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ABSTRACT

The present study is devoted to the modeling of mean flow

effects while computing thermoacoustic modes under the zero

Mach number assumption. It is first recalled that the acoustic

impedance modelling a compressor or a turbine must be pre-

scribed under an energetical form instead of the classical acous-

tic variables. Then we demonstrate the feasibility to take into ac-

count the coupling between acoustic and entropy waves in a zero

Mach number framework to capture a family of low frequency

entropic modes. The proposed approach relies on a new Delayed

Entropy Coupled Boundary Condition (DECBC) and proves able

to capture a family of Low frequency entropic mode even though

no mean flow term is included into the fluctuating pressure equa-

tion.

NOMENCLATURE
A+, A− Amplitudes of forward and backward acoustic waves

Cp Heat capacity per mass unit at fixed pressure

Cv Heat capacity per mass unit at fixed volume

J Total enthalpy

M Mach number

R Reflection coefficient

Z Complex impedance

c Sound celerity

k Wave number

m Mass flow rate

p Static pressure

∗Address all correspondence to this author.

q Heat release per unit volume

s Entropy per mass unit

u Velocity vector

ρ Density

ĝ Complex amplitude of the fluctuating quantity g

DECBC Delayed Entropy Coupled Boundary Condition

Introduction

Lean premixed combustor systems in aero-engines are

promising devices to meet the future NOx emission reduction

requirements. However, they are also more prone to combustion

instabilities compared to classical combustors [1]. These oscilla-

tions of the flow may lead to many undesirable effects, such as

large-amplitude structural vibrations, flame flashback or blowoff,

or an abnormally high temperature of the wall of the combustor.

In the best case, the consequences would be a simple loss of per-

formance or a premature fatigue of materials. In the worst case,

a spectacular destruction of the system can occur. Consequently,

there is a need to better understand combustion instabilities and

to be able to predict them at the design level.

Several methods have been developed to study these insta-

bilities, such as low-order methods [2, 3] which solve only the

unidimensional acoustic problems, or at the opposite the Large

Eddy Simulation (LES) which solves numerically the complete

flow thanks to the reactive Navier-Stokes equations. As an inter-

mediate, the problem complexity can be reduced by the deriva-

tion of the Linearized Euler Equations (LEE) which neglect vis-

cous effects, or by the derivation of the Helmholtz equation when
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neglecting the mean flow motion. Although this last method may

be a crude simplification of the problem, this approach combined

with LES proved useful to better understand the structure and na-

ture of the instabilities observed in academic or industrial burn-

ers [4].

Although it is tempting to restrict the study of the behaviour

of thermo-acoustic instabilities to only the combustion chamber,

it is however important to take into account the proper acoustic

environment of the gas turbine, as for example the presence of

a compressor or a high pressure distributor. Since it is difficult

to simulate the whole configuration, a possibility is to reduce the

computational domain to only the flame tube where the mean

Mach number is approximatively zero (M = 0) while the com-

pressor and the turbine are modelled by prescribing appropriate

complex valued impedances at the boundaries.

At least two difficulties arise when using a Helmholtz solver

(thus assuming M = 0) for the combustion chamber and bound-

ary impedances to represent the upstream/downstream environ-

ment:

• In order to match the zero Mach number assumption used

to formulate the thermo-acoustic problem, the impedance

should be defined in theory in a section of the combustion

chamber where the Mach number is very small. In prac-

tice, the location of the outlet section is often imposed by

geometrical considerations and the effective Mach number

at the boundary is not necessarily very small,

• Three modes of fluctuations can perturb a steady baseline

flow [5]: acoustic perturbations propagates at the speed of

sound augmented by the local mean velocity while vortical

and entropy perturbations are simply convected by the mean

flow. As a consequence, the zero Mach number assumption

necessarily neglect the convection of entropy or vorticity

spots to the downstream. As shown by many authors [6–9],

entropy inhomogeneities generate acoustic waves when ac-

celerated in a mean flow pressure gradient, which is the case

when the combustor opens onto a high pressure distributor.

Acoustic waves transmitted through the distributor generate

indirect combustion noise, while acoustic waves travelling

back to the flame may generate a low frequency resonant

mode called rumble [10, 11].

It has been demonstrated in a previous study [12] that the

zero Mach number assumption for the mean flow can lead to

significant errors both in the prediction of the frequency and the

growth rate of the thermo-acoustic mode, suggesting that the two

points described above are of major importance. Since account-

ing for the non zero Mach number terms in the equations leads

to a drastic increase of the problem complexity [13], the aim

of this paper is to investigate an alternative approach where the

thermo-acoustic problem in the domain is still solved under the

zero Mach number assumption and the coupling with the convec-

tive quantities is modelled through an appropriate downstream

boundary condition.

