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Abstract. The paper proposes a uni�ed watershed de�nition and algo-
rithms for both node or edge weighted graphs. The �ooding adjunction
permits to associate to each type a common �ooding graph in which
the node and edge weights may be derived from each other. A lexico-
graphic order relation between non ascending paths permits to order
them according to their steepness. The watershed zones, i.e. the points
linked with two distinct minima through non ascending paths are more
and more reduced as one considers steeper paths and may be suppressed
with .

1 Introduction

The watershed is a versatile and powerful segmentation tool. Its use for segmen-
tation is due to Ch.Lantuéjoul and S.Beucher [6]. The history of its development
is rich and the literature about it vast and confusing [43]:

- It may be applied on an image considered as a topographic surface, the
pixels indicating the ground level [6], [36], [6],. Or it may be applied on a graph,
such as a region adjacency graph [5], where the relevant information are the
altitudes of the pass points between adjacent catchment basins . In the �rst
case, one has to �nd the watershed on a node weighted graphs, in the second on
an edge weighted graph [14].

- Some algorithms produce thin divide lines (or surfaces in 3D images) sepa-
rating the catchment basins, others produce partition, where each region repre-
sents a catchment basin.

- Thinning algorithms modify the topography of the surface until �at zones
appear in the catchment basins separated by divide lines. Other methods do not
modi�y the relief

- Two physical models undeline the watershed concept. The rain model, where
the destiny of a drop of water falling on the surface de�nes the catchment basins
; the divide line or zone is the set of nodes from where a drop of water may reach
several distinct catchment basins. The �ooding model where the relief is �ooded
from sources placed at the regional minima and meet along the divide lines. The
later method being often implemented as shortest distance algorithms [39], [47].

A good review on the watershed may be found in [50], and in the recent book
[62]



The present paper considers watersheds producing partitions. Its merit is to
reconcile the rain model and the �ooding model and to show that node and
edge weighted graphs are perfectly equivalent and produce the same watershed
partitions. The paper orders the trajectories of a drop of water or of a �oodind
according their steepness ; it shows also how the minimum spanning forests and
minimum spanning trees may be ordered according this steepness.

The paper introduces the �ooding adjunction and extracts from each weighted
graph a �ooding graph on which node and edge weights may be deduced from
each other. A series of nested partial orders measuring the steepness of a trajec-
tory of water are de�ned and a pruning algorithm presented for eliminating the
trajectories with a low steepness.

The outline of the paper is the following

� a brief history of the watershed
� Reminders on adjunctions
� Reminders on weighted graphs
� Distances on node or edge weighted graphs
� Adjunctions between nodes and edges
� The �ooding adjunction.
� Invariants of the �ooding and closing adjunction
� Flooding graph
� Paths of steepest descent and k-steep graphs
� The scissor operator, minimum spanning forests and watershed partitions
� Lexicographic distances and SKIZ
� The waterfall hierarchy.
� Emergence and role of the minimum spanning tree
� Discussion and conclusion



Part I

The history of the watershed





2 Thinnings, geodesic distances and skeletons by zone of

in�uence

The history of the watershed for segmentation is linked with the technological
development of the image processing devices. In the mid seventies, computer
memory was expensive, and computers slow. At the CMM we developed the
�rst image analyzers, subsequently commercialized by Leitz under the name
TAS holding binary image memories [26]. The result of an image transform may
be stored in a memory and become the source of a second transform. Chaining
operators permits new developments such as geodesic transforms, skeletons etc.
The �rst watershed transform emerged from an alchemy mixing skeletons by
zone of in�uence and binary thinning and thickening algorithms for constructing
skeletons.

Christian Lantuejoul, in order to model a polycrystalline alloy, de�ned and
studied the skeleton by zones of in�uence of a binary collection of grains in his
thesis [27] ; he studied the geodesic metric used for constructing a SKIZ in [28].
However, at that time, the binary operators of the TAS did not permit to con-
struct geodesic distances and SKIZ directly. He used instead binary homotopic
thinnings for the construction of the SKIZ.

For studying the drainage properties of a topographic surface, he had the
idea to construct geodesic SKIZs of the minima, taking as masks the successive
thresholds of the function. This gave the �rst algorithm for the construction
of watersheds. With Serge Beucher, they applied the watershed transform to
the gradient image of gas bubbles, yielding the �rst watershed application to
segmentation [6] [7].

The same method, applied to the more complex image of electrophoretic
gels highlighted the major drawback of watershed segmentation : a severe over-
segmentation, due to the presence of multiple spurious minima in the gradient
image. I proposed a slight modi�cation of the thinning algorithm which solved
the problem. Instead of performing successive geodesic thickenings of all regional
minima, one performs a thickening of a set of markers, some of them inside the
objects to segment and at least one of them in the background [35],[4],[8]. This
method produces a coarse approximation of the contours, between the inside
and outside markers of the objects, as starting point of the successive geodesic
homothetic thinnings. For increasing thresholds of the gradient image, the con-
tours narrow down and ultimately produce the correct result. Marker driven
watershed became the dominant morphological segmentation paradigm for some
time [4].

Homotopic thinnings peel o� points of a thick contour until this contour
becomes thin, producing a thin line between the various markers or minima. G.
Bertrand de�ned destructible points whose grey tone may be lowered without
connecting adjacent catchment basins, yielding a kind of thinning for gray tone
images. As a result he got what he called the topological watershed [3] where a
thin line separates grey tone �at zones containing each a regional minimum of
the initial surface and having the same grey tone as this minimum.



As a matter of fact, in terms of geodesic distance, one may be interested
by the set of points equidistant from two distinct seeds, and obtain a skeleton
by zone of in�uence, in form of a thin line. One may also be interested by the
points which are closer to one seed than to any other seed. On a digital grid,
there exist pairs of neighboring pixels, such that one is closer to a seed and the
other closer to another seed, without a third pixel separating them. Other pixels
are at the same distance of two seeds. For this reason, it is often preferred to
create a tessellation, i.e. a partition of the image, where each tile is made of all
pixels closer to a seed than to any other, but also contains some pixels which
are equidistant from two seeds. The price to pay is an arbitrary choice for a
assigning such pixels to one of the closest seeds. This phenomenon, which is true
for the Voronoï tessellation of binary images directly translates to the watershed
itself, as its construction is made by successive geodesic SKIZ. Such a partition
is called watershed zone. If one consider a graph where the nodes are the pixels
and the edges connect neighboring pixels, we obtain a partial graph connecting
only pixels belonging to the same tile of the watershed partition. As there never
exists an edge between two distinct tiles, this partial graph is a graph cut of
the initial graph [14]. Such partitions could not easily be constructed through
thinnings but their construction became easy with the apparition of general
purpose computers with cheap memories, able to hold complete images.

3 Random access memories and waiting queue driven

algorithms

Random access memories permit simulating the progression of a �ood in a much
more e�cient way, as on hardwired devices, where the whole image has to be
processed for each step progression of the �ood. The �rst development uses a hi-
erarchical queue controlling the propagation of labels for constructing a skeleton
by zones of in�uence. This method permits to construct ad libitum skeletons by
zone of in�uence or Voronoï tessellations and by replacing the thinnings in the
�rst generation algorithms produced e�cient watershed algorithms on general
purpose computers. A hardwired implementation of this algorithm has been pro-
posed in [49]. In order to be able to rapidly generate the successive thresholds of
a grey tone image, L.Vincent and P.Soille had the idea to produce a histogram of
the image in a �rst run and then to order the addresses of each pixel in bins with
the right size for this particular grey tone. With these innovations, the algorithm
of Lantuejoul could be implemented and gain new speed [57],[59].

The introduction of a hierarchical queue (HQ) for controlling the �ood during
the watershed construction presented a great advantage. It produces a correct
�ood not only from one grey tone to the next, but also within the �at-zones of
the image. Furthermore, without modi�cation, it is equally able to construct the
watershed associated to all minima or to a set of markers [36].



4 The topographic distance and shortest path algorithms

This �rst period is dominated by algorithms and lack a precise de�nition of the
watershed. Two independent papers introduced the topographic distance and
de�ned the watershed as a SKIZ of the minima for this distance [47],[39]. The
equidistant lines from the minima are the level lines of the topographic surface.
This de�nition was thus compatible with the presentation of the watershed lines
as dams to be erected for separating the �oods from distinct minima during a
�ooding of a topographic surface [4]. Furthermore, it can be shown that the HQ
algorithm directly derives from this de�nition [39].

As the geodesic lines of the topographic surface follow lines of steepest de-
scent, another type of algorithms has been developed, where a graph is con-
structed linking each node with its lowest neighbors. This graph is then pruned
in order to keep only one lower neighbor, creating a forest, where each tree spans
a region of the partition. This idea has been used for parallelization of the wa-
tershed between various processors [9], [24] and for a hardwired implementation
of the watershed [29].

The construction of the watershed may be then be obtained as a shortest
path problem on a graph for which many algorithms exist [44],[2]. In order to
obtain higher precision on digital grids, G.Borgefors introduced chamfer dis-
tances [10]. The same type of neighborhoods, based on particular weights for
�rst and second neighbors on a grid can also be adapted for the construction of
chamfer topographic distances [39]. Using a hierarchical queue for controlling the
Dijkstra-Moore algorithm furthermore permits a correct �ooding of the plateaus.
Shortest path algorithms lend themselves also very well to the implementation
on graphics processors or GBU [25]

These watershed algorithms may be subdivided in two classes : the �rst class
constructs a watershed line separating connected particles ; the second produces
a partition of the image, where each region represents a catchment basin.

The de�nition of the watershed line leads to an eikonal equation, expressed
as a PDE and may be solved as such. This leads to a continuous watershed
algorithm. [31],[32].

The so-called watersnakes, which introduce some degree of viscosity in order
to regularize the watershed contours are also based on the topographic distance
[48]. J. Roerdink published a remarkable review on the various methods for
constructing the watershed [50].

5 Minimum spanning trees and forests, marker based

segmentation

The segmentation paradigm based on watershed and markers has proved to be
robust and e�cient for solving many segmentation tasks. Its strength lies in the
decoupling between a loose localization of the objects of interest, detected as
markers and the precise construction of the contours. This advantage is partic-
ularly true in 3D, where the construction of the contours is complex, whereas



detecting the markers is often much simpler and may sometimes be done in 2D
cuts of the 3D images.

Marker based segmentation is also ideal for interactive segmentation: a �rst
set of markers obtained automatically or interactively introduced in the im-
age produce a �rst segmentation. This segmentation may then be corrected by
adding, modifying or suppressing markers. Adding a marker to an existing seg-
mentation results in cutting a region of this segmentation in two parts. Sup-
pressing a marker on the contrary results in merging two regions. As a matter
of fact, marker based segmentation results in merging some of the catchment
basins associated to the complete collection of minima of the image.

This leads to an approach where two scales are considered : for segmenting
an image, the catchment basins of its gradient image are �rst constructed at the
pixel level ; the �nal segmentation is then made at the level of regions. To this
e�ect one constructs the region adjacency graph, where nodes represent the re-
gions and edges link neighboring nodes. The edges are furthermore weighted by
a weight expressing the dissimilarity between regions. As the boundaries of the
regions follow the crest lines of a gradient image, one often expresses this dissim-
ilarity by the altitude of the pass point between adjacent regions. This weighting
is coherent with the �ooding paradigm underlying the watershed : the propa-
gation of a �ooding in a topographic surface crosses the boundaries between
catchment basins through their pass points. Flooding a topographic surface cre-
ates lakes. The lowest level of a lake containing two regional minima m1 and m2

of a topographic surface constitutes an ultrametric distance between these min-
ima. If m1, m2 and m3 are three minima, then the lowest lake covering all three
minima is higher or equal than the lowest lake covering only two minima, consti-
tuting the ultrametric inequality max[d(m1,m2), d(m2,m3)] ≥ d(m1,m3). The
minimum spanning tree of the RAG is a tree spanning all nodes and whose total
weight is minimal [12] [13] [11]. If the edge weights are all distinct, the minimum
spanning tree is unique ; when several MSTs exist, they all have the same weight
distribution.

MST constitute a sparse representation of a topographic surface as the num-
ber of edges equals to the number of nodes minus 1. Between any two nodes,
there exists a unique path on the MST and the weight of the largest edge along
this path is equal to the �ooding ultrametric distance between these nodes (see
the textbook [19]). Cutting all edges of the MST above some threshold produces
a forest where each subtree spans a region of the domain. For higher thresholds,
regions merge and coarser partitions produced. The series of nested partitions
constitutes a hierarchy. If by cutting the edges above a given threshold produces
n subtrees, they constitute a minimum spanning forest with n trees of the region
adjacency graph. Marker based segmentation also produces minimum spanning
forests with an additional constraint : each tree is rooted in a marker [38]. Marker
based segmentation may also be formalized in terms of the SKIZ of the markers
using a lexicographic distance [41].



