not the case in this model where burners have
a closed end at the upstream end. Moreover only purely azimuthal modes
are considered.

Figure 1: Simplification of annular gas turbine geometry for acoustic model.

The analytical formulation is described in Section 2. Applications are
then presented for different configurations, starting from the simplest one
(N = 1: a single burner connected to an annular chamber, Section 5), then
using the model for N = 2 (Section 6) and 4 (Section 7). For each case, the
frequencies and the structure of the modes are discussed. Results are com-
pared to a 3D Helmholtz solver [16] in an academic geometry. Stability maps
are obtained in terms of FTF delay τ for all modes. Two different types of
burners are combined (this is usually obtained by a small geometrical modifi-
cation of the swirler geometry on certain burners while keeping the others the
same) to predict how such changes modify the modes and their growth rates,
suggesting that certain locations of the modified burners are more efficient
than others. This simple analytical formulation provides useful guidelines to
understand experimental or numerical results. Finally the model is tested in
3D complex geometry corresponding to a full annular reverse flow helicopter
combustion chamber composed of 15 burners (Section 8). Results are com-
pared to those obtained with the a 3D Helmholtz solver in term of stability
map.
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2. Mathematical description

2.1. Case description

The model is based on a network view of the annular chamber fed by
burners (Fig. 1). Only azimuthal modes of the chamber are considered. These
modes correspond to longitudinal modes of the burners. The gas dynamics is
described using the standard linearized acoustics for perfect gases in the low
Mach number approximation. Mean density and sound speed in the annular
chamber are noted ρ0 and c0 respectively. The flames are supposed to be
located at the burners extremity (zf,i ≃ li, see Fig. 2) so that all burners
are assumed to be at the same mean temperature, with a mean density and
sound speed noted ρ0u and c0u respectively (subscript u stands for unburnt
gases). The perimeter and the section of the annular chamber are noted
2L and S respectively. The length and the section of a burner are noted li
and si, where the subscript i is used to designate a particular burner. All
numerical applications will correspond to an industrial gas turbine whose
characteristics are defined in Table 1.

Figure 2: Network representation of the chamber and burners.

2.2. Flow description

The chamber is decomposed into N tubes of length di, where di is the
distance between burners i − 1 and i (Fig. 3). Values of di are linked to L
by
∑

di = 2L where L is the half-perimeter of the annular chamber.
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Chamber

Half perimeter L 6.59 m
Section S 0.6 m2

Burners

Lengths l 0.55 m
Sections s 0.03 m2

Fresh gases

Mean pressure p0 2 · 106 Pa
Mean temperature T 0

u 700 K
Mean density ρ0u 9.79 kg/m3

Mean sound speed c0u 743 m/s
Burnt gases

Mean pressure p0 2 · 106 Pa
Mean temperature T 0 1800 K
Mean density ρ0 3.81 kg/m3

Mean sound speed c0 1191 m/s
Flame parameters

Interaction index n 1.57

Table 1: Parameters used for numerical applications. They correspond to a large scale
industrial gas turbine.

Under the linearized acoustics assumptions, the pressure and velocity
fluctuations inside part i of the chamber can be written as:

p′i(x, t) = (Ai cos(k x) +Bi sin(k x)) e
−jwt (1)

ρ0 c0 u′

i(x, t) = j (Ai sin(k x)−Bi cos(k x)) e
−jwt (2)

where j2 = −1, k = w/c0 is the wavenumber and Ai and Bi are complex
constants to determine using boundary conditions. The coordinate x takes
its origin at burner i − 1. Under the same hypothesis, the pressure and
velocity fluctuations inside each burner i can be written as:

p′u,i(z, t) = (Au,i cos(ku z) +Bu,i sin(ku z)) e
−jwt (3)

ρ0u c
0
u w

′

i(z, t) = j (Au,i sin(ku z)− Bu,i cos(ku z)) e
−jwt (4)

with ku = w/c0u and Au,i and Bu,i are two complex constants. The total
numbers of unknowns of the problem is equal to 4N : the amplitudes Ai, Bi

(2N) and Au,i, Bu,i (2N).
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Figure 3: Decomposition of the chamber into N tubes.

Flames in the burner are assumed to be planar and compact: their thick-
ness is negligible compared to the acoustic wave-length. At low mach number,
jump conditions through the flames imply equality of pressure and an extra
volume source term due to unsteady combustion [12]:

p′u,i(z
+

f,i , t) = p′u,i(z
−

f,i , t) (5)

si w
′

i(z
+

f,i , t) = si w
′

i(z
−

f,i , t) +
γu − 1

γu p0
.

Ω
′

T,i (6)

where zf,i is distance between the beginning of the burner i and the location
of the flame i, p0 is the mean pressure and γu is the heat capacity ratio

of fresh gases. The unsteady heat release
.

Ω
′

T,i is expressed in terms of the
velocity using a n− τ model [34]:

γu − 1

γu p0
.