The basic equations are recalled in section 1 while in sec-

tion 2 the proper way to couple a Helmholtz solver with an

analytical and/or numerical tool for the computation of the up-

stream/downstream boundary impedance is discussed. In section

3 we demonstrate the feasibility to take into account the cou-

pling between acoustic and entropy waves in a zero Mach num-

ber framework and to capture a family of low frequency entropic

modes. The analysis focuses on the configuration of a simple

tube containing a flame and where a shocked nozzle is located

downstream.

1 Mathematical formalism

This study is conducted in the frequency domain, i.e.

g′(x, t) = ℜ
{

ĝ(x)e− jωt
}

for any fluctuating quantity; it also fo-

cuses on unidimensional configurations so that only purely longi-

tudinal acoustic and entropy convection effects are present. Con-

sequently, vorticity perturbations and their interactions with the

acoustics are neglected in the remainder of the whole study.

1.1 Linearized Euler Equations for the eigenvalue
problem

For an homogeneous reacting mixture with constant heat ca-

pacities Cp and Cv, the linearised harmonic form of conservation

equations for mass, momentum and energy in a quasi-1D domain

of cross section area S(x) read respectively:

û
∂ρ0

∂x
+ρ0

∂ û

∂x
+u0

∂ ρ̂

∂x
+ ρ̂

∂u0

∂x
+

ρ0û+ ρ̂u0

S

∂S

∂x
= jωρ̂ (1)

1

ρ0

∂ p̂

∂x
+ û

∂u0

∂x
+u0

∂ û

∂x
+

u0ρ̂

ρ0

∂u0

∂x
= jω û (2)

û
∂ s0

∂x
+u0

∂ ŝ

∂x
+

rq0

p2
0

p̂−
r

p0
q̂ = jω ŝ (3)

with the linearized state equation and entropy expression:

p̂

p0
−

ρ̂

ρ0
−

T̂

T0
= 0 and

ŝ

Cv

=
p̂

p0
− γ

ρ̂

ρ0
(4)

Assuming that the unsteady heat release amplitude q̂ is mod-

eled as a linear operator, i.e. q̂= qρ̂ ρ̂+qûû+qŝŝ, Eqs. 1-3 define

an eigenvalue problem MW = jωW where M is :
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







∂u0

∂x
+u0

∂
∂x

+ u0
S

∂S
∂x

∂ρ0

∂x
+ρ0

∂
∂x

+ ρ0
S

∂S
∂x

0

1
ρ0

∂c2
0

∂x
+ u0

ρ0

∂u0

∂x
+

c2
0

ρ0

∂
∂x

∂u0

∂x
+u0

∂
∂x

T ( 1
p0

∂ p0

∂x
+ ∂

∂x
)

γrq0
ρ0 p0

− r
p0

qρ̂
∂ s0

∂x
− r

p0
qû u0

∂
∂x

+ T

T0

q0
p0
− r

p0
qŝ









(5)

and (ω,W ) the eigenpair, the eigenvector being

W = (ρ̂, û, ŝ)T , S the varying area section and T = (γ −1)T0.

1.2 Plane waves in an homogeneous media

In the case of a 1D domain with homogeneous baseline flow,

the following expressions can be obtained [14] for the complex

amplitudes:

p̂(x) = A+e jk+x +A−e− jk−x (6)

û(x) =
1

ρ0c0
[A+e jk+x −A−e− jk−x] (7)

ŝ(x) = σe jksx (8)

with

k+ =
ω

c0 +u0
=

k

1+M
k− =

ω

c0 −u0
=

k

1−M
(9)

ks =
k

M
(10)

where A+ and A− are the amplitudes of the forward and

backward propagating acoustic waves, respectively, σ the am-

plitude of the forward propagating entropic wave, k = ω/c0 is

the acoustic wave number and M the Mach number.

It should be noted that Eq. 8 represents an idealistic situ-

ation where the spatial diffusion of entropy spots is neglected.

Although this situation is not supported by previous studies [15],

it is judged appropriate for this proof of concept study.

Injecting the above expression of entropy into Eq. 4 leads to

ρ̂ =
p̂

c2
0

−
ρ0σ

Cp

e jksx and
T̂

T0
=

γ −1

ρ0c2
0

p̂+
σ

Cp

e jksx (11)

Eqs. 6, 7 and 11 describe the harmonic small amplitude

perturbations in the domain. Relations between complex valued

amplitudes A+, A− and σ are prescribed by boundary conditions

and jump relations through the interfaces.