6 From connected operators and �oodings to hierarchies

The partition obtained by cutting the edges of the MST or of the RAG above
some threshold is often not very useful as long it only relies on local dissimilarities
between regions. Better focused segmentations may be obtained if one selectively
�oods some catchment basins before constructing the watershed line. Floodings
have been introduced as reconstruction closings [16],[51] and subsequently gen-
eralized as levelings [40]. The watershed partition of an image produces a �rst
segmentation ; �ooding this image produces a coarser partition, where regions
of the previous segmentation have merged. To each additional �ooding of the
preceding will correspond a coarser partition. The series of these partitions form
a hierarchy. Such a hierarchy may be obtained in one run through the image,
rather than repeating n increasing �oodings and watershed basins detection.

M. Grimaud and L.Najman were the �rst to propose such a construction. At
the time, M.Grimaud tried to detect the microcalci�cation in breast X rays ; they
appear as small and contrasted bright dots. They appear on a �brous substrate
and coexist with noise particles. M.Grimaud wanted to rank all such events
independently of the contrast of the image and measure additional features on
the most contrasted ones. For this reason, he favoured a reconstruction closing
sensitive to the contrast, where the marker is the function itself after the addition
of a constant value λ. For increasing values of the constant λ, more and more
basins will be �lled and the subsequent watershed construction produce coarser
segmentations. Each minimum can then be weighted by the parameter λ for
which it is completely �lled ; at the same time each contour can be weighted by
the parameter λ for which it disappears for the �rst time. M.Grimaud proposed
an algorithm for weighting all minima, calling the contrast measure dynamics
[20]; on the other hand, L. Najman weighted the contours and called the measure
saliency [45], [46].

Other criteria than the contrast may be used for governing the �ooding of
the basins. If one uses as �oodings the area closings introduced by L.Vincent
[58], one obtains hierarchies governed by size criteria; . More generally, one may
�ood the basins in such a way that the lakes which are created have in common,
either the depth, or the area, or the volume of water [53],[54].

All these approaches have in common to use the same MST of the region
adjacency graph. They take the MST with a given set of weights as input and
output a new set of weights on the edges. Thanks to this common structure,
e�cient interactive segmentation toolboxes may be produced [61] . For instance
minimum spanning forests with trees rooted in markers may be derived from the
MST whatever its weight distribution.

In a hierarchy one goes from a �ne to a coarse partition by merging adjacent
regions. This operation is immediate if one deals with partitions : one assigns
to all regions to be merged the same label. It is however more problematic if
the contour is materialized between the regions and paradoxical situations may
be met if one does not carefully chose the graph representing the images [15].
This is an additional reason why to prefer watershed zones without boundaries



between regions ; furthermore representing contours wastes space in the image
and makes it impossible to segment adjacent small structures.

7 The waterfall hierarchy or graph cuts

S.Beucher introduced another type of hierarchy, expressing the nested structure
of the catchment basins. In the RAG the edges are weighted but not the nodes.
Marker based segmentations chooses a subset of the nodes and constructs a
MSF where each tree is rooted in a node. S.Beucher considered the topography
expressed by this graph and de�ned the regional minima as the maximal partial
graphs whose internal edges have the same weight and whose adjacent edges
have higher weights. Constructing a minimum spanning forest where each tree
is rooted in one of these regional minima produces a coarser partition [33]. This
partition itself may again by represented by a higher order RAG and MST on
which the same procedure may be applied again. The corresponding hierarchy
is called waterfall hierarchy [5].

Later J.Cousty also considered the problem of an edge weighted graph. He
called the resulting MSF graph cut and proposed an e�cient algorithm for con-
structing it [14].

7.1 Viscous and stochastic watershed

The watershed, being based on �oodings is extremely sensitive to leaks in the
topographic surface. For this reason, some works have attempted to regularize
the watershed by introducing some viscosity. We already quoted the watersnakes
[48]. Another approach consists in applying to the topographic surface an adap-
tive closing in order to produce a new surface on which the ordinary watershed
�ooding would progress in the same way as a viscous �uid would propagate in
the initial topographic surface [55].

The classical use of the watershed is to �nd the contours associated to all
minima or to a set of markers in a topographic surface. J.Angulo had the idea
to weight the contours of the watershed by the probability they appear when
random markers are used for segmenting the image. He called it the stochastic
watershed [1].

8 Watershed : a name put in all sauces

This brief history of the development of the watershed concepts, construction
algorithms and its use in the segmentation shows a contrasted and confusing
picture. Distinct algorithms claim to produce watersheds, although they clearly
produce distinct objects. The watershed may be topographic, viscous, stochastic,
with or without apparent contours, de�ned on pictures where the nodes are
weighted or on graphs where the edges are weighed. A number of issues are often
not clearly addressed. The most annoying is the fact that one always speaks of



watershed lines, as if the watershed always is a line, at least in the continuous
space. In fact, this is not at all the case, neither in images nor in the geology.
There exist so called buttonholes which are large drainage zones whose outlet
is a single point, at the same topographic distance of two minima. In this case,
the complete buttonhole belongs to a thick watershed zone. If one decides to
divide the buttonhole between these minima, is poses again the problem of the
unicity of the watershed, as there are obviously many possibilities to perform
this division ? There are objective reasons for the existence of multiple solutions.
A drop of water falling inside a plateau has no clear indication in which direction
to �ow, if only local neighborhoods are considered. We also mentioned the non
unicity of the MST of a RAG. What is the incidence of choosing one or another
?

Very often, de�nitions of watershed are given, without analyzing the unicity
or multiplicity of solutions. Similarly does a particular algorithm give the same
result if one changes the processing order. If several solutions may be produced by
the same algorithm or be compatible with a given de�nition, are these solutions
close one to another or in contrary extremely diverse ?

9 The history goes on...

This short history of the birth of the watershed for segmentation is necessarily
uncomplete : google �nds 31.000.000 entries for watershed.I hope that it is not
biased although it puts a particular focus on the development over time of the
concepts, algorithms and usage of the watershed at the CMM. This study is also
interesting from an epistemological point of view : it shows that how a concept
emerges, depending both on theoretical considerations (the study of the SKIZ
by Lantuejoul for instance), the lessons of experience (nasty oversegmentation
on real images, leading to the idea to introduce markers), technical revolutions
(cheap memories permitting e�cient random access to images, leading to the
algorithms driven by hierarchical queues), etc.





Part II

Reminders on adjunctions and

graphs





10 Reminder on adjunctions

The following section contains a reminder on adjunctions linking erosions and
dilations by pairs and from which openings and closings are derived [52],[22],[21].

10.1 Adjunct pairs of dilation/erosion

De�nition of adjunctions Let T a complete totally ordered lattice, where O
is the smallest element and Ω the largest element of T and let D,E be arbitrary
sets. Images will be functions:

� Fun(D,T ) : the image de�ned on the support D with value in T
� Fun(E ,T ) : the image de�ned on the support E with value in T

We consider two operators α and β :
α : Fun(D,T )→ Fun(E ,T ) and
β : Fun(E ,T )→ Fun(D,T ).

Let f be a function of Fun(D,T ) and g be a function of Fun(E ,T ):

De�nition 1. α and β form an adjunction if and only if :
for any f in Fun(D,T ) and g in Fun(E,T ) : αf < g ⇔ f < βg

Replacing < by = in the preceding relation would mean that α and β are
inverse one from another. As we only have inequalities, they are only quasi-
inverse, in a sense we will see later.

Erosion and dilation

Theorem 1. If (α, β) form an adjunction, then
α is a dilation (it commutes with the supremum of functions in Fun(D,T )
and β is an erosion (it commutes with the in�mum of functions in Fun(E,T )

Proof. Let f be a function of Fun(D,T ) and (g)i functions of Fun(E ,T )
Then f < β

∧
i

gi ⇔ αf <
∧
i

gi ⇔ ∀i : αf < gi ⇔ ∀i : f < βgi ⇔ f <
∧
i

βgi

Reading these equivalences from left to right and replacing f by β
∧
i

gi implies

that β
∧
i

gi <
∧
i

βgi.

Reading these equivalences from right to left and replacing f by
∧
i

βgi implies

that
∧
i

βgi < β
∧
i

gi

establishing that β
∧
i

gi =
∧
i

βgi.

Similarly we show that δ is a dilation, i.e. commutes with the union.

Remark 1. Calling O a constant function equal to O, we have for any f : O < βf
implying αO < f. This relation is true for all f, indicating that αO = O.
Similarly, we show that βΩ = Ω, where Ω is the constant function equal to Ω.

Lemma 1. α and β are increasing operators.

Proof. If f < g then β(f ∧ g) = β(f) = β(f) ∧ β(g) < β(g)



From one operator to the other From the relation αf < g ⇔ f < βg one
derives expressions of one operator in terms of the other one:

� If α is known, β may be expressed as βg =
∨
{f | αf < g} .

� Inversely if β is known, then αf =
∧
{g | f < βg}

10.2 Opening and closing

Lemma 2. The operator βα is a closing : increasing, extensive and idempo-
tent. Similarly the operator αβ is an opening : increasing, anti-extensive and
idempotent.

Proof. Openings and closings, obtained by composition of increasing operators,
are increasing.
By adjunction we obtain αf < αf ⇒ f < βαf showing that the closing is
extensive and αβf < f ⇐= βf < βf showing that the opening is anti-extensive.
In particular, applying an opening to αf yields αf > αβαf .
On the other hand, α being increasing, and the closing extensive :
f < βαf ⇒ αf < αβαf showing that αf = αβαf
Applying β on both sides yields βαf = βαβαf

The family of invariants of an opening or a closing We call Inv(γ) and
Inv(ϕ) the family of invariants of γ and ϕ.

Lemma 3. The family of invariants of an opening is closed by union. And the
family of closings is closed by intersection.

Proof. Let us prove it for openings ; the result for closings being obtained by
duality. Suppose that g1 and g2 are invariant by the opening γ : γ(g1) = g1 and
γ(g2) = g2.
Then γ(g1 ∨ g2) ≤ g1 ∨ g2 = γ(g1) ∨ γ(g2) by antiextensivity
And γ(g1 ∨ g2) ≥ γ(g1) ∨ γ(g2) as γ is increasing.

In the proof given above that αβ is an opening and βα a closing, we have
established :

� αf = αβαf = (αβ)αf which implies that αf ∈ Inv(γ)
� βf = βαβf = (βα)βf which implies that βf ∈ Inv(ϕ)

The opening as pseudo-inverse operator of the erosion We already made
the remark that replacing < by = in the adjunction relation αf < g ⇔ f < βg
would mean that α and β are inverse one from another. As a matter of fact, they
are not and we only have αβg ≤ g and βαg ≥ g. However, we have the following
lemma:

Lemma 4. The opening is the pseudo inverse of the erosion : αβg is the smallest
function having the same erosion as g. Similarly the closing is the pseudo inverse
of the dilation : βαg is the largest function having the same dilation as g



Proof. Suppose that f ≤ αβg veri�es βf = βg which implies αβf = αβg. Since
f ≤ αβg, we have αβf ≤ f ≤ αβg showing that f = αβg. Hence αβg indeed is
the smallest function having the same erosion then g. For this reason, we give
the name pseudo-inverse : the erosion has no inverse, but the family of functions
with an identical erosion has a smallest element, which is αβg.

Remark 2. If g ∈ Inv(γ), we have γg = αβg = g : on Inv(γ), α = β−1. If
g ∈ Inv(ϕ), we have ϕg = βαg = g : on Inv(ϕ), β = α−1



11 Weighted graphs

11.1 Reminders on graphs

Graphs

Basic de�nitions A non oriented graph G = [N,E] is a collection N of vertices
or nodes and of edges E, an edge u ∈ E being a pair of vertices (see [2],[19]).

A chain of length n is a sequence of n edges L = {u1, u2, . . . , un}, such that
each edge ui of the sequence (2 ≤ i ≤ n− 1) shares one extremity with the edge
ui−1 (ui−1 6= ui), and the other extremity with ui+1 (ui+1 6= ui).

A path between two nodes x and y is a sequence of nodes (n1 = x, n2, ..., nk =
y) such that two successive nodes ni and ni+1 are linked by an edge.

A cycle is a chain or a path whose extremities coincide.

A cocycle is the set of all edges with one extremity in a subset Y and the
other in the complementary set Y .

The subgraph spanning a set A ⊂ N is the graph GA = [A,EA], where EA
are the edges linking two nodes of A.

The partial graph associated to the edges E′ ⊂ E is G′ = [N,E′].

For contracting an edge (i, j) in a graph G, one suppresses this edge u and
its two extremities are merged into a unique node k. All edges incident to i or
to j become edges incident to the new node k.

Connectivity A connected graph is a graph where each pair of nodes is con-
nected by a path.

A tree is a connected graph without cycle.

A spanning tree is a tree containing all nodes.

A forest is a collection of trees.

Labelling a graph means extracting the maximal connected subgraphs and
assigning to each of them a di�erent label.

Contraction : If H is a connected subgraph of G, we call κ : (G,H) → G′

the operator which contracts all edges of H in G.