Ω
′

T,i = si ni e
jωτi w′

i(z
−

f,i , t) (7)

where the interaction index ni and the delay τi are input data describing the
interaction of the flame i with acoustics. Moreover, the flames are assumed
to be located at the burners extremity (zf,i = li) .
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2.3. Boundary conditions

The inlets of the burners (z = 0 in Fig. 3) are considered as walls, leading
to zero velocity fluctuations:

w′

i(z = 0, t) = 0 (8)

The intersection of the burners with the chamber at z = li is a ’T’ config-
uration. The jump condition at the ’T’ intersection requires equal pressure
on each sides of the tubes as well as conserved unsteady volume flow rate
[12]. With the flame located at the burner extremity, the combination of
these boundary conditions with the flame jump conditions (Eqs. (5), (6) and
(7)) leads to:

p′i(x = di) = p′i+1(x = 0) (9)

p′u,i(z = li) = p′i+1(x = 0) (10)

S u′

i+1(x = 0) = S u′

i(x = di)

+ si w
′

i(z = li) (1 + ni e
jωτi) (11)

where the fluid velocity in the burner w′

i(z = li) is taken just before the flame
(w′

i(z = li) = w′

i(z = z−f,i)).
These boundary conditions can be expressed as a function of the waves

amplitudes Ai, Bi, Au,i and Bu,i, leading to a set of 4N linear equations (N
wall conditions and 3 at each ’T’ intersections). The linear system given by
4N unknowns with 4N linear equations gives non-null solutions if and only
if its determinant is null. This dispersion relation can be obtained by calcu-
lating the determinant of the 4N × 4N matrix describing the configuration.
However the expression of this matrix is not trivial. The next section presents
a methodology to reduce the problem to the calculation of the determinant
of a 2×2 matrix enabling a simple explicit calculation of the eigenfrequencies
and mode structures for any number of burners.

3. Eigenfrequencies calculation

3.1. Transfer matrix

The wall condition at the beginning (z = 0) of each burner (Eq. (8))
enables us to express pressure and velocity fluctuations in the burner i as:

p′u,i(z, t) = Au,i cos(kuz) e
−jwt (12)

ρ0u c
0
u w

′

i(z, t) = j Au,i sin(kuz) e
−jwt (13)
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Equations (12) and (13) show that the wave inside the burner i is completely
determined by the value of Au.i. Using the continuity of pressure at the ’T’
intersection (Eq. (10)), Au.i can be expressed as a function of Ai+1, the wave
amplitude in part i+ 1 of the annular chamber:

Au,i = Ai+1 / cos(ku li) (14)

where we have assumed that cos(ku li) 6= 0. Eq. (14) can be reported into
the two other ’T’ intersection conditions (Eqs. (9) and (11)), eliminating the
wave amplitude Au.i form the system and leading to a 2 × 2 linear system
linking the wave amplitudes A and B in the section i of the chamber to those
in section i+ 1:

[

Ai

Bi

]

= Ti

[

Ai+1

Bi+1

]

(15)

Ti is called the transfer matrix and writes as:

Ti = R(βi) + 2 Γi

[

−sin(βi) 0
cos(βi) 0

]

(16)

R(βi) is a rotation matrix of angle βi = k di describing the waves traveling
inside the part i of the chamber. The second term describes the influence of
burner i on waves inside the chamber. Γi is a coupling factor defined by:

Γi =
1

2

si
S

ρ0 c0

ρ0u c
0
u

tan(ku li) (1 + ni e
jωτi) (17)

The coupling factor Γi depends both on geometrical parameters, on gas char-
acteristics, on the flame i characteristics (described by ni and τi) and also on
the wave pulsation ω (through the flame transfer function and the wavenum-
ber in unburnt gases ku = ω/c0u ).

3.2. Dispersion relation

Equation (15) can be repeated through the N burners and periodicity
imposes that:

[

A1

B1

]

=

(

N
∏

i=1

Ti

)

·

[

A1

B1

]

(18)

System Eq. (18) leads to non-null solutions if and only if its determinant
is null, leading to the following dispersion relation, where Id is the identity
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matrix:

det

(

N
∏

i=1

Ti − Id

)

= 0 (19)

The dispersion relation Eq. (19) uses a determinant of a 2×2 matrix instead
of a 4N ×4N . The product of the N transfer matrixes Ti is needed but this
is not a problem since they are all known.

3.3. Mode structures

Once the eigenfrequencies have been obtained, mode structures can be
easily found using Eq. (18). By noting T =

∏N

i=1
Ti the product of the

transfer matrixes, B1 can be expressed as a function of A1 as:

B1 =
1− T11

T12

A1 (20)

using for example the first line of Eq. (18).
The expression of Ai and Bi in other parts of the chambers can be ob-

tained as a function of A1 using the transfer matrixes and Eq. (20). As a
consequence mode structures in the whole chamber are known.