(a)

(b)

FIGURE 1. CONFIGURATION A INVESTIGATED IN SECTION

2. FIGURE (a): THE COMPLETE GEOMETRY IS COMPUTED.

FIGURE (b): ONLY A PART OF THE TUBE 1 IS COMPUTED

WHILE THE REST OF THE DOMAIN IS MODELLED THROUGH

DOWNSTREAM IMPEDANCE.

2 Influence of the boundary impedance on thermo-

acoustic eigenfrequencies

When studying the acoustic behaviour of a combustor by

computing the eigenmodes thanks to a Helmholtz solver, appro-

priate boundary conditions must be used in order to represent the

acoustic environment. Upstream/downstream impedances can

be deduced from transfer functions describing the response of

acoustic elements to acoustic or entropic perturbations, either an-

alytically under the compact hypothesis [16] or numerically by

solving the LEEs [17]. The impedance should be defined in a

section of the combustion chamber where the Mach number is

very small, consistently with the zero Mach number assumption

which is valid when M ≪ L f /La, where L f is the thickness of the

reaction zone and La the typical acoustic wavelength. Since this

is not always the case in practice, there is a need to quantify the

errors inherent to this practice when the outlet/inlet Mach num-

ber is not very small.

The configuration considered is shown in Fig. 1.a. It con-

sists in two connected tubes of section S1 and S2. The subscripts

1 and 2 refer to parameters in the left and right tube, respectively.

Only isentropic fluctuations are considered (the inlet boundary

condition is s′ = 0 and there is no entropy source within the flow

domain).

The eigenmodes of this simple configuration are computed

by four different methods to assess the errors made when the

boundary Mach number increases and deduce the proper way to

prescribe boundary impedance.
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2.1 Method A0: Numerical results from the LEE’s

The LEEs presented in section 1.1 are solved numerically

so as to provide a reference solution accounting for mean flow

effects and the complete geometry [12].

2.2 Method A1: Global acoustic model

The forward and backward waves travelling in both tubes

lead to four unknown A+
1 , A−

1 , A+
2 and A−

2 . These waves are solu-

tions of an homogeneous linear system of equations obtained by

requiring that the boundary conditions and jump relations are ful-

filled. The two boundary conditions form a first set of relations

between waves amplitudes. A constant mass-flow rate m′
1 = 0

is imposed at the intlet x = 0 of the domain, while the outlet at

x = L is modelled by an acoustic open-end, so that p′2 = 0. In-

troducing the plane wave decomposition of pressure and velocity

fluctuations leads to:

A+
1 (1+M1)−A−

1 (1−M1) = 0 at x = 0 (12)

A+
2 e jk+2 L +A−

2 e− jk−2 L = 0 at x = L (13)

As explained in [14] the jump relations for the section

change located at x = l can be expressed by integrating over an

infinitesimal control volume the conservation of mass (Eq. 1)

where the time averaged mass flux term has been substracted,

and energy (Eq. 3) as long as the specific stagnation enthalpy

within the volume remains invariant. The following set of equa-

tions is then obtained :

[

(1+M1)A
+
1 e jk+1 l − (1−M1)A

−
1 e− jk−1 l

] S1

c1
=

[

[(1+M2)A
+
2 e jk+2 l − (1−M2)A

−
2 e− jk−2 l

] S2

c2
(14)

[

(1+M1)A
+
1 e jk+1 l +(1−M1)A

−
1 e− jk−1 l

] 1

ρ1
=

[

[(1+M2)A
+
2 e jk+2 l +(1−M2)A

−
2 e− jk−2 l

] 1

ρ2
(15)

One obtains the algebraic system MW = 0 where M is

defined as :











M+
1 −M−

1 0 0

0 0 e jk+2 L e− jk−2 L

S1
c1

M+
1 e jk+1 l − S1

c1
M−

1 e− jk−1 l − S2
c2

M+
2 e jk+2 l S2

c2
M−

2 e− jk−2 l

M+
1

ρ2
ρ1

e jk+1 l M−
1

ρ2
ρ1

e− jk−1 l −M+
2 e jk+2 l −M−

2 e− jk−2 l











(16)

where M+
1 = (1+M1), M−

1 = (1−M1), M+
2 = (1+M2),

M−
2 = (1−M2) and W = (A+

1 ,A
−
1 ,A

+
2 ,A

−
2 )

T . The dispersion re-

lation is then obtained by requiring the matrix M to be singular,

producing the solution of the acoustical problem.

2.3 Method A2: modeling of the section change by an
impedance

As shown in Fig. 1.b the computational domain is reduced to

the region between the inlet x = 0 where the boundary condition

is still m′
1 = 0 and x= lz < l where the impedance Zac is imposed.