Weighted graphs In a graph G = [N,E] , edges and nodes may be weighted :
eij is the weight of the edge (i, j) and ni the weight of the node i. The weights
take their value in the completely ordered lattice T

Weights may be attributed to edges only, to nodes only or to both. Hence
the following weight distributions are possible, and we write:

G ∈ (−, �) if G has no weights at all

G ∈ (−, n) if G has its weights only on the nodes

G ∈ (e, �) if G has its weights only on the edges

G ∈ (e, n) if G has its weights on both edges and nodes



Fig. 1. Graph obtained by linking neighboring pixels of an image by an edge

11.2 Which types of graphs ?

In "pixel graphs" the nodes are the pixels and the edges connect neighboring
pixels. The weights of the pixels are their value and the weights of edges may
be for instance a gradient value computed between their extremities. Fig.1 rep-
resents the graph associated to a binary image ; edges linking two extremities
with the same value have a weight equal to 1, the others a weight equal to 0.
The connected components of this graph represent the connected particles and
connected holes of the binary image.

Neighborhood graphs are frequently met in the context of image segmenta-
tion. The nodes represent the tiles of a partition, edges connecting adjacent tiles.
The edge weights generally represent a dissimilariry between the regions repre-
sented by the extremities of the edge. Morphological segmentation frequently
uses the watershed transform which associates to a topographical surface its
catchment basins. Two catchment basins are neighbors if there exists a pass
point for passing from one to the other. The altitude of this pass point consti-
tutes a frequently used edge weight (see �g.2)

Gabriel and Delaunay graphs permit to de�ne neighborhood relations be-
tween the elements of a population of points are of sets. The Gabriel graph is
de�ned for points. Two nodes p and q are linked by an edge if there exists no
other node in the disk of diameter pq as illustrated in �g. 3. Node weights will
express features of the nodes, edge weights relationships between adjacent nodes.
The equivalent graph for sets is called perceptual graph [34]

11.3 Minimum spanning trees and forests in an edge weighted
graph

A minimum spanning tree is a spanning tree for which the sum of the edges is
minimal.
A spanning forest is a collection of trees spanning all nodes.



Fig. 2. Flooding a topographic surface in order to detect its catchment basins. Repre-
sentation of the neighborhood graph.

Fig. 3. Two points p and q are connected if there is no third point falling in a disk of
diameter pq.



In a minimum spanning forest, the sum of the edges is minimal.
The minimum minimorum spanning forest (MSF) has only nodes. Wih an ad-
ditional constraint, one gets particular forests:

� a MSF with a �xed number of trees, useful in hierarchical segmentation.
� a MSF where each tree is rooted in prede�ned nodes, useful in marker based
segmentation. [38]

11.4 Flat zones and regional minima on edge weighted graphs

Edge weighted graphs

De�nition 2. A subgraph G′ of an edge weighted graph G is a �at zone, if any
two nodes of G′ are connected by a chain of uniform altitude.

De�nition 3. A subgraph G′ of a graph G is a regional minimum if G′ is a �at
zone and all edges in its cocycle have a higher altitude.

We de�ne an operator µe : G → µeG extracting all regional minima of the
graph G

Node weighted graphs

De�nition 4. A subgraph G′ of a node weighted graph G is a �at zone, if any
two nodes of G′ are connected by a path where all nodes have the same altitude.

De�nition 5. A subgraph G′ of a graph G is a regional minimum if G′ is a �at
zone and all neighboring nodes have a higher altitude.

We de�ne an operator µn : G→ µnG : extracting all regional minima of the
graph G.

11.5 Other operators on graphs

Contracting or expanding graphs Contraction: For contracting an edge
(i, j) in a graph G, one suppresses this edge u and its two extremities are merged
into a unique node k. All edges incident to i or to j become edges incident to
the new node k and keep their weights.

If H is a subgraph of G, the operator κ : (G,H)→ G′ contracts all edges of
each connected component of H in G. Graph contraction will be used below for
highlighting the nested structure or hierarchy of the waterfall partitions.

Expansion: The operator ( : (−, n) → ( G creates for each isolated
regional minimum i a dummy node with the same weight, linked by an edge
with i. It permits to create graphs where each regional minimum node is linked
with a regional minimum edge.



Extracting partial graphs We also need various operator for pruning graphs
by suppressing particular edges. The following operators suppress a subset of
the edges in a graph:

χ : G ∈ (−, �)→ χG keeps for each node only one adjacent edge.
↓ : G ∈ (e, �)→ ↓ G keeps for each node only its lowest adjacent edges.
⇓ : G ∈ (−, n) → ⇓ G keeps only the edges linking a node with its lowest

adjacent nodes.

These operators may be concatenated:
χ ↓ G keeps for each node only one lowest adjacent edge.
χ ⇓ G keeps for each node only one edge linking it with one of its lowest

adjacent nodes.

12 Distances on a graph

12.1 Case of edge weighed graphs

The weights are assigned to the edges, and represent their altitudes.

Method for constructing a distance on an edge weighted graph Dis-
tances on an edge weighted graph have chains as support and are de�ned with
the following steps:

� de�nition of the weight of a chain, as a measure derived from the edge weights
of the chain elements (example : sum, maximum, etc.).

� An order relation is de�ned between chains. Two chains being compared by
their weights: the chain with the smallest weight is called the shortest.

The distance d(x, y) between two nodes x and y of a graph is ∞ if there is
no chain linking these two nodes and equal to the weight of the shortest chain
if such a chain exists.

Triangular inequalities appear quite naturally with the concatenation of chains.
Given three nodes (x, y, z) the concatenation of the shortest chain πxy be-

tween x and y and the shortest chain πyz between y and z produces a chain πxz
between x and z, whose weight is larger or equal to the weight of the shortest
chain between x and z. To each distance corresponds a particular triangular in-
equality : d(x, z) = weight(πxz) ≤ weight( πxyB πyz) where πxyB πyz represents
the concatenation of both chains.

Distance on an edge weighted graph based a the length of the shortest
chain Length of a chain: The length of a chain between two nodes x and y
is de�ned as the sum of the weights of its edges.

Distance: The distance d(x, y) between two nodes x and y is the minimal
length of all chains between x and y. If there is no chain between them, the
distance is equal to ∞. (see �g. 4)

Triangular inequality : For (x, y, z) : d(x, z) ≤ d(x, y) + d(y, z)



Fig. 4. The shortest chain (sum of the weights of the edges) between x and y is a red
line and has a length of 4. It is also the lowest chain (maximum of the weights of the
edges) with a maximal weight of 2.

Distance on a graph based on the maximal edge weight along the chain
Altitude of a chain: The altitude of a chain is equal to the highest weight of
the edges along the chain.

Flooding distance between two nodes: A �ood having its source at one
extremity of the chain reaches the other extremity as soon as its level reaches the
level of the highest edge along the chain. For this reason we call the associated
distance �ooding distance. The �ooding distance fldist(x, y) between nodes x
and y is equal to the minimal altitude of all chains between x and y. If there is
no chain between them, the �ooding distance is equal to ∞. (see �g. 4)

Triangular inequality : For (x, y, z) : d(x, z) ≤ d(x, y)∨d(y, z) : it expresses
that the lowest lake containing both x and y is lower or equal than the lowest
lake containing x, y and z.

The �ooding distance is an ultrametric eccart, as it veri�es in addition :

* re�exivity : d(x, x) = 0

* symmetry: d(x, y) = d(y, x)

It is however not a distance as it does not verify: d(x, y)⇒ x = y

The lexicographic distance or the cumulative e�ort for passing the
highest edges Toughness of a chain: We call toughness of a chain the de-
creasing list of altitudes of the highest edges when travelling along this chain. If
one travels from the origin of the chain towards the extremity, the �rst element
of the toughness is the altitude of the highest edge met along the path. When
this edge is crossed, the highest edge on the remaining path to the extremity
constitutes the second element of the toughness. The same process is repeated
until one arrives at destination. More formally, the toughness Λ(A) of a chain
A = e12e23...en−1n is constructed as follows. Following the chain from the origin
towards its end, one records the highest valuation of the chain, let it be λ1, then
again the highest valuation λ2 on the remaining part of the chain and so on
until the end is reached. One gets like that a series of non increasing values:
λ1 ≥ λ2 ≥....≥ λn. The toughness is not symmetrical.



A B

Fig. 5. Lexicographic distances. The toughness of the red chain in �g.A in the direction
from x to y is [3, 2] : after crossing the highest edge at altitude 3, the next highest edge
has altitude 2. The easiest chain from x to y it indicated in red in �g.B, its toughness
is [2, 2].

Remark 3. The toughness of a never increasing path (NAP), is simply equal to
the series of weights of its edges. Later we introduce shortest path algorithms
whose geodesics are NAPs.

We now introduce a total preorder relation permitting to compare the tough-
ness of two lexicographic chains. We �rst consider chains for which the toughness
list has the same length.

The lexicographic preorder relation of length k compares the lists π = (λ1, λ2, ...., λk)
and (µ1, µ2, ...., µk)

* π ≺k χ if λ1 < µ1 or there exists t < k such that
∀l < t : λl = µl
λt < µt

* π �k χ if π ≺k χ or if ∀l ≤ k : λl = µl.
This preorder relation is total, as it permits to compare all lists with the

same length. The same de�nition is valid for k =∞. We write ≺ for ≺∞ and �
for �∞ .

If we have to compare two lists with di�erent lengths, we prolongate them by
duplicating in�nitely the last element of the list. The list (λ1, λ2, ...., λn) becomes
(λ1, λ2, ...., λn, λn, λn...). Like the preorder is total,i.e. is able to compare any pair
of lists.

Lexicographic distance: The lexicographic distance between two nodes p
and q on an edge weighted graph is equal to the toughness of the chain going from
p to q with the smallest toughness for the relation � . Note that this distance is
not a value but a non increasing list of values (see �g. 5).

Remark 4. Lexicographic distances have been used in the context of marker
based segmentation on edge valued graph: each region is the set of nodes which
are closer for the lexicographic distance to a node than to any other node [41].

The lexicographic distance of depth k between two nodes x and y is written
lexdistk(x, y) and obtained by retaining only the k �rst edges in lexdist(x, y). The
distance lexdist1(x, y) is the same as the ultrametric �ooding distance as it is
the highest edge on the lowest path between x and y.



12.2 Case of node weighed graphs

The weights are assigned to the nodes, and represent their altitudes.

Method for constructing distances on a node weighted graph. Distances
on a node weighted graph have paths as support and are de�ned in two steps:

� De�nition of the "length" of a path, as a measure derived from the node
weights of the path elements (example : sum, maximum, etc.)

� Comparison of two paths by their length. The path with the smallest length
is called the shortest.

The "distance" d(x, y) between two nodes x and y of a graph is ∞ if there
is no path linking these two nodes and equal to the length of the shortest path
if such a path exists.

Given three nodes (x, y, z) the concatenation of the shortest path πxy between
x and y and the shortest path πyz between y and z is not a path, as the node y
is counted twice. For establishing the triangular inequalities, one has to suppress
this node counted twice.

Distance on a node weighted graph based on the maximal node weight
along the path Altitude of a path: The altitude of a path is equal to the
highest weight of the nodes along the path.

Flooding distance between two nodes: The �ooding distance fldist(x, y)
between nodes x and y is equal to the minimal altitude of all paths between x
and y.

Distance on a node weighted graph based on the cost for travelling
along the cheapest path Each node may be considered as a town where a
toll equal to its weight has to be paid.

Cost of a path: The cost of a path is equal to the sum of the tolls to be paid
in all towns encountered along the path (including or not one or both ends).

Cost between two nodes: The cost for reaching node y from node x is
equal to the minimal cost of all paths between x and y. We write tolldist(x, y). If
there is no path between them, the cost is equal to ∞. (see �g. 6)

Remark 5. The toll distance on a node weighted graph, is the same as the dis-
tance on an edge weighted graphs. The edges are oriented, and the weight of
each edge from i to j is equal to the weight of the node j. Like that, whatever
the edge which has been crossed for arriving at j, the same toll has to be paid,
equal to the weight of j.



Fig. 6. The cheapest chain between x and y is in red and the total toll to pay is
1 + 1 + 2 + 2 = 6.



Part III

The �ooding adjunction and

the �ooding graph





13 Two adjunctions between edges and nodes on

weighted graphs

We consider graphs without isolated nodes.