Another useful decomposition of pressure and velocity fluctuation can be
written using two traveling waves:

p′i(x, t) =
(

A+
i ej kx + A−

i e−j kx
)

e−jwt (21)

ρ0 c0 u′

i(x) =
(

A+

i ej kx − A−

i e−j kx
)

e−jwt (22)

where A+

i and A−

i are amplitudes of turning modes in clockwise and counter
clockwise direction respectively. The wave amplitude A+

i and A−

i are linked
to Ai and Bi by:

Ai = A+
i + A−

i (23)

Bi = j (A+

i − A−

i ) (24)

and the ratio between A+

i and A−

i is given by:

A+

i

A−

i

=
1− j Bi/Ai

1 + j Bi/Ai

(25)
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3.4. Analytical solution in the low coupling limit

Due to significant non linearities, Eq. (19) can not generally be analyt-
ically solved. However an asymptotic solution can be determined for low
coupling factors, i.e. assuming that ∀i, |Γi| ≪ 1. In this case, the transfer
matrixes (Ti in Eq. (16)) are closed to the rotation matrixes R(βi). As a
consequence, the eigenfrequencies of the system will be close to the case of a
simple annular duct and one can write:

k L = p π + ǫp (26)

with ǫp ≪ p π. The order of the mode is noted p ∈ N. As seen in the
examples (Section 6 to 8), using this low coupling assumption to calculate
the dispersion relation leads to a quadratic equation for ǫp which can easily be
solved. One should note that the low coupling assumption does not mean low
thermo-acoustic coupling (ni ≪ 1), see Eq. (17). Except for Section 8, the
low coupling assumption is valid because si/S ≪ 1, (ρ0c0)/(ρ0uc

0
u) = O(1),

tan(kuli) ≪ 1(because li ≪ L and k ∼ p π/L) and (1 + nie
jωτi) = O(1).

4. Comparison with a 3D acoustic code

Eigen frequencies and mode structures will be compared to results ob-
tained with AVSP, a parallel 3D code devoted to the resolution of acous-
tic modes of industrial combustion chambers [16]. It solves the eigenvalues
problem issued from a discretization on unstructured meshes of a Helmholtz
equation with a source term due to the flames. The flame-acoustic interac-
tion is taken into account via a n− τ model [35]. The local reaction term is
expressed in burner i as:

.
ωi= nu,i e

jωτi w′(xref,i) (27)

The local interaction index nu,i describes the local flame-acoustic inter-
actions. In this approach flames are distributed over zones where the value
of nu,i is non zero. To use AVSP for compact flames and check the model
of Section 2, the thickness of the flame zones has been reduced as much as
possible (Fig. 4). The values of nu,i were assumed to be constant in the flame
zone i and have been chosen in order to recover the global value of interaction
index ni of the infinitely thin flame when it was properly integrated over the
flame zone i [16]. The heat release fluctuations in each flame zone are driven
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by the velocity fluctuations at the reference points xref ,i located in the cor-
responding burner. In the infinitely thin flame model theses reference points
are the same as the flame locations zf . In AVSP simulations, the reference
points were placed a few millimeters upstream of the flames (Fig. 4).

Figure 4: Academic geometry used with AVSP. The number of burners have been arbitrary
set to four. Left: complete geometry. Right: plane cut in a burner. The dot located
upstream of the flames denotes the position of the reference point xref ,i and the flame
zone is in gray. Dimension are in meters.

The 3D geometry (Fig. 4) is constructed to match the assumption used
in the 1D analytical model: the mean radius R of the cylindrical chamber
is derived from the the half perimeter L of the analytical model and the
Rmax/Rmin ratio is chosen as close to one in order to reduce three dimensional
effects. As the flame zone takes a minimal volume, the length of burners li
has been slightly increased to fix the reference points positions xref,i at the
end of burners in the 1D model (see Fig. 4 and Table 1). The boundary
conditions have been chosen as impermeable walls everywhere.

12



5. One burner

5.1. Dispersion relation and eigenfrequencies

Consider first the case N = 1 where only one burner is connected to the
chamber (Fig. 5). Even though this is not a realistic configuration, this case
is useful to understand more complex cases (N > 1).

The perimeter of the annular chamber 2L, the angular position θ and
position x inside the chamber are linked by:

x = L
θ

π
(28)

where θ = 0 corresponds to the single burner position.

Figure 5: Configuration with a single burner connected to an annular chamber - N = 1.

The coupling factor between the burner and the chamber writes:

Γ =
1

2

s

S

ρ0 c0

ρ0u c
0
u

tan(ku l) (1 + n ejωτ ) (29)

and the transfer matrix is:

T =

[

cos(2 kL) −sin(2 kL)
sin(2 kL) cos(2 kL)

]

+ 2Γ

[

−sin(2 kL) 0
cos(2 kL) 0

]

(30)
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Using Eq. (19), the dispersion relation becomes:

sin2(kL) = −Γ cos(kL) sin(kL) (31)

Equation. (31) is transcendental and Γ depends on the pulsation ω. Assuming
a low coupling factor (Eq. (26) with ǫp ≪ p π), the dispersion relation Eq. (31)
becomes:

ǫ2p + Γ0
p ǫp = 0 (32)

where Γ0
p is the value of Γ when kL = p π (i.e. ω = ω0

p = p πc0/L):

Γ0
p =

1

2

s

S

ρ0 c0

ρ0u c
0
u

tan(p π
c0

c0u

l

L
) (1 + n ejω

0
pτ ) (33)

Equation (32) has two solutions:

ǫp =

{

0
−Γ0

p

(34)

The first mode (ǫp = 0) is a standing mode while the second one (ǫp = −Γ0
p)

will be called mixed because it is a superposition of standing and rotating
modes. These solutions are summarized in Table 2 and discussed in Sec-
tion 5.2 and 5.3.