The algebraic system described at Eq. 16 reduces to:

[

(1+M1) −(1−M1)

(1−Zac)e
jk+1 lZ (1+Zac)e

− jk−1 lZ

][

A+
1

A−
1

]

= 0 (17)

The impedance Zac is defined by

Zac =
1+Rac

1−Rac

(18)

where Rac = A−
1 /A+

1 is the coefficient of reflection defined

as the ratio between the reflected and the incident wave. The

transfer function of the modeled part of the domain (lz < x < L)
can be found by setting A+

1 to unity so as to express A−
1 . After

cumbersome but straightforward algebra, Eq. 16 leads to:

Rac = e

2 jk1(l−lZ )

1−M2
1

(

1+M1

1−M1

)(

A +B

A −B

)

(19)

with

A =
S1

c1

[

(1−M2)e

2 jk2(L−lZ )

1−M2
2 − (1+M2)e

2 jk2(l−lZ )

1−M2
2

]

(20)

B =
S2

c2

ρ2

ρ1

[

(1−M2)e

2 jk2(L−lZ )

1−M2
2 +(1+M2)e

2 jk2(l−lZ )

1−M2
2

]

(21)

2.4 Method A3: zero Mach number domain

Method A3 is similar to method A2 as described above.

The only difference is the use in the computational domain of

a wave number k derived under the zero Mach number assump-

tion instead of k± and M1 is set to zero in Eq. 17. The relation

A+
1 −A−

1 = 0 is now imposed at x = 0. Moreover, the expression

of the impedance Zac and the reflection coefficient Rac remains

unchanged. Thus, Eq. 17 becomes :
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TABLE 1. THERMODYNAMIC AND GEOMETRICAL PARAMETERS USED IN THE CONFIGURATION.

S1 S2 T1 P1 γ r L l lZ

0.05 m2 0.1 m2 300 K 101325 Pa 1.4 287 SI 1 m 0.99 m 0.98 m

TABLE 2. RESULTS FOR THE FIRST EIGENMODE WITH

METHODS A0, A1, A2, A3 WITH Rac AND A3* WITH Re, FOR

DIFFERENT INLET MACH NUMBER M1.

M1 0.0005 0.1

A0 87.154−0.007i 86.37−1.360i

A1 87.233−0.007i 86.367−1.364i

A2 87.233−0.007i 86.367−1.364i

A3 (Rac) 87.233+0.0208i 87.226+4.194i

A3* (Re) 87.233−0.0007i 87.226−1.377i

[

1 −1

(1−Zac)e
jk1lZ (1+Zac)e

− jk1lZ

][

A+
1

A−
1

]

= 0 (22)

2.5 Results

Thermodynamic and geometrical parameters used for the

computation of eigenmodes are presented in Table 1. The tem-

perature T1 and pressure P1 are imposed to the computation,

while these parameters with the subscript 2 are deduced from

the steady mean flow equations.

Results are presented in Table 2. As expected, comparisons

between method A0 and the global acoustical model (method

A1) give very satisfying results. Real and imaginary parts of the

frequency of the first eigenmode are both very close when com-

puted at different inlet Mach number M1. The small but existing

difference can be explained by the fact that the length of the sec-

tion change between S1 and S2 is not zero in the LEE solver but

close to x = 0.5 mm.

Comparisons between methods A1 and A2 prove that trun-

cating the computational domain while modeling the unresolved

part through an impedance gives exactly the same results. Based

on this observation, the influence of the zero Mach number as-

sumption can be isolated. Computations with method A3 are

chosen so as to represent the extreme case where 98% of the do-

main is solved with a zero mean flow. It is obvious that in such

configuration the real part of the frequency fM computed with

Mach number effects will be very close to the one ( f0) computed

at very low Mach number. As shown in [12] a relation between

frequencies can be found, so that fM ≈ (1 − M2) f0. Verifica-

tion of this relation with results of Table 2 is rather straightfor-

ward. The imaginary parts computed from method A3 suggest

that energy is entering into the domain while the Mach num-

ber increases. This observation is in contradiction with results

from the reference methods which show that the first mode is

always damped ( fi < 0). The solid line with star symbols on

Fig. 2 shows the modulus evolution of the reflection coefficient

for different inlet Mach numbers M1 (note that |Rac| does not de-

pend on the frequency according to Eq. 19). It is obvious that

non-physical energy growth is generated because the ratio be-

tween the reflected wave and the incoming wave is superior to

unity. As explained in [18], |Rac| can exceed unity at a critical

Strouhal number where vortical energy is generated downstream

of an abrupt change in the geometry of a pipe. As vorticity is

neglected in the present study, another explanation must be pro-

vided.