13.1 De�nition of two dual adjunctions

De�nition 6. We de�ne two operators between edges and nodes :
- an erosion [εenn]ij = ni ∧ nj and its adjunct dilation [δnee]i =

∨
eik

(k neighbors of i)

- a dilation [δenn]ij = ni ∨ nj and its adjunct erosion [εnee]i =
∧
eik

(k neighbors of i)

Lemma 5. The operators we de�ned are pairwise adjunct or dual operators:
- εne and δen are adjunct operators
- εen and δne are adjunct operators
- εne and δne are dual operators
- εen and δen are dual operators

Proof. 1) Let us prove that δen and εne are adjunct operators
If G = [e, n] and G = [e, n] are two graphs with the same nodes and edges, but
with di�erent valuations on the edges and the nodes then
δenn ≤ e⇔ ∀i, j : ni ∨ nj ≤ eij ⇔ ∀i, j : ni ≤ eij ⇔ ∀i, j : ni ≤

∧
eij

(j neighbors of i)

=

[εnee]i ⇔ n ≤ εnee
which establishes that δen and εen are adjunct operators.
2) Let us prove that εen and δen are dual operators
[εen(−n)]ij = −ni ∧ −nj = −(ni ∨ nj) = − [δenn]ij
Hence δenn = − [εen (−n)]

13.2 The �ooding adjunction

The dilation [δenn]ij = ni ∨ nj and its adjunct erosion [εnee]i =
∧
eik

(k neighbors of i)

have a particular meaning in terms of �ooding. If ni and nj represent the al-
titudes of the nodes i and j, the lowest �ood covering i and j has the altitude
[δenn]ij = ni ∨ nj (see �g. 9). If i represents a catchment basin, eik the altitude
of the pass points with the neighboring basin k, then the highest level of �ooding
without over�ow through an adjacent edge is [εnee]i =

∧
eik

(k neighbors of i)

.

This erosion has a particular meaning for neighborhood graphs, where the
nodes represent the catchment basins of a topographic surface and the edges
connect neighboring basins. The waterfall �ooding of a topographic surface con-
sists in �lling each catchment basin up to its lowest pass point. It is the highest
�ooding possible in this basin without over�ow (the �ooding of a one dimen-
sional topographic surface is illustrated in �g. 10). The waterfall �ooding con-
sists thus in assigning to each node the weight of its lowest adjacent edges, i.e.



Fig. 7. On the left an edge weighted graph. On the right the result of the erosion
between edges and nodes.

it is an erosion between the edges and the nodes on the neighborhood graph.:
[εnee]i =

∧
eik

(k neighbors of i)

(see �g. 6 and �g. 8).

13.3 Erosion between edges and edges / between nodes and nodes

By concatenation of operators between edges and nodes we obtain :

� an adjunction between nodes and nodes : (εneεen, δneδen) = (εn, δn)
� an adjunction between edges and edges : (εenεne, δenδne) = (εe, δe)

The erosions associated to these adjunctions will play an important role later,
for propagating the values of nodes and edges along the paths of steepest descent.

14 Opening and closing

As εne and δen are adjunct operators, the operator ϕn = εneδen is a closing on
n and γe = δenεne is an opening on e.

In the sequel, the �ooding adjunction will play a key role, in particular the
associated opening γe and closing ϕn.

Similarly the operator ϕe = εenδne is a closing on e and γn = δneεen is an
opening on n.

14.1 The �ooding opening γe

Construction and illustration Fig.10 presents a one dimensional topographic
surface and its neighborhood graph below. The nodes represent the catchment
basins ; the nodes representing adjacent basins are linked by edges weighted with
the altitude of the pass points separating the basins. The maximal �ooding of



erosion from edges to nodes

Fig. 8. The edge weights are given and the node weights are the result of the erosion
between edges and nodes

dilation from nodes to edges

Fig. 9. The node weights are given and the edge weights are the result of the dilation
between edges and nodes



Fig. 10. On the left: waterfall �ooding by an erosion between edges and nodes ; on the
rights subsequent dilation between nodes and edges yielding an opening.

a basin before an over�ow occurs reaches its lowest pass point ; such a �ooding
where each basin is �lled up to its lowest pass point is called waterfall �ooding.
In terms of graphs, it corresponds to an erosion between edges and nodes. The
subsequent dilation restores most of the edges to their original altitude but not
all. The altitude to which the edges are restored is indicated in blue ; the edges
which are not restored to their initial altitude have 2 colors, the result of the
opening in blue, the initial altitude in red. It is easy to check, and we will prove
it below, that the corresponding passpoints are those which are not the lowest
pass points of a neighboring catchment basin.

Fig.11 shows an edge weighted graph and its erosion between edges and
nodes. A �nal dilation between nodes and edges produces the opening γe. The
edges which are restored to their original weight are in blue. Those which are
lowered are in red, they are all edges which are not the lowest edge for one of
their extremities.

The invariants of the opening γe Let us analyze under which conditions an
edge is invariant by the opening γe. Two possibilities exist for an edge (i, j) with
a weight λ :

� the edge (i, j) has lower neighboring edges at each extremity. Hence εne(i) <
λ and εne(j) < λ ; hence δenεne(i, j) = εen(i) ∨ εen(j) < λ.

� the edge (i, j) is the lowest edge of the extremity i. Then εne(i) = λ and
εne(j) ≤ λ ; hence δenεne(i, j) = εen(i) ∨ εen(j) = λ.

This analysis shows that the edges invariant by the opening γe are the edges
which are the lowest edge of one of their extremities. All edges with lower adja-
cent edges at both of their extremities have their weight lowered by the opening
γe. They play no role in the erosion between edges and nodes. On the contrary, if
the edge (i, j) is the lowest edge of the node i, then this node i takes the weight
eij after the erosion εne.

The relation εne = εne(δenεne) shows that all edges which are not invariant
by the opening γe = δenεne play no role in the erosion. As a matter of fact, if
the opening lowers the valuation of an edge (i, j) and if the subsequent erosion



Fig. 11. From left to right: 1) an edge weighted graph, in the centre, 2) the result of
the erosion εne, 3) the subsequent dilation produces an opening. The edges in red are
those whose weight has been reduced by the opening as they were not the lowest edge
of one of their extremities in the initial distribution of edge weights.

εne is not modi�ed, it means that initial weight of this edge plays no role in the
erosion εne.

The drainage graph, partial graph invariant by the opening γe Sup-
pressing in an arbitrary graph g all edges which are not invariant by the opening
γe produces a graph g

′, invariant for the opening γe and called drainage graph.
The pruning operator keeping for each node only its lowest adjacent edges and
suppressing all others is written ↓ : (e, �)→ ↓ G and transforms each graph into
its drainage graph. The drainage graph has the following properties.

� ↓ G spans all the nodes (each node has at least one lowest neighboring edge
; such edges are invariant by γe).

� And εne(G) = εne(↓ G) (εne assigns to each node the weight of its lowest
adjacent edge, which is the same in G as in ↓ G).

� the operator ↓ may disconnect a connected graph and create several con-
nected components. However, it cannot create isolated nodes, as it leaves at
least one adjacent edge for each node.

Fig. 12 illustrates the construction of the drainage graph. On the left an edge
weighted graph ; the weights of the nodes are deduced from the weights of the
edges by the erosion εne. The central image illustrates the opening of the edge
weights, obtained by applying the dilation δen to the node weights. On the right
only the edges invariant by the opening are kept, the others are suppressed,
resulting in the drainage graph, which now has several connected components.



Fig. 12. Erosion from edges to nodes on the left, subsequent dilation producing the
opening γe in the centre and drainage graph on the right where only the edges invariant
by the opening are kept.

Identity of the erosion from edges to nodes on a graph and its drainage
graph The relation εne = εne(δenεne) shows that all edges which are not invari-
ant by the opening γe = δenεne play no role in the erosion. Suppressing all these
edges does not change the resulting erosion between edges and nodes. In other
words we get the same distribution of weights on the nodes if we apply the ero-
sion εne to a graph or to its drainage graph. Fig. 13_A shows a graph, �g.13_B
the distribution of weights on the nodes after the erosion εne.Fig. 13_C shows
the associated drainage graph and �g. 13_D the the distribution of weights on
the nodes after the erosion εne of the drainage graph. Both erosions produce the
same distribution of weights on the nodes.

Fig. 14 shows another illustration of the identity of results: εne(G) = εne(↓ G)

The invariants of the opening γe, or how to get drainage graphs The
family of openings is closed for the supremum. Hence if a graph G has two
edge weight distributions (e1, �) and (e2, �), which are invariant for γe, then the
distribution (e1 ∨ e2, �) also is invariant for γe.

An arbitrary graph may be transformed into a drainage graph:

� For edge weighted graphs, by applying the opening γe to the edge weight
distribution (e, �) : (γee, �) ∈ Inv(γe) or by by applying the operator ↓
suppressing all edges not invariant by the opening γe.

� For node weighted graphs (−, n) the dilation δen produces a drainage graph
as γeδenn = δenεneδenn = δenn, showing that (δenn, n) ∈ Inv(γe)

If a connected and edge weighted graph G = (E,N) is invariant by γe then :

� any subgraph G′ of G spanning a subset A of the nodes N, but keeping the
same edge weights belongs to Inv(γe). An edge of G′ has both extremities in
A ; being also an edge of G, it is the lowest edge of one of its extremities.
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Fig. 13. A: Initial edge weighted graph G
B: Erosion εne from the edges to the nodes on G
C: The graph ↓ G
D: Erosion εne from the edges to the nodes on ↓ G : εne(G) = εne(↓ G)

Fig. 14. Another illustration of εne(G) = εne(↓ G)



Fig. 15. A graph where the right most node with weight 1 is an isolated node regional
minimum without belonging to an edge regional minimum. On the contrary the left
most edge with weight 2 is an edge regional minimum spanning two node regional
minima.

� any partial graph, containing only a subset of the edges of E, with the
same weights also belongs to Inv(γe). In particular ↓ : G = (e, �) → ↓ G
containing for each node only its lowest adjacent edges and χ ↓ G keeping
only one lowest adjacent edge for each node.

Inverse of εne on the invariants of the opening γe On Inv(γe) : δenεne =
Identity showing that on Inv(γe) := δen = ε−1ne

The regional minima of the opening γe

Theorem 2. If an edge weighted graph G = (e, �) is invariant by the opening
γe, and m is the edge weighted subgraph of its regional minima, then εnem ∈
(−, εnee) is the node weighted subgraph of the regional minima of the node
weighted graph εneG ∈ (−, εnee)

Proof: A regional minimum mk of the graph G = (e, �) ∈ Inv(γe) is a
plateau of edges with altitude λ, with all external edges having a weight higher
than λ. If a node i belongs to this regional minimum, its adjacent edges have
a weight ≥ λ but it has at least one neighboring edge with weight λ : hence
εnee(i) = λ. Consider now an edge (s, t) outside the regional minimum, with
the node s inside and the node t outside the minimum. Then est > λ. As G =
(e, �) ∈ Inv(γe), the edge (s, t) is then one of the lowest edges of the nodes t
: thus εne(t) = est > λ. This shows that the nodes spanned by the regional
minimum mk form a regional minimum of the graph εneG = (−, εnee)

Remark 6. If G = (e, �) ∈ Inv(γe), then e = δenεnee. The node and edge
weighted graph (e, εnee) veri�es then n = εnee and e = δenεnee = δenn. Such
graphs are called �ooding graphs and are studied below in detail.

Remark 7. Inversely, given a node weighted graph (−, n), the edge and node
weighted graph (δenn, n) is invariant by the opening γe and the previous theorem
applies : the nodes spanned by an edge regional minimum form a node regional
minimum of the graph. Each such node regional minimum contains at least two
nodes. The graph may contain additional regional minima which are isolated
nodes and whose adjacent edges do not belong to a regional minimum. Fig.15
gives an example of such a situation.
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Fig. 16. Illustration of the closing ϕn, obtained by an erosion εne following a dilation
δen. All nodes remain unchanged, except the isolated regional minima, which take the
value of their lowest neighboring node.

14.2 The closing φn

We consider here node weighted graphs without isolated nodes. The closing ϕn
is obtained by a dilation δen of the node weights followed by an erosion εne as
illustrated by �g.16. One remarks in �g.16 that the node weights remain the
same, except the isolated regional minima, which take the weight of their lowest
neighboring node.

Two possibilities exist for a node i with a weight λ. The dilation δen assigns
to each edge with extremity i a weight ≥ λ.

� the node i is an isolated regional minimum. Then δen assigns to all edges
adjacent to i a weight higher than λ. The subsequent erosion εne assigns to
i the smallest of these weights, which is higher than λ.

� the node i has a neighbor j with a weight µ ≤ λ. Then δen assigns to the
edge (i, j) the weight λ. Hence all edges with extremity i have a weight ≥ λ
and at least one has a weight equal to λ. The subsequent erosion εne assigns
to i the weight λ.

Hence the closing ϕn replaces each isolated node constituting a regional min-
imum by its lowest neighboring node and leaves all other nodes unchanged.

Applying the erosion εne to an arbitrary edge weighted graph also produces
a graph invariant by ϕn as ϕnεnee = εneδenεnee = εnee ; the resulting graph
has no isolated regional node minima.

Property of the minima: If G = (−, n) ∈ Inv(ϕn) and m = (−, n) is the
subgraph of its regional minima, then δenm = (δenn, �) is the subgraph of the
regional minima of the graph δenG = (δenn, �)

Inverse of δen on the invariants of the closing ϕn On Inv(ϕn) : εneδen =
Identity showing that on Inv(ϕn) : εne = δ−1en



Creating invariants graphs for the closing ϕn For an arbitrary node weight
distribution (−, n) the simplest way to obtain an invariant for the closing ϕn is to
apply this closing to the node weights. Obviously(−, ϕnn) ∈ Inv(ϕn).Unfortunately,
this modi�es the weight of the isolated regional minima and extends them by
fusion with their lower neighboring plateaus. If we want to keep the node weights
unchanged, we have to apply the "expansion operator" presented earlier, which
for an arbitrary node weight distribution g = (−, n) creates an "expanded graph"
( g by creating for each isolated regional minimum i a dummy node with the
same weight linked by an edge with i. This new graph, having no isolated regional
minima anymore is now invariant by the closing ϕn : ( g ∈ Inv(ϕn).