Case Frequencies Stability condition A+/A− ratio Type
ǫp = 0 neutral −1 standing

ǫp = −Γ0
p sin(ω0

p τ) > 0 1 + j 2 Γ0
p mixed

Table 2: Modes for 1 burner.

5.2. Standing mode

A first solution is ǫp = 0, corresponding to k = pπ/L and p′ and u′ given
by:

p′(θ, t) = B sin(p θ) e−jω0
pt (35)

ρ0 c0 u′(θ, t) = −j B cos(p θ) e−jω0
pt (36)

A = 0 and B is a degree of freedom. Mode structure of pressure fluctuation
is plotted in Fig. 6. The burner is located at a pressure node and a velocity
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antinode. According to Eq. (14) there is no wave inside the burner since
A = 0; thus the chamber is not influenced by the burner except by the fact
that the burner connected to the chamber must be located at a pressure
node. The frequency is fp = p c0/(2L) and has no imaginary part: the mode
is neutral. Pressure mode structure obtained with AVSP is compared with
Eq. (35) in Fig. 6. A very good agreement is found.
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Figure 6: N = 1 - First (p = 1) mode structure of pressure in the annular chamber for
the neutral standing mode (ǫ1 = 0) for a delay τ = 8ms. The single burner is located at
θ = 0. : model prediction Eq. (35), ◦: AVSP results.

Using A = 0 into Eq. (23) leads to a ratio A+/A− = 1 for the traveling
wave decomposition (Eqs. (21) and (22)) showing that the mode is a standing
mode due to the superposition of rotating modes with equal amplitudes.

5.3. Mixed mode

The other solution for a single burner (N = 1) (Table 2) is given by
ǫp = −Γ0

p. The corresponding frequency is:

fp =
c0

2L
(p−

Γ0
p

π
) (37)

Solution of Eq. (37) for the first two modes (p = 1 and 2) as a function of
τ are compared to results obtained with AVSP in Figs. 7 to 10. The flame
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interaction index n is fixed to its theoretical value in the low frequency limit
(n = T 0/T 0

u − 1 ≃ 1.57) and all other numerical values are given in Table 1,
leading to small values for Γ0

p (|Γ0
1| < 0.02 and |Γ0

2| < 0.04). The revolution
time τr = c0/(2L) is used as a scaling factor for τ in Figs. 7 to 10.
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Figure 7: N = 1 - Eigenfrequency of the mixed mode of first order (p = 1) for one burner
as a function of τ/τr. : model prediction Eq. (37), ◦: AVSP results.

A very good agreement between theoretical prediction and numerical
simulation is found for the first mode (p = 1), both for the real part and
imaginary part of the eigenfrequencies (Fig. 7). Figure 8 shows that the
eigenfrequency describes a circle in the complex plane when the value of τ is
changing, as predicted by Eq. (37) because of the term ejω

0
pτ in the definition

of Γ0
p, Eq. (33).
A good agreement is also found for the second mode (p = 2). The real

part of the frequency is predicted with an accuracy superior than 1% but the
circle seems to be right shifted and to have a too small radius. The authors
attribute this discrepancy to the 3D effects and to the flame description -
in particular in the fact that zf differs of l by 10%. Comparison between
Fig. 7 and Fig. 9 shows that maximum values of the imaginary part of f2 are
larger than for f1 showing that mode 2 is more unstable than mode 1. Since
c0 l ≪ c0uL, it follows from Eqs. (33) and (37) that the frequency of order p
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Figure 8: N = 1 - Variation of the eigenfrequency of the mixed mode of first order
(p = 1) in the complex plane when τ is changing. : model prediction Eq. (37),
◦: AVSP results.

can be approximated by:

fp ≃ p
c0

2L

(

1−
1

2

s

S

l

L

ρ0

ρ0u

(

c0

c0u

)2

(1 + n ejw
0
pτ )

)

(38)

Equation (38) shows that the imaginary part of the azimuthal mode of order
p is proportional to p. As a consequence time amplification of higher order
modes are greater than of low order modes in this model where dissipative
effects have been neglected.

Figures 7 and 9 show that Eq. (37) predicts the sign of the imaginary
part of the eigenfrequencies for the first two modes precisely and can be used
to predict the stability of this simple system. The corresponding stability
criterion is quite simple:

sin(ω0
p τ) > 0 (39)

or using the revolution time τr = c0/(2L):

sin(p 2π
τ

τr
) > 0 (40)
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Figure 9: N = 1 - Eigenfrequency of the mixed mode of second order (p = 2) for one
burner as a function of τ/τr. : model prediction Eq. (37), ◦: AVSP results.

Equation (40) shows that the first mode is stable when τ < τr/2; thus the
first azimuthal mode is amplified when the flame delay is larger than τr/2
where τr is the first azimuthal mode period. It is interesting to note that
this instability criteria (τ > τr/2) is also the one found in simple models for
longitudinal combustion instabilities in straight ducts [12].