2.6 Boundary conditions: from a non stationary flow
formalism to a zero Mach number formulation

As shown by many authors [6,19], the classical derivation of

acoustic disturbances must be reformulated to take into account

the convection of mechanical work by the mean flow. The start-

ing point is to find an appropriate expression of the energy flux

through a boundary [9], using fluctuating stagnation enthalpy J′

and mass flow rate m′ as state variables. A mathematical proof of

the accuracy of such a choice for generalized acoustic field may

be found in [20].

Defining first the total enthalpy J =CpT + 1
2
u2 and the mass

flow rate m = ρu, the linearized isentropic fluctuating part of

these variables reads :

Ĵ =
p̂

ρ0
+u0û (23)

m̂ = ρ0û+u0ρ̂ with ρ̂ =
p̂

c2
0

(24)

Reformulation of Eqs. 23-24 with the plane wave expansion

of the pressure (Eq. 6) and velocity (Eq. 7) leads to:

Ĵ = J++ J− =
A+(1+M)e jk+x

ρ0
+

A−(1−M)e− jk−x

ρ0
(25)
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FIGURE 2. MODULUS OF THE REFLECTION COEFFICIENT

AS A FUNCTION OF INLET MACH NUMBER M1. STAR SYM-

BOL: ACOUSTICAL FORMULATION. SQUARE SYMBOL: ENER-

GETICAL FORMULATION.

m̂ = m++m− =
A+(1+M)e jk+x

c0
−

A−(1−M)e− jk−x

c0
(26)

The methodology to express in a general manner a boundary

condition in the zero-Mach number framework is described as

follow:

1. The boundary condition must be prescribed first with ener-

getic variables without neglecting the mean flow, defining

then a functional f (Ĵ, m̂, ŝ) = 0 linking the fluctuating vari-

ables Ĵ (total enthalpy), m̂ (mass) and ŝ (entropy). Expanded

each fluctuating quantity into waves (see Eq. 25, Eq. 26 and

Eq. 8), the boundary condition is written under the form:

g(J+,J−,m+,m−,σ) = 0 (27)

2. When the computational domain is represented under the

zero Mach number assumption, the functional f (Ĵ, m̂, ŝ) = 0

describing the boundary condition remains unchanged.

However, the energetic variables Ĵ, m̂ and ŝ must be then

expressed at the limit when M → 0. It comes:

Ĵ =
p̂

ρ0
m̂ = ρ0û ŝ = 0 (28)

As far as the waves are concerned, Eqs. 25 and 26 become

when M → 0 :

J+ =
A+e jkx

ρ0
, J− =

A−e− jkx

ρ0

m+ =
A+e jkx

c0
, m− =−

A−e− jkx

c0
(29)

Thus, the functional relationship representing the bound-

ary condition under the zero Mach number assumption be-

comes:

g

(

A+e jkx

ρ0
,

A−e− jkx

ρ0
,

A+e jkx

c0
,−

A−e− jkx

c0
,0

)

= 0 (30)

As an illustration, this methodology is now applied to the

boundary conditions used in the present study:

Boundary condition m̂ = 0 For that case, the functional

f (Ĵ, m̂, ŝ) = 0 is m̂ = 0. Reformulating this condition

using waves J+, J−, m+, m− and introducing the limiting

behavior when M → 0 leads to :

m++m− = 0 (31)

A+

c0
−

A−

c0
= 0 (32)

At the boundary where m̂ = 0, the input energetical reflec-

tion coefficient Re defined as the ratio between the reflected

wave A+ and the incident wave A− becomes Re = 1, which

may be viewed as Re = Rac where Rac is the classical acous-

tical reflection coefficient, which is +1 for û = 0. This result

explains in a proper way the validity of û1 = 0 as a choice

for the input boundary condition in method A3.

Boundary condition p̂ = 0 Combining Eqs. 23 and 24 with

p̂ = 0 leads to the functional f (Ĵ, m̂, ŝ) = 0:

Ĵ−
u0

ρ0
m̂ = 0 (33)

Reformulating with waves and using the limiting behaviors

Eq. 29 leads to :

(

J++ J−
)

=
u0

ρ0

(

m++m−
)

(34)

A+ (1−M) = −A− (1+M) (35)

At the boundary where p̂ = 0, the energetical reflection co-

efficient Re defined as the ratio between the reflected wave

A− and the incident wave A+ becomes Re = − 1−M
1+M

which

may be viewed as

Re =

(

1−M

1+M

)

Rac (36)
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where Rac is the classical acoustical reflection coefficient,

which is −1 for p̂ = 0. This latter result can be directly

applied to Eq. 19. Injection of Re into 18 leads to an ener-

getical impedance which takes the form of a ratio between

stagnation enthalpy and mass fluctuations :

Ze =
ρ1

c1

Ĵ

m̂
(37)

The dashed line with square symbols on Fig. 2 shows the

evolution of |Re| as a function of inlet Mach number M1. As

discussed in [18], the reflection coefficient Re defined with the

acoustical energy formulation is always equal or inferior to unity,

suggesting that the continuity of the energy at the control surface

is respected.