Alternatively, if we add an edge linking i with itself, we create a loop edge,
which gets a weight λ by the dilation δen. And the subsequent erosion εne assigns
to i its initial weight λ. In what follows we equip each isolated regional minimum
by such a loop edge ; we transform lile that the node weighted graph G = (−, n)
into the graph � G = (−,� n) invariant by ϕn.

The family of invariants of a closing is closed for the in�mum. If (−, n1)
and (−, n1) are two node weight distributions which are invariant for ϕn, then
(−, n1 ∧ n2) also is invariant for ϕn.

Applying to an edge weighted graph (e, �) the erosion εne creates a distribu-
tion of node weights invariant by ϕn. As a matter of fact: (e, εnee) ∈ Inv(ϕn)
as ϕnεnee = εneδenεnee = εnee. As a matter of fact: (e, εnee) ∈ Inv(ϕn) as
ϕnεnee = εneδenεnee = εnee.

As a consequence, applying to a node weighted graph (−, n) the erosion
εn = εneεen creates a distribution of node weights invariant by ϕn.

Obviously, any partial or subgraph of a node weighted graph G ∈ Inv(ϕn),
without solated regional minima also belongs to Inv(ϕn).

In particular, a node weighted graph G invariant by ϕn remains invariant by
ϕn after the pruning ⇓ G which keeps only the edges linking a node with its
lowest neighbors. Each node i belonging to a regional minimum of g is linked
with at least another node j in this minimum through an edge. Such an edge is
not pruned by ⇓ g as it links i with one of its lowest neighboring nodes.

The regional minima of the closing ϕn

Theorem 3. If G = (−, n) ∈ Inv(ϕn) and m = (−, n) is the subgraph of its
regional minima, then δenm = (δenn, �) is the subgraph of the regional minima
of the graph δenG = (δenn, �)

Proof: A regional minimum mi of a graph G = (−, n) ∈ Inv(ϕn) is a plateau
of pixels with altitude λ, containing at least two nodes (there are no isolated
regional minima in Inv(ϕn)). All internal edges of the plateau get the valuation
λ by δenn. If an edge (i, j) has the extremity i in the minimum and the extremity
j outside, then δenn(i, j) > λ. Hence, for the graph (δenn, �), the edges spanning
the nodes of mi form a regional minimum.



15 The �ooding graphs

The literature on watersheds is itself divided by a divide line: on one side the
watersheds on node weighted graphs, on the other side the watersheds on edge
weighted graphs. Flooding graphs introduced below show that this division
makes no sense as �ooding graphs o�er a perfect coupling between edge and
node weights: one set of weights may be deduced from the other, and the catch-
ment basins associated to either one or the other are the same.

15.1 De�nition and basic properties

De�nition 7. An edge and node weighted graph G = [N,E] is a �ooding graph
i� its weight distribution (n, e) veri�es the relations:
- δenn = e
- εnee = n

Corollary 1. For a �ooding graph, the weight distribution (n, e)verifies :
- n ∈ Inv(ϕn)
- e ∈ Inv(γe)

Proof. e = δenn = δenεnee = γee and n = εnee = εneδenn = ϕnn

Properties of the �ooding graph As G is invariant by γe, all its edges are
the lowest edge of one of their extremities.

As G is invariant by ϕn, it has no isolated regional minimum.

Lemma 6. In a �ooding graph, a node has no adjacent edges with a lower weight
but each node has at least one adjacent edge with the same weight.

Proof. In a �ooding graph, as εnee = n, all edges adjacent to a node i have
weights which are higher or equal than this node and at least one of them, say
(i, j) has the same weight : eij = ni.

15.2 Constructing �ooding graphs.

Flooding graphs o�er a perfect coupling between the edge and the node weights.
As a matter of fact, constructing the watershed for node weighted graphs or
constructing it for edge weighted is strictly equivalent, since, as we will show
below, any node weighted graph without edge weights, or any edge weighted
graph without node weights may be completed to become a �ooding graph, on
which the watershed will be ultimately constructed.



Transforming an arbitrary edge weighted graph into a �ooding graph

Lemma 7. If G = (e, �) ∈ Inv(γe), then (e, εnee) is a �ooding graph

Proof. a) e = γee = δenεnee = δenn) ; b) n = εnee by construction.

Lemma 8. If G = (e, �) is an arbitrary edge weighted graph, then (↓ e, εne ↓ e)
is a �ooding graph

Proof. If G = (e, �) is an arbitrary edge weighted graph, then ↓ (e, �) ∈ Inv(γe),
as the edges lowered by γe, have been suppressed, the other edges keep their
weights. Furthermore we have proved above that εnee = εne ↓ e. Applying the
previous lemma shows that (↓ e, εne ↓ e) is a �ooding graph.

Transforming an arbitrary node weighted graph into �ooding graph

Lemma 9. If G = (−, n) ∈ Inv(ϕn), then (δenn, n) is a �ooding graph

Proof. a) e = δenn) by construction ; b) n = ϕnn = εneδenn = εnee.

Lemma 10. If G = (−, n) is an arbitrary node weighted graph, then (δen (
n,( n) is a �ooding graph

Proof. If G = (e, �) is an arbitrary node weighted graph, then (−,( n) ∈
Inv(ϕn), as each isolated regional minimum has been duplicated by the operator
( n. Applying the preceding lemma shows that (δen ( n,( n) is a �ooding
graph.

Partial graph of a �ooding graph Suppressing edges in a �ooding graph,
but leaving at least one lower neighboring edge for each node (like that, no
isolated regional minima are created) produces a partial graph which also is a
�ooding graph, keeping an identical distribution of weights on the nodes and on
the remaining edges.

15.3 Regional minima of �ooding graphs

We proved earlier these theorems:

� If G ∈ Inv(γe) is an edge weighted graph, and mi is an edge regional mini-
mum of G, then the nodes spanned by mi form a node regional minimum of
the node weighted graph εneG = (−, εnee)

� If G ∈ Inv(ϕn) is a node weighted graph, andmi is a node regional minimum
of G, then the edges spanningmi form an edge regional minimum of the edge
weighted graph δenG = (δenn, �)

As in a �ooding graph n = εnee and e = δenn we derive:



Theorem 4. If G is a �ooding graph with the weight distribution (e, n), then
the node weighted graph (−, n) and the edge weighted graph (e, �) have the same
regional minima subgraph.

Fig.17 presents the same �ooding graph, on the left with its edge weights and
on the right with its node weights : they have exactly the same regional minima.

The minima of a �ooding graph being identical for the edge weigths and for
the node weights may be assigned the same labels. The labels may be hold by
the edges of the minima or by their extremities, or by both, as illustrated by
�g.18.

15.4 Perfect equivalence between node and edge weights on
�ooding graphs

We now understand why the watershed of a �ooding graph may be constructed
on the basis of the node weights or on the basis of the edge weights : they produce
the same result :

� the node weights and the edge weights may be derived from each other
� the minima are the same
� each node has no lower adjacent edges but at least one with the same weight.
A node and the adjacent edge with the same weight is called �ooding pair. A
series of non increasing �ooding pairs is both a non increasing path of nodes
and a non increasing chain of edges.

We de�ne the catchment basin of a regional minimum as the set of nodes
which are linked by a non increasing path for node weighted graphs and a non
increasing chain for edge weighted graphs with this minimum. As the minima
are the same and the non increasing paths or chains also are equivalent, this
shows that indeed the watershed constructed on the node weights or on the edge
weights of a �ooding graph are the same.



Fig. 17.Whether one consider the egde weights or the node weights produces the same
regional minima.
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Fig. 18. As the minima are identical on the nodes or the edges of a �ooding graph, it
is possible to assign the same labels to nodes or to edges.



Part IV

The catchment basins





16 Steep, steeper and steepest descent paths and

catchment basins

16.1 A lexicographic order relation between downwards paths

Given a node or weighted graph we �rst derive from it a �ooding graph G =
[E,N ], where the lowest edges of each node have the same weight. We associate

to G an oriented graph
−→
G by replacing the edge (p, q) by an arrow −→pq if np ≥

nq and by two arrows −→pq and −→qp if np = nq. The loop edge linking an isolated
regional minimum node m with itself also is replaced by an arrow −−→mm. The
graph

−→
G veri�es the property (P ): ∀p ∈ N, there exists at least an oriented path

of
−→
G (with a positive or null length) linking p with a regional minimum.

De�nition 8. We de�ne the catchment basin of a regional minimum as the set
of nodes linked by an oriented path with this minimum.

Obviously, each node belongs to at least one catchment basins. Catchment
basins may overlap and form a watershed zone when two paths having the same
node as origin reach two distinct regional minima. We aim at pruning the graph
−→
G, without any arbitrary choices, and get a partial graph

−→
G′ for which the

property (P ) still holds but the watershed zones are smaller
We now de�ne a family of preorder relations (order relation without anti-

symmetry) between the paths of
−→
G. The relations become simpler if we consider

paths of in�nite length, obtained by prolongating the paths inside the regional
minima. If the regional minimum has more than one node, the prolongation
moves endlessly from node to node and back inside the regional minimum ; if
the regional minimum is isolated, then the path endlessly circles along the loop
arrow linking this regional minimum node with itself.

The lexicographic preorder relation of length k compares the in�nite paths
π = (p1, p2, ...pk, ...) and χ = (q1, q2, ...qk, ...):

* π ≺k χ if np1 < nq1 or there exists t < k such that
∀l < t : npl = nql
npt < nqt

* π �k χ if π ≺k χ or if ∀l ≤ k : npl = nql .
This preorder relation is total, as it permits to compare all paths ; for this

reason, among all paths linking a node p with a regional minimum, there exists
always at least one which is the smallest for �k .

For k =∞, we consider the in�nite paths, ending with constant values inside
the regional minima. If π andχ are two paths of in�nite length verifying π � χ
, then the paths πl andχl obtained by skipping the l �rst nodes also verify
πl � χl. If π is the smallest path linking its origin with a regional minimum,
then πl is the smallest path leading from pl+1 to the same regional minimum.
Such a path is the steepest everywhere: if it enters or starts from a �at zone, it
quits it as fast as possible.

For k =∞, a node is linked by two minimal paths with two distinct minima,
only if these two paths have exactly the same weights, which seldom happens in



natural images. Hence, if the regional minima have distinct weights, the catch-
ment basins form a partition.

Nested catchment basins
Consider two lexicographic order relations ≺k and ≺l with l > k, then for

1 and π2 : π1 ≺k π2 ⇒ π1 ≺l π2 or equivalently π1 �l π2 ⇒ π1 �k π2 : the
steepest path for the lexicographic order l also is steepest for the order k. As
a consequence, a catchment basin for �l is included in the catchment basin for
�k . For increasing values of k, the catchment basins become larger, are nested,
and the watershed zones are reduced or vanish.

16.2 Pruning the �ooding graph to get steeper paths.

Pruning the �ooding graph using non local operators We associate to
each order relation �k of length k a pruning operator ↓k . The pruning ↓k
suppresses each edge which is not the �rst edge of a path minimal for �k among
all paths with the same origin .After pruning, each node outside the regional
minima is the origin of one or several k−�ooding tracks or k−�ooding paths

with maximal steepness. We say that the graph ↓k
−→
G has a k-steepness or is

k-steep. As for l > k, π1 �l π2 ⇒ π1 �k π2, we have ↓l
−→
G ⊂↓k

−→
G . Furthermore

↓k↓l
−→
G =↓l↓k

−→
G =↓k∨l

−→
G.

Particular k-steep graphs
Applied to an arbitrary graph, the pruning ↓1= ↓ suppresses the edges which

are not the lowest edge of one of their extremities. In a �ooding graph, each
edge it the lowest edge of one of its extremities and ↓1 is inoperant. The pruning
↓2 keeps for each node i the adjacent edges linking i with one of its lowest
neighboring nodes. The pruning ↓∞ only keeps the �rst edge of the steepest
paths.

Lemma 11. Any oriented path in ↓k
−→
G of length k is of maximal steepness for

�k .

For this reason, a node p belongs to a k-catchment basin or k-CB associated

to a node m in a regional minimum, if there exists an oriented path in ↓k
−→
G

from p to m.

Pruning the �ooding graph using local operators The operator ↓k is not
local. However it may be implemented with local operators. One operator is the

pruning operator ⇓
−→
G =↓2

−→
G which keeps the edges linking a node with its

lowest neighbors. The second is the erosion, assigning to each node the weight
of its lowest neighboring node ε = εneεen. Both operators transform a �ooding
graph into a �ooding graph.

We illustrate the method on an example.