The pressure and velocity mode structures for the first mode (p = 1)
corresponds to:

p′(θ) = A
(

cos(θ(p− Γ0
p/π))− Γ0

p sin(θ(p− Γ0
p/π))

)

(41)

ρ0 c0 u′(θ) = jA
(

sin(θ(p− Γ0
p/π)) + Γ0

p cos(θ(p− Γ0
p/π))

)

(42)

Results for pressure are compared to AVSP in Fig. 11. A very good agree-
ment is found between the analytical solution and AVSP results. The burner
position (θ = 0) corresponds to an antinode of pressure but is not a node of
velocity (u′(0) = j AΓ0

p 6= 0).
The ratio between B and A is fixed to B = −AΓ0

p, corresponding for
A+/A− in the traveling wave decomposition (Eqs. 21 and 22) to:

A+

A−
= 1 + j 2 Γ0

p (43)
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Figure 10: N = 1 - Variation of the eigenfrequency of the mixed mode of second order
(p = 2) in the complex plane when τ is changing. : model prediction Eq. (37),
◦: AVSP results.

Application of Eq. (43) to numerical values of Table 1 with τ = 8 ms gives
A+/A− ≃ 1.02 − 0.010 j; this frequency does not correspond to a purely
standing wave. As shown in Appendix A, the pressure and the velocity are
symmetric despite the fact that the ratio A+/A− has not a modulus equal to
one. Because the wavenumber is not real valued (ki 6= 0), this ratio depends
on the (arbitrary chosen) origin of the x coordinate; a suitable choice which
leads to A+ = A− is identified in Appendix A which also establishes that the
mode corresponding to Eq. (43) shares the same symmetry than the config-
uration itself. It is also shown that this solution is neither a purely standing
nor purely propagation mode. Thus the fact that Eq. (43) corresponds to
a single mode (the corresponding frequency is not degenerate and is a sin-
gle root of the dispersion relation) is not in contradiction with geometrical
considerations and study of Evesque et al. [36] (which deals only with modes
where the imaginary part of the frequency is null).
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Eq. (41), ◦: AVSP results.
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6. Two burners

We consider now the case of two burners (N = 2) of same section s
and same length l, symmetrically disposed (d1 = d2 = L) on an annular
chamber but with different flame transfer functions ((n1, τ1) 6= (n2, τ2)). The
dispersion relation is obtained using Eq. (19):

(1− Γ1 Γ2) sin
2(kL) = −(Γ1 + Γ2) cos(kL) sin(kL) (44)

Using low coupling hypothesis, Eq. (44) becomes:

ǫ2p + (Γ0
p,1 + Γ0

p,2) ǫp = 0 (45)

where Γ0
p,i is the value of Γi for ω = ω0

p = p πc/L. Equation (45) has two
solutions (Table 3):

ǫp =

{

0
−(Γ0

p,1 + Γ0
p,2)

(46)

Case Frequencies Stability condition A+
1 /A

−

1 A+
2 /A

−

2

ǫp = 0 neutral −1 −1
ǫp = −(Γ0

p,1 + Γ0
p,2) n1sin(ω

0
p τ1) + n2sin(ω

0
p τ2) > 0 1 + j 2 Γ0

p,2 1 + j 2 Γ0
p,1

Table 3: Modes for 2 burners.

The first solution (ǫp = 0) corresponds to a standing neutral mode where
burners are located at pressure nodes and no activity exists within the burn-
ers (Au,i = 0). Expressions of pressure and velocity fluctuations are identical
to Eqs. (35) and (36). The second solution corresponds to a complex mode
where the stability condition is:

n1sin(ω
0
p τ1) + n2sin(ω

0
p τ2) > 0 (47)

Fig. 12 shows the stability zones for the first two modes (p = 1 and p = 2)
given by Eq. (47) when n1 = n2: for any value of τ1, one or more values of
τ2 can be chosen in order to ensure the stability of the first mode. The same
could be said for the second mode. But in order to ensure the stability of
both first and second modes, τ1 should satisfy w0

1 τ1 < 3 π/2 or w0
1 τ1 > 7 π/4

(if w0
1 τ1 > 2 π these conditions should be translated to 2 π). This conclusion

has a serious impact on stability control: it is not always possible to control
the stability of the whole system only by changing the value of the delay of
one of the two flames.
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Figure 12: N = 2 - Stability diagrams for the first and second mode of an annular chamber
with two burners having equal interaction indices n1 = n2.

7. Four burners

The method described above can be applied to any number of burners.
It is interesting to consider the case N = 4 because it allows us to investi-
gate passive control techniques. We consider here the case of four burners
and investigate a usual method applied in certain gas turbines: break the
symmetry of the system by using two different types of burners and placing
them to damp azimuthal modes. Starting from a configuration with four
identical burners that lead to an unstable first mode, the objective is to
modify the FTF of two of the four burners to damp azimuthal modes. Each
type of burner has a specific FTF. Modified burners can be disposed either
symmetrically or side by side (Fig. 13).