Computation of eigenmodes are now performed with Re in-

stead of Rac. Results are presented in Table 2 under the column

A3*. Eigenfrequencies computed with a reflection coefficient

based on the acoustic energy description are very close to the

ones computed with the reference methods (A0 and A1). As

the real part of the frequency remains unchanged whatever the

choice of the formulation of R, it suggests that the absorption of

acoustical energy is included only through the formulation of the

impedance. The small discrepancies between the reference so-

lution and method A3 with Rac are related to the length of the

domain where the Mach number is neglected. Actually, it can be

shown that the frequency tends to the reference solution when lZ
approaches x = 0. Such results demonstrate that the impedance

must be prescribed under an energetical form in order to obtain

an appropriate representation of the whole configuration in the

case where the domain is computed under the zero Mach num-

ber assumption.

3 Accounting for entropy convection in a zero Mach
mean flow

The acoustic waves generation when entropy inhomo-

geneities are accelerated in a non-uniform flow is a well known

phenomenon that has been extensively studied over the past

decades. Early analytical investigations deal with the develop-

ment of the jet noise theory, extending the work of Lighthill

to non-uniform density flows [6–8]. However these analytical

solutions were limited to low Mach number flows and focused

on the derivation of a formulation for the far-field sound radi-

ation into free space by inhomogeneities swept out of nozzle

orifice. In a different way, Marble and Candel [16] proposed a

one-dimensional theory based on the compact assumption (the

nozzle dimensions are small in comparison with the shortest

wave length that appears in the flow field). The nozzle may be

viewed as a duct discontinuity and simple relations between up-

stream/downstream acoustic and entropy waves can be written.

FIGURE 3. CONFIGURATION B INVESTIGATED IN SECTION

3.

Validation of such a theory has been provided recently [21] by

comparisons with experiments.

The effect on thermoacoustic instabilities of the presence

of a nozzle at the combustor exit is not obvious. As reviewed

by [22] some authors found no difference on the thermoacoustic

modes of their combustor whatever the type of exit used, while

other authors [23] reported that a strong low-frequency instabil-

ity occured when the open exit was replaced by a chocked noz-

zle. As explained by [22], the behaviour of such an instability

depends to the first order on the geometry. The spatial dispersion

of entropy fluctuations by the combustor aerodynamics [15] or

the constructive/destructive phase dependency [10] play an im-

portant role for the establishment of a coupling between acoustic

and entropy modes.

The configuration depicted in Fig. 3 has been chosen in or-

der to exhibit the presence of an entropy mode among acoustic

modes. A flame is located at x = x f , which constitutes an inter-

face between cold gas and hot gas. A chocked nozzle is located

at x = L while the sonic throat where the Mach number reaches

unity is located at x = xth. A similar methodology to the previous

section is employed by comparing three methods.

3.1 Method B0: Numerical reference method
Method B0 is strictly the same as method A0 presented

above in section 1.1 [12]. Both the combustor and the nozzle

are computed. The thickness of the flame is 0.005 m.

3.2 Method B1: Global thermoacoustic model
Five equations are required to express the global thermoa-

coustic model. The flame is considered infinitely small, allowing

the integration of conservation equations Eqs. 1-3 over the dis-

continuity. At a first approximation and in the case where the

two connected ducts share the same cross section S, this leads to

the following set of jump relations [2]:

ρ1û1 +u1ρ̂1 = ρ2û2 +u2ρ̂2 (38)

p̂1 +2ρ1u1û1 +u2
1ρ̂1 = p̂2 +2ρ2u2û2 +u2

2ρ̂2 (39)
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CpT01 (ρ1û1 + ρ̂1u1)+ρ1u1

(

CpT̂1 +u1û1

)

=

CpT02 (ρ2û2 + ρ̂2u2)+ρ2u2

(

CpT̂2 +u2û2

)

(40)

where Eq. 3 has been reformulated to express the total en-

ergy under a conservative form and the total unsteady heat re-

lease has been neglected. The mean stagnation temperature is

T0i = Ti +
1
2
u2

0i/Cp where the subscript i = 1,2 refers to cold and

hot gas, respectively.