We �rst apply the operator ↓2 to the �ooding graph and get a graph where
each node is only linked with its lowest neighbors like in the following graph:
0 ← 3 ← 4 ← 5 → 4 → 2 → 1 where each node is only linked with its lowest
neighbors. The node 5 is the origin of two paths, π with weights 5→ 4→ 2→ 1
and π′ with weights 0← 3← 4← 5, verifying π ≺3 π′.

The erosion ε assigns to each node the weight of its lowest neighbors: ε
−→
G =

∗ ← 0 ← 3 ← 4 → 2 → 1 → ∗. Thus π with weights 4 → 2 → 1 and π′

with weights 0 ← 3 ← 4 verify π ≺2 π′. Applying the pruning operator ↓2
suppresses the arc linking the node with weight 4 with the node with weight 3

in π′ producing the graph ↓2 ε
−→
G = ∗ ← 0← 3 4→ 2→ 1→ ∗. This example

shows that the operator ↓2 ε ↓2
−→
G suppresses the same edges as the pruning

operator ↓3
−→
G .

De�ning ζ =↓2 ε and ζ(k) = ζζ(k−1), one proves that ζ(k−2) ↓2 and ↓k

operate the same prunings on the edges of a graph
−→
G.

Pruning the graph and labelling the catchment basins At the same time
as we recursively apply the operator ζ we are able to construct and label the
catchment basins. Consider a �ooding graph G. The algorithm is the following:

* construct an oriented graph
−→
G by linking by an arc each node of G outside

the regional minima with each of its lowest neighbors. Detect, label the regional
minima and replace their inside arcs by edges. Figure 19_B represents the ori-
ented �ooding graph of �g.19_A.

* Repeat until stability : a) erode the graph
−→
G and cut all arcs linking a node

to another which is not one of its lowest neighbors ; b) if (i, j) is an oriented arc
from i to j, and if j holds a label whereas i has no label, then i is assigned the
label of j, the arc between i and j is replaced by an edge and all arcs with origin
i are suppressed. If i points to several nodes with distinct labels, one of them
is chosen and the same procedure applied. This will be the �rst time where we
introduce an arbitrary choice. No other operator presented so far does such an
arbitrary choice.

Applied on �g.19_B the erosion and pruning produces �g.19_C ; the label
propagation produces �g.19_D . The next iteration produces �g. 19_E and
19_F. After the last erosion, pruning and �nal label propagation, all nodes
are labeled and the steepest drainage graph obtained. The �nal partition is
superimposed on the initial graph in �g.19_H.

16.3 The scissor operator and the watershed partitions

Starting with an arbitrary node or edge weighted graphG we are able to derive an

oriented graph
−→
G on which only oriented paths with a given steepness remain.

None of the operators for constructing
−→
G makes an arbitrary choice between

equivalent edges or equivalent paths. Increasing the steepness reduces the number
of paths and reduces the watershed zones where neighboring catchment basins
overlap. However, some catchment basins may nevertheless overlap. If we target



Fig. 19. Construction of the catchment basins of a node weighted graph

a partition of catchment basins, we have to introduce some more or less arbitrary
choices between equivalent solutions. In order to help �nding the best choice,
some additional criteria may be used, as for instance favoring large regions or
contrasted ones.

Playing with the levels of the minima
If the minima have all distinct altitudes, then the paths linking a node with

two distinct minima cannot be equal under an in�nite lexicographic order. Prun-

ing
−→
G with ζ(∞) and modifying slightly the altitude of the minima in order to

render the all di�erent produces a partition of catchment basins. Playing with
the altitude of the minima is of course arbitrary.

The scissor pruning χ
We now introduce an additional, arbitrary pruning operator χ. If a node is

the origin of several arcs, the scissor operator χ leaves only one. If there exists
an arc from i to j and another arc from j to i, then one of them at most is kept.
After such a pruning there exists a unique path of length positive or null linking
each node to a regional minimum. The catchment basins are then necessarily
disjoint. The situation i 7−→ j or j 7−→ i only arrives if ni = nj , that is in the
�at zones of the graph. For increasing values of k the pruning ζ(∞) reduces the



Fig. 20. Hexagonal distance function to two binary sets.

number of such situations. For k =∞, they do not arrive. For k =∞, the unique
situation where a choice is to made is p ← q → s where q ≥ p, s, and p and s
are the �rst nodes of two absolutely identical non ascending paths.

The scissor pruning χ on plateaus.
One creates a geodesic distance on the plateaus : for each node in the plateau

is computed the distance to the nearest lower neighbor of the plateau. For each
node i inside a plateau, the operator χ keeps one edge linking i with a neighboring
node j veriying δi > δj , where δi and δj are the geodesic distance functions of i
and j to the lower borders of the plateaus.

The scissor pruning χ through �ooding
The regional minima are labeled. Repeat until all nodes have a label: if i has

a label, j has no label, j 7−→ i, then assign to j the label of i and keep the arc
j 7−→ i as only arc with j as origin.

Discussion: The choice of each new node to �ood is completely arbitrary
and many choices possible, some leading to absurd partitions as illustrated in
the next paragraph.

16.4 Illustration

A �ooding graph associated to a distance function We chose as topo-
graphic surface the distance function expressed on the nodes of a hexagonal grid
to two binary connected sets, encoded with the value 0 (see �g.20). The edge
weights being obtained by the dilation δen, . the resulting graph is invariant by
γe. Like that the lowest neighboring edges of a node connects it with its neigh-
bors with equal or lower weights. In �g. 21, the edges with the same weight have
the same color (cyan = 4, magenta = 3, green = 2).

As the minima have 2 nodes each, the pixel graph is invariant by ϕn. The
dilation δen assigns weights to the edges and creates a �ooding graph.



Fig. 21. Edge weights produces by the dilation δen of the hexagonal distance function
on a small portion of the image.

Fig. 22. An unexpected minimum spanning forest produced by the scissor operator χ,
in one only considers 1-steepness.

The minimum spanning forest by keeping one lowest neighboring edge
for each node The scissor χ leaves one lowest neighboring edge for each node.
There exists a huge number of choices for χ. Fig.22 shows a particular scissor
χ producing an unexpected partition in two catchment basins (the catchment
basins should be the half plane separated by the mediatrix of both binary sets,
as illustrated in the previous slide).

Fig.23 shows two �ooding tracks leading to the regional minima.

Looking one node further The operator ↓2 G leaves only the edges linking
a node to its lowest neighbors. Fig.24 shows the remaining edges. The green
zone represents a restricted catchment basin. The yellow zone is an extended
catchment basin containing the watershed zone.

The pruning χ ⇓= χ ↓2 leaves for each node one edge towards a lowest
neighboring node. Fig.25 shows a possible minimum spanning forest and the
associated partition.

"Much ado about nothing" or the silent e�ciency of hierarchical
queues Hierarchical queues are ideal structures for controlling the �ooding [36].
This data structure is a series of prioritized FIFOs. It permits to enqueue each



Fig. 23. two �ooding tracks leading to the regional minima.

Fig. 24. 2-steep �ooding graph, obtained by keeping only the edges linking each node
with its lowest neighbors.



Fig. 25. A minimum spanning forest produced by the operator χ ⇓= χ ↓2

node p in the FIFO with the priority νp. Dequeueing on the contrary consists in
extracting the node which entered �rst into the FIFO with the highest priority.
As the nodes close to the lower border of the plateau enter the queue before the
inside nodes, the nodes inside the plateaus are indeed �ooded in an order cor-
responding to increasing distance to the lower border of the plateau. Controlled
by a hierarchical queue (HQ) the algorithm becomes

Label the nodes of the minima and introduce them in the HQ, each with a
priority equal to its weight.

As long as the HQ is not empty, extract the node j with the highest priority
from the HQ:

For each unlabeled neighboring (on the �ooding graph) node i of j :

* label(i) = label(j)

* put i in the queue with priority ni
This algorithm does more as simply correctly processing the inside of the

plateaus. When a node is extracted from the hierarchical queue, it gives its label
to all its neighbors without label. Like that, each node gets its label from one
of its lowest neighbors ; in other terms, the �ooding follows the arcs of a graph
which has been pruned by ↓2: it �oods the surface in an order proportional to
the topographic distance to the minima [47],[39].

Analyzing hierarchical queues with more care shows that in fact they even do
more: they �ood the nodes in the lexicographic order of in�nite depth, i.e. they
follow the arcs of ↓∞ . Consider the �g.26 illustrating 2 steps the �ooding of
a node weighted graph. Initially the three regional minima are labeled and put
into the hierarchical queue, with a lexicographic depth equal to their altitude.
Fig. 26A presents an intermediate step of the �ooding. All nodes which have
been introduced in th HQ are present ; the nodes in red have not �ooded their
neighborhood yet, whereas the nodes in black have. On top of each group of nodes
with the same lexicographic distance to a minimum we indicate this distance. In
�g.26B, all nodes have been �ooded and are present in the hierarchical queue.
The processing of the nodes have to be red from bottom to top in each FIFO



Fig. 26. 2 steps of �ooding a node weighted graph with the status of the hierarchical
queue.

and from left to right among the FIFOs. It clearly appears that the nodes have
been processed in an increasing lexicographic order of in�nite depth.

Should we entitle this paper "much ado about nothing", as it presents a
theory and operators in order to achieve what the simplest watershed algorithm
silently does since 1991 ?





Part V

The waterfall hierarchy and

the emergence of minimum

spanning trees and forests





Fig. 27. Chaining the waterfall �oodings

17 The hierarchy of nested catchment basins

17.1 Watershed and waterfalls

The waterfall �ooding The waterfall hierarchy has been introduced by S.Beucher
in order to obtain a multiscale segmentation of an image [4],[5],[5]. Given a to-
pographic surface S1, typically a gradient image of the image to segment, a �rst
watershed transform produces a �rst partition π1.

The waterfall �ooding of S1 consists in �ooding each catchment basin up
to its lowest neighboring pass point, producing like that a topographic surface
with less minima. The watershed segmentation of this surface produces a coarser
partition π2 where each region is the union of a number of regions of π1.

Chaining the waterfall �oodings Flooding each catchment basin of S1 up to
its lowest pass point produces a new topographic surface S2 which will be sub-
mitted to the same treatment as the initial surface S1. Its watershed transform
produces a second partition π2. The partition π2 is coarser than π1 as each of
its tile is a union of tiles of π1.Fig.27 shows how the �ooding of S1 produces S2,
which, in the second �gure, has also been �ooded.

The same process can be repeated several times until a completely �at sur-
face is created. The partitions obtained by the watershed construction on the
successive waterfall �oodings are coarser and coarser : they form a hierarchy.

The waterfall hierarchy A 1 dimensional topographic surface is represented
through the altitude of its pass points in �g.28 below. The �rst �ooding assigns
weights to the nodes and its watershed construction produces 4 catchment basins,
separated by 3 watershed lines. The second �ooding has only 2 catchment basins
separated by 1 watershed line. The last image orders the watershed lines of the
initial image into 3 categories, in cyan the watershed lines which disappeared
during the �rst �ooding, in dark blue those which disappeared after the second
�ooding and in red the one which survived the second �ooding.

Let us come back to the watershed on weighted graphs. The watershed of the
topographic surface produces a partition π1 into catchment basins, represented
by its region adjacency graph RAG1. The �rst �ooding �oods each catchment
basin up to its lowest neighboring pass point. This corresponds to the erosion εne



9       1       4        3       7      10      2        6       8       5

1       1       2        1       1       3        1       1       2       1

9       1       4        3       7      10      2        6       8       5 9       1       4        3       7      10      2        6       8       5

9       1       4        3       7      10      2        6       8       5 9       1       4        3       7      10      2        6       8       5

Fig. 28. The waterfall hierarchy

of the graph RAG1. The theory of the watershed on weighted graphs can now
be applied on this graph. The resulting watershed appears in form of minimum
spanning forest MSF1; each tree of the forest spans a catchment basin of the
partition π2.

The next level of the hierarchy may be represented by a new region adja-
cency graph RAG2, whose nodes are obtained by contracting each tree of the
forest MSF1 in the graph RAG1. Repeating the same treatment to the graph
RAG2 produces the next level of the hierarchy, where each tree of the minimum
spanning forestMSF2 has been obtained by merging several trees of theMSF1.
The process is then repeated until a graph is created with only one regional
minimum.

Construction of the level 1 of the hierarchy We start with an arbitrary node or
edge weighted and connected graph G. As explained earlier, we extract a graph
�ooding graph G′. For a steepness k, we prune G′ and get ↓k G′. The scissor
operator χ produces a minimum spanning forest F1 = χ ↓k G′, spanning the
�nest watershed partition, the lowest level of the hierarchy.

The graph representing the second level of the hierarchy is obtained by con-
tracting all edges of the forest F1 ; each tree becomes one node. The nodes are
connected by edges of the graph G. The result of this contraction G′1 = κ(G,F1).
is again a connected graph, to which the same treatment as previously can be
applied.