Figure 13: Geometrical arrangement of the four burners with two different flame transfer
functions: (n1, τ1) in white and (n2, τ2) in gray.

The characteristics of the flame transfer functions are noted (n1, τ1) for
the initial burners and (n2, τ2) for the modified burners. The two geometrical
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dispositions (’1212’ and ’1122’) of Fig. 13 will be studied to compare their
impact on the stability of the system when the time delay τ2 is changing.

7.1. Initial configuration: four identical burners of type 1

The initial configuration consists in four burners placed along the chamber
(Fig. 13), with a flame transfer function given by (n1, τ1). Using Eq. (19)
with the low coupling limit assumption leads to:

ǫ21 + 4Γ0
1,1 ǫp + 4 (Γ0

1,1)
2 = 0 (48)

The dispersion relation Eq. (48) leads here to a double root for the eigenfre-
quencies of the first mode:

ǫ1 =

{

−2 Γ0
1,1

−2 Γ0
1,1

(49)

In this case the ratios Bi/Ai (or equivalently A+

i /A
−

i ) are fixed by non-linear
effects which are not taken into account in our analysis. The mode observed
for this case can be standing (|A+

i | = |A−

i |), turning (A+
i = 0 or A−

i = 0)
or a combination of these modes as observed for example in the 3600 LES of
Wolf et al. [27].

Looking at the imaginary part of the frequency, Eq. (49) leads to the
stability condition for the first mode:

sin(ω0
1 τ1) > 0 (50)

As we assume that this mode is unstable, we choose the particular value of
τ1 = 7 ms for numerical applications, corresponding to τ1/τr ≃ 0.58 and
sin(ω0

1 τ1) ≃ −0.5.

7.2. ’1212’ configuration

This configuration corresponds to the case where two burners of type ’1’
symmetrically disposed have been replaced by two burners of type ’2’ with
flame transfer functions given by (n2, τ2) (Fig. 13). In the low coupling limit,
two distinct eigenfrequencies are found from the resolution of Eq. (19):

ǫ1 =

{

−2 Γ0
1,1

−2 Γ0
1,2

(51)
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The first solution (ǫ1 = −2 Γ0
1,1) is only depending on the flame transfer

function of the initial burners: this mode can not be controlled using the
burners of kind ’2’. Its stability condition is:

sin(ω0
1 τ1) > 0 (52)

As the initial configuration was assumed to be unstable, this frequency will
remain unstable even if two burners are replaced.

The second solution (ǫ2 = −2 Γ0
1,2) depends only on the flame transfer

function of the modified burners. Its stability is given by the value of τ2:

sin(ω0
1 τ2) > 0 (53)

The variation of the two eigenfrequencies with τ2 are plotted in Figs. 14
and 15 where the comparison with AVSP results are made. As predicted by
the theory, one of the eigenfrequency is independent of τ2 while the other
describes a circle in the complex plane.

Pressure modes structures obtained with AVSP for τ2 = 0.67 τr (τ2 =
8 ms) are given in Fig. 16.

7.3. ’1122’ configuration

This configuration corresponds to the case where the burners of type
’2’ are disposed side by side (Fig. 13). In the low coupling limit, a double
eigenfrequency is found:

ǫ1 =

{

−(Γ0
1,1 + Γ0

1,2)
−(Γ0

1,1 + Γ0
1,2)

(54)

The solution depends on the FTF of the two burner types ’1’ and ’2’ so that
(contrary to the ’1212’ case) it is possible to control the mode using type ’2’
burners. Assuming for example that type ’2’ burners will differ from type
’1’ burners only through their delay (τ2 6= τ1 but n2 = n1), the stability
condition writes:

sin(ω0
1 τ1) + sin(ω0

1 τ2) > 0 (55)

The stability of the system can be obtained by changing the value of τ2: the
variation of the two eigenfrequencies with τ2 are plotted in Figs. 17 and 18
when τ1/τr = 0.58 and compared to AVSP predictions. For each value of τ2
AVSP gives two distinct eigenfrequencies while the theory predicts only one
value. However these values are both very close to the theoretical prediction
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Figure 14: N = 4 - Variation of the first (top) and second (bottom) eigenfrequency of
the first mode for the ’1212’ configuration as a function of τ2 (τ1 = 7 ms). : model
predictions Eq. (51), ◦: AVSP results.

(Figs. 17 and 18). Using Fig. 17, when the delay of the type ’2’ burners
changes between 0.13 τr and 0.37 τr all modes become stable. These results
suggest that passive control of azimuthal mode by mixing different burners
can work if the modified burners are located one near the other (’1122’ case)
and not apposite to each other (’1212’ case).
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Figure 15: N = 4 - Variation of the first (left) and second (right) eigenfrequency of the first
mode in the complex plane for the ’1212’ configuration when τ2 is changing and τ1 = 7 ms.

: model prediction Eq. (51), ◦: AVSP results, + : mode with 4 identical burners
Eq. (49).