The inlet and outlet boundary conditions form the last two

equations that are closing the problem. At x = 0, the bound-

ary condition imposed is m̂1 = 0. As recalled by [21], the com-

pact relation that models the supersonic chocked nozzle at x = L

reads :

û2(L)

c2
−

(

γ −1

2

)

M2
p̂2(L)

γP2
−

1

2
M2

ŝ2(L)

Cp

= 0 (41)

Using the usual plane wave expansions and Eqs. 38-41,

the eigenfrequencies of the problem are computed by solving

det(M ) = 0, where M is the matrix :















M+
1 e jk+1 x f −M−

1 e− jk−1 x f −M+
2

c1

c2
e jk+2 x f M−

2
c1

c2
e− jk−2 x f M2

c1

c2

M+
1

2
e jk+1 x f −M−

1

2
e− jk−1 x f −M+

2

2
e jk+2 x f M−

2

2
e− jk−2 x f M2

2

M31 M32 M33 M34
M3

2

2

M+
1 −M−

1 0 0 0

0 0 Tme jk+2 L −Tpe− jk−2 L −M2

2 e jks(L−x f )















(42)

M31 =
c1

c2

(

M+
1

[

M1 +1/(γ −1)+M2
1/2

])

e jk+1 x f

M32 =
c1

c2

(

M−
1

[

M1 −1/(γ −1)−M2
1/2

])

e− jk−1 x f

M33 = −
(

M+
2

[

M2 +1/(γ −1)+M2
2/2

])

e jk+2 x f

M34 = −
(

M−
2

[

M2 −1/(γ −1)−M2
2/2

])

e− jk−2 x f

with M+
1 = (1 + M1), M−

1 = (1 − M1), M+
2 = (1 + M2),

M−
2 = (1−M2), Tm = (1− γ−1

2
M2) and Tp = (1+ γ−1

2
M2)

3.3 Method B2: Delayed Entropy Coupled Boundary
Condition approach.

Combining Eq. 11, Eq. 38 and Eq. 40, and taking the limit

u → 0 while the product u2ŝ remains finite [2], one obtains the

following expression for the entropy produced by the flame:

ŝ2(x f ) =−
Cp

2 (T02 −T01)(γ −1)

u2c2
2

ρ1

ρ2
û1(x f ) (43)

Entropy fluctuations at the exit x = L may be analytically

expressed by the addition of a time delay that mimics the mean

flow convective effect:

ŝ2(L) = ŝ2(x f )e
jωτs with τs =

L− x f

u2
(44)

The methodology explained in the previous section is ap-

plied to Eq. 41, by reformulating this boundary condition thanks

to an energetical and isentropic functional f (Ĵ, m̂, ŝ) = 0. It

comes :

m̂

(

c2 +1/2(γ −1)M2u2

(1−M2
2)

)

− Ĵ

(

ρ2M2 +1/2(γ −1)M2ρ2

(1−M2
2)

)

−
1

2
M2ρ2c2

2

ŝ2

Cp

= 0 (45)

Reformulating this equation by using waves and injecting

the limiting behaviors Eq. 29 leads to :

A+

1+M2

(

1−
1

2
(γ −1)M2

)

−
A−

1−M2

(

1+
1

2
(γ −1)M2

)

= 0

(46)

This condition handles properly the acoustic reflection that

arises when a nozzle is connected to a domain computed under

the zero Mach number assumption. However it does not rep-

resent the entropy/acoustic coupling since σ was set to zero in

agreement with Eq. 29. This is the objective of the DECBC ap-

proach to model the effect of the accelerated entropy fluctuations

on the acoustics within the zero Mach number region. To this

purpose, the modeled entropy at the domain exit, Eq. 44, is in-

jected into Eq. 46 while keeping the energetical form given by

the functional at Eq. 45. Expressing û1(x f ) in terms of waves A+
1

and A−
1 allows us to write the following condition at x = L:

A+
1

[

βe jk1x f

]

−A−
1

[

βe− jk1x f

]

+

A+
2

[

(1− γ−1
2

M2)e
jk2L

1+M2

]

−A−
2

[

(1+ γ−1
2

M2)e
− jk2L

1−M2

]

= 0

(47)
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TABLE 3. THERMODYNAMIC PARAMETERS FOR CONFIGURATION B.

T1 P1 T2 γ r L x f xth

300 K 101325 Pa 1200 K 1.4 287 SI 1 m 0.5 m 1.087 m

with β =
1

2
Cp

(T2 −T1)(γ −1)

c1c2
e jωτs .