Construction of the level 2 of the hierarchy Only the nodes of the graph G′1 are
weighted :G′1 = (e1, �). The nodes will be weighted with εne and we get the graph
(e1, εnee1), which becomes a �ooding graph of steepness k in ↓k (e1, εnee1). A
�nal scissor operator creates a forest F2 spanning nodes of G′1. F2 represents
the level 2 of the hierarchy, and the nodes of G spanned by each of its trees
constitutes a catchment basin of level 2.

The contraction κ(G′1, F1) produces again a connected graph G′2 = (e1, �) to
which the same treatment may be applied.

This process is repeated until the graph κ(G′m, Fm) contains a unique regional
minimum of edges.



RAG Flooding graph

MSF level 1 MSF level 2 MSF level 3

Fig. 29. An edge weighted graph, its �oodign graph, and the minimum spanning forests
at 3 waterfall hierarchical levels.

17.2 Emergence of a minimum spanning tree

Each new minimum spanning forest Fn makes use of new edges of the initial
graph. The union of all MSF constructed up to the iteration m,

⋃
k≤m

Fk, is a

minimum spanning forest of the initial graph G, which converges to a MST of
G as m increases. Hence the union of all edges present in the series Fn is a
minimum spanning tree of the graph G.

The particular minimum spanning tree which emerges depends upon the
depth k of the pruning operator ↓k, and of the particular choices among alter-
native solutions made by the pruning operators χ used at each step. We call the
operator extracting the minimum spanning tree µ(G).

Fig.29 in the next slide presents a RAG, its �ooding graph in the �rst row,
and in the second row the MSFs

⋃
k≤m

Fk for m = 1, 2, 3. The last one being the

MST.

If G and G′ are two �ooding trees, G′ being a partial tree of G included in
G, then the pruning operators χ have less choices for pruning G′ as for pruning
G. For this reason the family of MST derived for G′ is included in the family
of MST derived for G: {µ(G′)} ⊂ {µ(G)} .

In particular if one considers the decreasing sequence of minimum spanning
forests χ ↓k G, one obtains decreasing families of MST : for k < l, we have{
µ(↓l G)

}
⊂
{
µ(↓k G)

}
. The choices are more and more constrained. One gets

minimum spanning trees which are steeper and steeper for increasing k in ↓k G.



17.3 The complete waterfall hierarchy in one run

Level by level construction of the hierarchy All methods presented so far
produce a waterfall hierarchy step by step.

In terms of �ooding, each catchment basins is �lled up by a lake to its lowest
pass point. Being not a regional minimm anymore, it merges with the catch-
ment basins which is situated on the other side of this pass point. The resulting
�ooding is a new topographic surface which may be submitted to a new wate-
fall �ooding producing level 2 of the hierarchy and so on until a last �ooding
producing a completely �at surface.

In terms of graphs, we obtain a similar behaviour if two nodes i and νj
separated by an edge eij merge every time eij is the lowest edge adjacent to
either i or νj , or to both of them. Cutting all edges which are not the lowest
edge for one of their extremities produces a forest, constituing the lowest level
of the waterfall hierarchy.

The contraction of each tree of the forest into one node transforms the initial
MST in a reduced MST, where each node represents a region of the level 1 of the
waterfall hierarchy. The same process may then be applied to this new tree, and
repeated as many times as necessary until the last level where only one region
remains.

Construction of all levels in one run It is possible to construct the complete
waterfall hierarchy in one run. The lowest level of the hierarchy is constituted by
the nodes themselves. The nodes get the weight 0. After fusion of two nodes of
weight 0 the new node belongs to a region of level 1 of the waterfall hierarchy. A
region of level 1 agglomerates a number of isolated nodes and remains a region
of level 1 of the hierarchy. Only the fusion of two nodes of level 1 produces a
region of level 2. Again the region of level 2 may absorb a number of nodes of
level 1 or 0 and remains at the same level. The fusion of 2 regions of level 2
produces a region of level 3, and so on.

The algorithm operates on the minimum spanning tree of the region ad-
jacency graph. It processes the edges of the graph in increasing order. Each
processed edge is assigned a new weight, indicating its rank in the waterfall hi-
erarchy. It is then contracted, and both its extremities become a unique node,
which is also labeled. By successive contractions, the tree is progressively re-
duced until there is only one node remaining. During the process, each edge of
the tree gets its rank in the waterfall hierarchy.

Let T be the MST of the graph. All its nodes get a weight 0, and its edges keep
their weight in the RAG. We process the edges in order of increasing weights.
Suppose that the current edge to be processed is edge eij linking the nodes νi
and νj with the weights a(νi) and a(νj). Remark that the nodes νi and νj may
be the result of several preceding contractions of edges with lower weights. The
edge eij is then contracted and gets a weight ρij ; both nodes νi and νj become a
unique node νk with a weight a(νk). The values of these weights is the following:



� if two nodes νi and νj belong to the same hierarchical level, i.e a(νi) = a(νj),
the node νk obtained through their fusion gets the hierarchical level a(νk) =
a(νi) + 1 and the edge eij gets the same weight ρij = a(νi) + 1.

� If the hierarchy level of νi and νj is not the same, than the node νk ob-
tained by their fusion keeps the hierarchical level of the highest node a(νk) =
max(a(νi), a(νj)); whereas the edge eij gets the hierarchical level ρij =
min [a(νi), a(νj)] + 1

Remark : in both cases, the waterfall weight ρij of the edge eij may be
expressed by the same formula: ρij = min [a(νi), a(νj)] + 1

Interpretation Consider again the modi�ed Boruvka's algorithm, constructing
level 1 of the waterfall hierarchy, applied on the MST T of the neighborhood
graph. The nodes of the MST get a weight 0 and the edges are processed in
increasing order. We want to construct a forest F.

Initially the forest F is empty. We treat the edges of the neighborhood graph
in increasing order of their weights. Let eij be the current edge considered.

1. eij connects two isolated nodes νi and νj . eij is then the lowest neighboring
edge of both νi and νj and is a regional minimum among the edges. The edge
eij is introduced in the forest, that is, it gets a weight ρij = a(νi) + 1 = 1.

2. eij connects an isolated node νi with a subtree of T . Clearly eij is the lowest
edge adjacent to νi, otherwise node νi would have been incorporated in a
subtree earlier. The edge eij is introduced in the forest, that is, it gets a
weight ρij = min [a(νi), a(νj)] + 1 = 1

3. eij connects two nodes νi and νj already joined to their respective subtrees
through edges with lower weights than eij . Hence eij is not the lowest edge
of the nodes νi and νj , and is discarded. The edge eij is not introduced in
the forest ; it will be considered during the construction of later stages of
the hierarchy.

This situation happens in the level by level watershed construction when
two individual nodes are merged (event 1 in the modi�ed algorithm of Boruvka)
whatever the hierarchical level which is processed.

Illustration The construction of the waterfall hierarchy with the algorithm we
just presented is illustrated in �g.30, where the topography of �g.28 is rep-
resented in form of a graph. The nodes represent the regions and appear as
green dots. The red dots represent the edges. Initially all nodes have a valuation
a(i) = 0. The valuation of the edges express the dissimilarity. The starting point
of the algorithm is presented in line 1 of �g.30. Line 2 of �g.30 presents the
treatment of the lowest edge with valuation 1. Its surrounding nodes in line 1
have valuations 0. Hence the valuation of this edge in the waterfall hierarchy is
1. The two adjacent nodes are contracted and the new node gets a valuation 1 ;
here we cancel the second node and retain the �rst with valuation 1.



The treatment of the edge of weight 2 between lines 2 and 3 is similar. Idem
for the edge with weight 3 between lines 3 and 4.

Lines 4 and 5 deal with a new situation : the edge with valuation 4 separates
two nodes with valuation 1. As a(i) = a(j), then the new weight of eij ρij =
a(i)+1 = 2 and the weight of the new contracted node vij is a(vij) = a(i)+2. The
contraction between both nodes is represented by cancelling the second node.
The successive lines of �g.30 present the complete treatment, which ends line 11
where all edges have been assigned their waterfall level.



Fig. 30. Construction of the waterfall hierarchy in one run





Part VI

The watershed on images
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Fig. 31. The encoding of the directions of the neighbors in the hexagonal raster, and
the weights of the corresponding bits in the binary representation of the arrows. An
example with three arrows with weights 2, 1 and 32 is represented by the binary number
100011, i.e. the decimal number 35.

18 Representing an oriented graph for images.

In order to transpose to images the preceding algorithm initially de�ned for
graphs, one has to �nd a representation of the drainage graph itself. The nodes
are simply the pixels of the image to which the watershed algorithm is applied.
The nodes hold three types of valuations and will be represented on three images.
First, a gray tone image holding the initial distribution of gray tones and its
evolution as the algorithm proceeds. The second image holds the labels of the
minima and of the catchment basins as they expand. The last image is more
original as it has to encode the drainage graph itself.

The grids on which images are represented have a regular structure, where
each node has the same number of neighbors, in identical positions. Numbering
the neighbors according to their direction allows to represent the neighborhood
relation of each pixel with a binary number, where each bit encodes for one
direction. The n-th bit is set to 1 if and only if there exists an arrow between the
central point and its n-th neighbor ; such oriented arrows having as origin a node
i are called out-arrows of i. Figure 31 shows the numbering of the directions in
a hexagonal raster and the corresponding bit planes (on the right). The bottom
image gives an example of encoding a particular neighborhood con�guration : 2
+ 1 + 32 = 35. This representation has been introduced by F. Maisonneuve in
his seminal work on watersheds [30].

The algorithm creates and updates 3 images: 1) the gray tone image itself, 2)
an image of labels representing the regional minima and the catchment basins
in construction, 3) the encoding of the out-arrows representing the arcs of the
drainage graph. Fig. 32 presents the three images. Fig. 32.1 represents the gray



Fig. 32. The three images used for constructing the catchment basins : a gray tone
image, an image of arrows and an image of labels.

Fig. 33. A gray tone image, the arrows representing its drainage graph and the labels
of the regional minima.

tone image. Fig. 32.2 represents the image of out-arrows encoding the drainage
graph. Fig. 32.3 represents a label at the central position, represented as a colored
dot.

Fig. 33.1 presents a gray tone image. Fig. 33.2 combines the three images:
the gray tone value for each node, a colored dot representing the label of the
minima and the initial out-arrows encoding the arcs.

19 An adaptive erosion and dilation, guided by the

arrows

The successive prunings of arrows are easily implemented with two neighborhood
transformations, the �rst being an adaptive erosion for propagating the gray
tone values and pruning the arrows, the second being an adoptive dilation for
propagating the labels of the regional minima as they are extended.

19.1 An adaptive erosion

We de�ne an adaptive erosion and combined pruning on the arrowed image. It
uses and updates both the gray tone image as the arrows image. If a pixel is
without arrows, it is left unchanged. Otherwise, it is replaced by the lowest of



Fig. 34. An example of adaptive erosion and pruning.

Fig. 35. Adaptive erosion and pruning

its arrowed neighbors and only the arrows towards these neighbors are kept. In
�gure 34 a pixel has two lowest neighbors, but only one of them is arrowed.
Hence only the arrow towards this node is kept.

In �gure 35 the two lowest neighbors are not arrowed : they are discarded
and only the lowest arrowed neighbor is taken into consideration : its value is
assigned to the central pixel and only the arrow towards it is kept.

When no arrow is present, the central pixel is left unchanged as in �gure 36.

19.2 An adaptive dilation

The adaptive dilation propagates the labels of the regional minima. It modi�es
both the image of labels and of arrows. It is guided by the drainage graph.

Recall that the labels are represented by strictly positive values, the pix-
els without labels having the value 0 in the labeled image. Furthermore, the
algorithm cares for the fact labeled pixels have no arrows. This is true at ini-
tialization, when the regional minima get their labels. It is also true during the

Fig. 36. In the absence of any arrow, the central pixel is left unchanged.



Fig. 37. Adaptative erosion, pruning and guided dilation of the labels

expansion of the catchment basins, as a pixel loses its arrows as soon it gets a
label.

The label propagation is done by an adaptive dilation of the label images
guided by the arrows image. One considers the pixels without labels (a pixel
with a label has no out-arrows) ; such a pixel gets the highest label of its ar-
rowed neighbors. In the absence of arrowed and labeled neighbors, this value is
0.Theoperationisthusanadaptivedilation. Furthermore, every time a pixel gets
a label, its arrows are suppressed, as it now belongs to a catchment basin. This
produces an additional pruning of the drainage graph. Below we illustrate the
combination of the adaptive erosion and dilation in a number of situations

Remark 8. 1) Neighboring nodes of the same catchment basins are not linked
by an edge ; they are identi�ed by the label they hold.
2) In case where a pixel without label has 2 or more out-arrows towards distinct
labeled pixels, we have to chose one of them. With the highest of them, we have
chosen an adaptive dilation. As a matter of fact, we may chose arbitrarily one
of them. This is the only place where a choice takes place in the algorithm. It
divides the catchment zones and produces a partition. Such situations are never-
theless rare, as we propagate the labels along the trajectories whose steepness is
estimated by taking into account their total length. The necessity of a choice ap-
pears only in the case where two trajectories have exactly the same distribution
of node weights, from top to bottom.