Figure 16: N = 4 - Pressure modulus of the first mode (p = 1) obtained with AVSP in
the ’1212’ configuration with τ1 = 7 ms and τ2 = 8 ms. Left and right correspond to the
two eigenfrequencies.
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Figure 17: N = 4 - Variation of the eigenfrequency of the first mode for the ’1122’
configuration as a function of τ2 (τ1 = 7 ms). : model prediction Eq. (54), ◦and
�: AVSP results.
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Figure 18: N = 4 - Variation of the eigenfrequency of the first mode in the complex plane
for the ’1122’ configuration when τ2 is changing and τ1 = 7 ms. : model prediction
Eq. (54), ◦and �: AVSP results, + : mode with 4 identical burners Eq. (49).
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8. Application to a real configuration

Previous sections have compared results obtained with the 3D Helmholtz
solver and the 1D description in the low coupling limit on academic config-
urations (Fig. 4). In this section a 3D complex geometry is studied, corre-
sponding to a full annular reverse flow helicopter combustion chamber. The
configuration is described in Section. 8.1. The eigenfrequencies computed as
a function of the flames delay using three methods: AVSP results on the
complex geometry (Section 8.2), 1D analytical model using the low coupling
assumption (Section 8.3.1) and numerical resolution of the dispersion rela-
tion of the 1D model without assuming a low coupling between burners and
the chamber (Section 8.3.2). A particular attention is paid to the stability
condition on the flames’ delay.

8.1. Description of the target configuration

The geometry is a gas turbine demonstrator designed by Turbomeca
(Safran group) and composed of 15 sectors. The whole chamber is con-
sidered, including its casing and the fifteen burners. The domain starts just
downstream of the compressor, where the cold flow enters the casing. The
latter then feeds the combustion chamber through swirlers that consists of
two co-annular counter-rotating swirl stages, dilution holes that limits the
extent of the primary zone where combustion occurs and multiperforated
plates and cooling films are used to cool the liner. Burnt gases exhaust from
the combustion chamber and enter the stator of the High Pressure Turbine.
At that point the flow is choked. However, since the Helmholtz solver as-
sumes zero Mach number, the computational domain is truncated slightly
upstream of the outlet to fulfill this assumption. Fig. 19 displays the full
annular geometry along with a transversal cut of a sector showing the main
features aforementioned.

8.2. AVSP simulations

The main inputs for the Helmholtz calculations, namely sound speed and
flame transfer function, are extracted from a 3D reactive Large Eddy Simu-
lation (LES) of a single pulsed sector, following the procedure described in
Kaufmann et al. [37]. A description of the LES solver used and its application
on similar cases can be found in [38, 6, 27]. The frequency of the pulsation
on the inlet is chosen to be 750 Hz, which is the frequency of the dominant
azimuthal mode in this configuration. This single-sector calculation provides
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Figure 19: Computational domain: full geometry (left), transversal cut of a sector (right).

sound speed and local interaction index fields (Fig. 20) which are supposed
to be independent of frequency (an assumption which should be relaxed to
match experimental data outside the 700−800Hz range). Using the reference
point shown in Fig. 19, the flame transfer function is constructed through
the local interaction index and a global prescribed delay. Inlet and outlet
boundary conditions are set to zero acoustic velocity. Acoustic damping by
the multiperforated plates is included in the Helmholtz calculations through
an homogeneous model [39, 40].

For each value of the delay τ , AVSP identifies two very close frequencies
for the first mode. The real and imaginary part of one of them as a function
of the delay τ are compared to analytical results in Figs. 22 to 24.

8.3. 1D description

To use the dispersion relation Eq. (19) for the geometry of Fig. 19, inputs
of the analytical model are chosen accordingly to the 3D complex geometry
and the operating conditions, and are shown in Fig. 21 and summarized in
Table 4. In particular the equivalent interaction index n was calculated by
integrating the local interaction index nu,i over the combustion chamber (see
Section 4 and [16] for more details).
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Figure 20: Sound speed (left) and local interaction index nu,i (right) fields on a transverse
cut of a single sector.

Figure 21: Chosen inputs of the analytical model
calculated from the 3D complex geometry, here
shown on a transverse cut of a sector.

N 15

l 0.12 m
s 1.333 10−4 m2

L 0.555 m
S 7 · 10−3 m2

cu 480 m.s−1

ρu 4.99 kg.m−3

c 704 m.s−1

ρ 2.14 kg.m−3

n 6.82

Table 4: Chosen values for the in-
puts of the analytical model.
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8.3.1. Low coupling limit

In the low coupling limit, a double eigenfrequency is found for the first
mode (p = 1):

ǫ1 =

{

−15 Γ0
1 /2

−15 Γ0
1 /2

(56)

Comparison of Eq. (56) with AVSP results is made in Figs. 22 and 23. The
global tendency is well predicted. However, AVSP results present a dissym-
metry that is not predicted by the low coupling theory. The periodicity of
the eigenfrequencies for τ = τr is not found in AVSP results. Moreover,
the critical delay of transition from stable to unstable modes is observed for
τ ≃ 0.38 τr while the model predict a transition at τ = 0.5 τr.
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Figure 22: N = 15 - Eigenfrequency of the first mode (p = 1) for the real configuration as
a function of τ/τr. : model prediction Eq. (56), ◦: AVSP results.