As in the previous section, the proper inlet boundary condi-

tion leads to A+
1 −A−

1 = 0. Finally, the problem defined by the

matrix of Eq. 42 reduces to Eq. 48 :













e
jk1x f

ρ1c1
− e

− jk1x f

ρ1c1
− e

jk2x f

ρ2c2

e
− jk2x f

ρ2c2

e jk1x f −e− jk1x f −e jk2x f −e− jk2x f

1 −1 0 0

βe jk1x f −βe− jk1x f
(1− γ−1

2 M2)e
jk2L

1+M2
−

(1+ γ−1
2 M2)e

− jk2L

1−M2













(48)

Consistently with the no flow approximation, Mach numbers

M1 and M2 do not appear in the first two rows which describe the

wave propagation within the cold and burnt gases.

3.4 Results

Thermodynamic parameters used in the computation of

eigenmodes of the configuration B are presented in Table 3.

Results are presented in Table 5 and Table 4. The Mach

number M2 downstream of the flame is a free parameter driv-

ing the system, which is computed directly by the equations with

methods B0 and B1, and prescribed in the boundary condition

formulation with method B2. The behaviour of the real part of

the first eigenfrequency computed with methods B0, B1 and B2

shows a strong dependency on the mean flow Mach number. The

real part of the frequency is proportional to the convective time

delay of the flow, suggesting that this eigenmode is of entropic

nature. The second eigenmode computed does not present the

same behaviour and the real part of the frequency is approxi-

mately the same whichever the method used or the Mach number

prescribed. As shown in section 2, the influence of increasing the

mean flow velocity is to damp the imaginary part, suggesting the

presence of an acoustic eigenmode.

A good agreement is found between analytical methods B1

and B2 and the numerical reference method B0, excepting that

this last one mispredicts the imaginary part of the eigenmodes

and underpredicts the real part of acoustic eigenfrequencies.

Such discrepancies can be explained by the fact that method B0

solves the whole domain (the combustor plus the nozzle), while

methods B1 and B2 are limited by the low-frequency compact

model which does not take into account the length of the nozzle

TABLE 4. ENTROPIC EIGENFREQUENCIES COMPUTED WITH

METHODS B0, B1 AND B2.

M2 0.0125 0.1

B0 8.92−0.89i 67.30−5.99i

B1 9.36−0.80i 73.13−4.34i

B2 8.97−0.80i 73.65−4.11i

TABLE 5. ACOUSTIC EIGENFREQUENCIES COMPUTED

WITH METHODS B0, B1 AND B2. THE ∗ SYMBOL REFERS TO

RESPECTIVE METHODS WHERE THE COUPLING WITH EN-

TROPY IS NEGLECTED AT THE EXIT BOUNDARY CONDITION.

M2 0.0125 0.1

B0 206.21+25i 178.04+10.57i

B1 211.67+5.04i 189.02+13.7i

B1∗ 211.14−2.28i 210.76−18.51i

B2 211.67+5.34i 192.27+18.63

B2∗ 211.14−0.82i 210.66−6.6i

nor the phase shift between incoming and reflected waves [24].

However, such a simplified model shows at the first order that

the use of a DECBC is able to capture both entropic and acoustic

eigenmodes and to predict them correctly, despite the fact that the

mean flow is neglected during the computation of the domain. In

order to illustrate the effect of the coupling with entropy, meth-

ods B1∗ and B2∗ present the computation of eigenmodes with a

purely acoustic boundary condition, i.e. the coupling with en-

tropy waves has been neglected in Eq. 41 (this means using

Eq. 46 instead of Eq. 47). Obviously the entropic mode does

not appear in this case. The growth rate of the acoustic mode is

significantly mispredicted, suggesting that the coupling between

entropy and acoustic fluctuations exhibit a strong unstable ther-

moacoustic mode, while purely acoustic analysis shows a stable

eigenmode.

Conclusions

The present study is devoted to the modelling of mean flow

effect while computing thermoacoustic eigenmodes under the

9



zero Mach number assumption. It has been shown that:

• when the computational domain is represented under the no

flow assumption, the acoustic impedance modelling a com-

pressor or a turbine must be prescribed under an energetical

form rather than from the classical acoustic variables. A

systematic methodology is proposed to generate the proper

reflection coefficient to impose given any physical boundary

condition written without the zero Mach number assump-

tion.

• the coupling between entropy and acoustic waves at the en-

trance of a nozzle generates a low frequency eigenmode

and a shift of higher frequency modes that does not appear

when the mean flow convective effects are neglected. Such

phenomena can be taken into account thanks to the pro-

posed methodology where a zero Mach number formulation

is used together with a Delayed Entropy Coupled Boundary

Condition.
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