The imaginary part of the frequency for τ = 0 is predicted to be 0 while
it is found to have a small negative value in AVSP. This difference is due to
the damping effect of the multiperforated plates in the 3D configuration that
is not taken into account in the 1D model.
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Figure 23: N = 15 - Variation of the eigenfrequency of the complex mode of first mode
(p = 1) in the complex plane for the real configuration when τ is changing. : low
coupling hypothesis Eq. (56), : exact 1D resolution Eq. (19), ◦: AVSP results.

8.3.2. Exact 1D solution

In the previous section, the low coupling assumption was used. This
hypothesis assumes that flames perturbations lead only to a small deviation
of the eigenfrequencies. However, as seen in Fig. 22, the real part of the
frequencies can change from 500 Hz to 800 Hz, breaking the low coupling
hypothesis. This is due to the combination of a high value of interaction index
(n = 6.82), a high number of burners (N = 15) and a non negligible ratio
l/L, leading to values of ǫ1 that are not small (|ǫ1|#0.5) . As a consequence,
assuming ǫ1 ≪ π in the dispersion relation Eq. (19) is not justified and leads
to poor results. However, using an appropriate algorithm (e.g. Newton-
Raphson), the dispersion relation Eq. (19) can be numerically solved. Results
obtained with this method are compared to AVSP results in Fig. 23 and 24.
It is clear that predictions are improved. In particular, the shape of frequency
curves is better predicted and the delay of stability transition is now found
to be τ ≃ 0.39 τr, close to the value of 0.38 τr given by the 3D Helmholtz
solver.
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Figure 24: N = 15 - Eigenfrequency of the first order (p = 1) for the real configuration as
a function of τ/τr. : exact 1D resolution Eq. (19), ◦: AVSP results.
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9. Conclusion

To complement expensive Large Eddy Simulation [17] and Helmholtz [16]
tools used to study azimuthal modes in annular chambers, simpler tools are
required to understand the physics of these modes and test control strate-
gies [22]. This paper describes a simple analytical theory to compute the
azimuthal modes appearing in these chambers. It is based on a network,
zero Mach number formulation where N burners are connected to a single
annular chamber. A manipulation of the corresponding acoustic equations in
this configuration leads to a simple dispersion relation which can be solved
by hand when the interaction indices of the flame transfer function are small
and numerically when they are not. This analytical tool has been compared
systematically to a full three-dimensional Helmholtz solver and very good
agreement was found. The academic test cases included a model annular
chamber fed by a single burner (N = 1), two burners (N = 2) and four
burners (N = 4). In this last case, it was shown that passive control where
two types of burners are mixed on the same combustor, is more efficient
when the modified burners are located side by side and not on opposite posi-
tions, an observation which matches industrial recommendations when N is
larger. The last test case corresponded to a complete real helicopter cham-
ber (N = 15) and confirmed that, even in this complex geometry, a simple
network model can predict stability maps for the azimuthal modes. These
results show that building very simple analytical tools to study azimuthal
modes in annular chambers is an interesting path to understand and control
them.

Appendix A. Symmetry of the case N = 1

Dispersion relation and mode structures for the case N = 1 where only
one burner is connected to the chamber (Fig. 5) were studied in Section 5.
In particular, the solution ǫp = −Γ0

p leads to a ratio A+/A− with a modulus
that is not equal to one, a fact that seems to be in contradiction with basic
geometrical symmetry consideration. However, Eq. (43) is an approximation
valid in the low coupling limit. The exact value of the ratio is given by:

A+

A−
= e−j 2 kL (A.1)

Modulus of A+/A− is equal to one only if k is reel, i.e. in the case where
there is no flame (n = 0). Injecting Eq. (26) and ǫp = −Γ0

p into Eq. A.1
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leads to its approximate value given by Eq. (43). Injecting Eq. (A.1) into
Eqs. (21) and (22) leads to the following expressions for the pressure and
velocity fluctuations :

p′(x, t) = A+ ej kL
(

ej kx
∗

+ e−j kx∗
)

e−jwt (A.2)

ρ0 c0 u′(x, t) = A+ ej kL
(

ej kx
∗

− e−j kx∗
)

e−jwt (A.3)

where x∗ = x − L. Equations (A.2) and (A.3) show that the pressure is
symmetric and the velocity anti-symmetric, in agreement with geometrical
considerations. Thus, when the origin of the x axis is taken at the opposite
side of the burner, the pressure writes as the sum of two waves of the same
amplitude travelling in opposite directions. Snapshots of the real part of the
pressure and velocity fluctuations are plotted on Figures A.25 and A.26 at
different instants, illustrating the symmetry of the pressure. The maximum
of the pressure increases because the mode is unstable (ωi > 0). The mode
is not a standing mode but is not a spinning mode neither.
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Figure A.25: N = 1 - Snapshots of the pressure fluctuation at different instants for the
first mode (p = 1) and ǫ1 = 0.1 + 0.2 j. A+ was set to 1. The injector is positioned at
x∗/L± 1.

35



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1

ℜ
(ρ

0
c0
u
′
)

x∗/L
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