19.3 Combination of the adaptive erosion and dilation : illustration

The following �gure shows how the adaptive erosion and dilation are used in
sequence. The erosion assigns to the central pixel the value of its lowest arrowed
neighbor ; only the arrow towards this neighbor is kept. And as this arrow points
towards a labeled neighbor, this label is propagated to the central pixel by the
adaptive dilation, and its arrows are suppressed. Figures 37,38,39,40 present
how, in di�erent neighborhood con�gurations, the combined adaptative erosion
and dilation erode the gray tone, prune the arrows and propate the labels.

20 The complete watershed algorithm

Figure 41 shows that the algorithm can be initialized with arrows in all directions.
After the �rst combined adaptive erosion and dilation, only the arrows towards



Fig. 38. Adaptative erosion, pruning and guided dilation of the labels

Fig. 39. In the case where two or more distinct labels are present in the direction of
arrows, the highest of them, or one, chosen arbitrarily, is propagated

Fig. 40. Case where a labeled pixel is present in the neighborhood of the central pixel,
but as it is not arrowed, it is not propagated to the central pixel.



Fig. 41. Initial gray tone distribution, labeling of the regional minima and arrowing in
all directions, followed by 4 iterations of a combined adaptive erosion and dilation.

the lowest neighbors are kept and the labels propagated accordingly. After the
initialization phase, the combined erosion of gray tones, pruning of arrows and
dilation of labels is iteratively applied until the labels cover the total domain.
Convergence is attained after 4 iterations for �gure 41.

By recording the arrows existing for each pixel, just before it gets its label,
one obtains the �nal and steepest drainage graph, where all prunings have been
done as illustrated in �g. 42. The trajectories of a drop of water falling on the
surface are extremely selective and narrow. We will use this selectivity in the
last part of the paper for following lines of steepest descent and thalweg lines on
a topographic surface.

20.1 Successive steps of the pruning

During the successive adaptive erosions, no choice has ever been made. A choice
may appear necessary when two when two distinct arrowed and labeled pixels are
present in the neighborhood of a pixel. The adaptive dilation choses the highest
of them. Other rules may be introduced, as for instance a random choice. The
necessity of such choices is rare in natural images, as they only happen when
two distinct drainage paths linking a node with two distinct minima has exactly
the same distribution of weights.

20.2 Complexity

After the initial detection and labeling of the minima, the algorithm needs a
number of iterations equal to the largest distance between a pixel in a catchment



Fig. 42. Final catchment basins, and recording of the last arrow distribution of each
node before it gets its label.

Fig. 43. Successive prunings of the arrows.



basin and its regional minimum. Each iteration consists in the combination of
the adaptive erosion and dilation.

21 The problem of the plateaus

The plateaus pose a particular problem to all watershed algorithms which only
consider local neighborhoods. As a matter of fact, a drop of water falling on a
plateau has no clear direction for reaching the nearest regional minimum. The
classical solution consists in constructing a geodesic distance transform to the
lowest neighbors of the plateau and to follow the steepest descent line on this
function. Fig. 44.1.1 shows on a topographic surface containing several plateaus
with value 9. The geodesic distance within each plateau to its lower boundary
is illustrated in �g. 44.1.2. This produces a topographic surface on which we
may compute the drainage graph, as illustrated in �g. 44.2.2. By comparison,
the steepest drainage graph produced by our algorithm is more selective and
has less arrows It is illustrated in �g. 44.2.1.Furthermore no special treatment
is required for dealing with the plateaus : they are treated as any other part of
the topographic surface.

Remark 9. Some watershed algorithms use arrows for the construction of the
watershed. F.Maisonneuve �rst assigned arrows to all pixels with lower neigh-
bors, and then iteratively added out-arrows to pixels without arrows towards
pixels with arrows. This produces the drainage graph of the geodesic distance
on the plateaus [30]. F. Lemonnier, in a hardware implementation of the water-
shed, constructed separately the arrows of the drainage graph and those of the
geodesic distance within the plateaus, before regrouping both and completing
the watershed construction [29].

22 Illustration on a real image

The �gures 45 and 46 illustrate the method on a real image. They contain in
the top row a gray tone image and its gradient. The bottom row contains on
the left the labeled regional minima and on the right the associated catchment
basin. In �g. 45.2.2 they hold the same labels as the minima they contain. Fig.
46.2.2 is a mosaic image where each catchment basin takes the mean gray tone
of the initial image in this region. Fig. 47 represents the �nal drainage graph
and shows the image of the arrows encoded in false color.

23 Downstream trajectories of a drop of water

23.1 The algorithm for downstream propagation

We have successively presented two types of algorithms for constructing the
catchment basins of a graph G. The �rst type prunes the graph to the outmost



Fig. 44. Top: On the left a topographic surface and on the right the geodesic distance
to its lower boundary on each plateau.
Bottom: On the left the arrows of the steepest drainage graph and on the right the
arrows associated to the distance function.

Fig. 45. Initial image, gradient, labeled regional minima and labeled catchment basins.



Fig. 46. Initial image, gradient, labeled regional minima and as �nal result the catch-
ment basins containing each the mean gray tone of the initial image.

Fig. 47. The arrow image of the steepest �ooding graph represented in false color.



Fig. 48. Downstream following of a drop of water: a labeled node is expanded in the
directions of its arrows to its neighboring nodes.

(pruning χ ↓k G), until only one adjacent edge remains for each node, leading
along a steepest trajectory to a regional minimum. The result is a minimum
spanning forest of maximal steepness.

The second �ood the graph using a core expanding algorithm with in�nite
depth. Each node (the son) gets its label from a unique other node (the father),
keeping only the edges linking father and son produces a minimum spanning
forest also of maximal steepness. Both forests are included in the steepest graph
↓k G ; they may di�er, if ↓k G contains nodes with two adjacent edges linking
to di�erent regional minima (this is unlikely on real images, as the geodesics
leading to both minima have to have exactly the same lexicographic weight).
In such a case, both the pruning χ as the core expanding algorithm may do
di�erent choices and assign such nodes to di�erent catchment basins.

In both cases we obtain as a byproduct of the watershed construction this
steepest forest, which may be used for following the steepest �ooding trajectories.
Given a few labeled starting points, it is possible to follow the downstream
trajectories, simply by following the downstream arrows. Fig. 48 illustrates the
operator which is used. If a pixel p has a label (�g. 48.1) and an arrow towards a
neighboring pixel q, (�g. 48.2) then the label is propagated from p to q (�g. 48.3).
If q has already a label, the maximum of both labels is chosen. This expansion
is repeated until stability.

In �g. 49.1 two starting points are chosen, and assigned distinct labels, rep-
resented respectively by a red and a green dot. After downwards propagation
following the arrows, both trajectories appear as labeled nodes in �g. 49.2, each
of them reaching a regional minimum.

This method is applied on a DEM image in �g. 50.1 after the construction
of the steepest drainage graph. A number of positions are chosen by hand in in
�g. 50.2, where a drop of water will start its downwards trajectory, highlighted
in the image on the right. The drop of water duly glides downwards until it
meets and follows a river and ultimately reaches the boundary of the image in
the direction of the sea, as illustrated in �g. 50.3. Each river keeps the label
of its highest source and keeps this label unless it meets another label which is
higher. The connected components colored in red and touching the boundary of
the image represent the regional minima of the image.



Fig. 49. Two starting nodes are chosen and assigned a label. On the right �gure, the
downwards trajectories are illustrated.

Fig. 50. After construction of the arrows of the DEM, a number of starting points are
chosen and labeled (central image) and the downstream trajectories of a drop of water
falling on these points highlighted in the right image.



Fig. 51. Left : Two spirals on a bright background ending in a dark minimum
Right : A red and and a green dot mark the extremities of the spiral. A blue dot the
minimum.

23.2 Application to the detection of �bers, cracks, thalweg lines.

Fig. 51 contains two spirals, intricated one in another, ending with a dark regional
minimum. The background is brighter than the spiral. A red dot and a green
dot have been put on the other extremity of both spirals. The regional minimum
has been marked by a blue dot. The spirals are plateaus with a uniform gray-
tone, with one lower boundary in the regional minimum. The steepest descent
trajectories taking their origin in the red and green tots are represented in �g.52.
They start from the red and green dots and follow the stripes until they reach
the minimum

The spiral stripes in �g. 52 are plateaus of constant altitude, without internal
structure for centering the trajectories, which appear at some places as large as
the stripes in the right image. For a better centering of the trajectories, we have
transformed the binary image into a gray tone image by constructing a geodesic
distance to the lower borders of the plateaus. The arrows of the steepest drainage
graph within a small square crossing a stripe are shown in �g. 53. The stripes
are well centered and the trajectory along their thalweg well delineated. On this
new relief, the detected trajectories are much thinner (�g.54)

23.3 Comparison with shortest path algorithms

The classical algorithms for following and highlighting thin and elongated dark
structures (let us call it �ber) in a noisy bright background rely on shortest path
algorithms (for instance cracks in a porous medium, hairs, glass �bers, vessels
in 2 or 3 dimensions etc.). As the gray tone along the �ber is darker than in the
background, the integral of gray tone along the �ber is smaller than along a path
with the same length lying in the brighter background. This integral may be seen



Fig. 52. The spiral stripes have a constant altitude, that is they are plateaus, without
internal structure for centering the trajectories, which appear at some places as large
as the stripes.

as a weighted distance transform. The method consists in computing the weighed
distance along the �ber, �rst in one direction, then in the opposite direction ; the
sum of both distance transforms is then minimal along the �ber. The method
has been �rst proposed for detecting cracks in porous material [56],[60]. The
method works well if the cracks or �bers or more or less rectilinear.

However, if the �ber is tortuous, like the spirals above, then a shortest path
algorithm between the blue and the red dot or between the blue and the green dot
will �nd shortcuts and will not follow the spiral. The classical solution consists
in a stepwise progression : one progresses along the �ber on a short distance, so
as to remain on it and initiates a new progression at the arrival point. Like that,
little jump after little jump, one progresses. The length of the jump depends
upon the contrast between �ber and background [17].

On the contrary, using the drainage graph does nor present this weakness :
the trajectories are delineated and based on a long range lexicographic distance
which makes it possible to follow them completely from the top downwards,
until a regional minimum is met. Contrarily to the shortest path algorithm,
the algorithm has not to be used stepwise, does not depend upon the contrast
between foreground and background. It is also able to follow several �bers at the
same time. However, it is certainly more sensitive to noise or missing data than
the shortest path algorithms.



Fig. 53. The arrows of the steepest drainage graph after constructing the geodesic
distance of each node of a plateau to the lower border of the plateau.

Fig. 54. Replacing each strip by a distance transform to its lowest boundary permits
to center the downwards trajectories inside the stripes.





Part VII

The watershed by �ooding





24 The catchment basins, skeletons by zone of in�uence

for lexicographic distance functions

24.1 Drop of water gliding down or �ood progressing upwards ?

Let us summarize what we learned in the �rst part of the paper. The operator
↓k G prunes the �ooding graph and leaves only �ooding tracks or paths with a
steepness equal to k. From each node of the graph starts a NAP whose k �rst
edges have a minimal lexicographic weight. If one follows such a path, the next
k edges following each node as one goes downwards along the path also has a
minimal lexicographic weight. This shows that each NAP is a geodesic line for
a lexicographic distance function lexdistk we de�ne below.

In this second part of the paper we change perspectives. Whereas the �rst part
considered a drop of water following a line of steepest descent we consider now a
�oooding scenario, where we start from the minima and construct skeletons by
zone of in�uence for particular distance functions.

As a matter of fact, it is really only changing perspectives, as the lines of
steepest descent remain the same, whether one descends them for reaching a re-
gional minimum or whether one climbs them as a �ooding would progress. What
matters really in both situations is the steepness of the lines of steepest descent
one considers. The steeper these lines, the rarer they are. The steepest lines hav-
ing a given node as origin often are unique ; this node is then unambiguously
ascribed to one catchment basin containing one regional minimum.

After the pruning ↓k some nodes belong to two or more catchment basins. In
order to obtain a partition, one applies the scissor operator χ leaving for each
node only one lowest adjacent edge. Like that the thick watershed zones are
suppressed and the catchment basins form a partition.

It is possible to obtain the same result, if one labels the regional minima
and computes for the other nodes the shortest lexicographic distance lexdistk to
the minima. If one applies a greedy algorithm, one may in addition propagate
the labels of the minima all along the geodesics and construct a partition of the
space. If a node is at the same lexicographic distance of two nodes, a greedy
algorithm will arbitrarily assign to it one of the labels of the minima. This is
quite similar to the operator χ which also does arbitrary choices.

24.2 Lexicographic distances of depth k

De�ning a lexicographic distance along non ascending paths. Consider
a �ooding graph. In a �ooding tracks, each node except the last one forms with
the following edge a �ooding pair, i.e. they have the same weights. And these
weights are decreasing as one follows the �ooding tracks downwards. The k �rst
values, starting from the top, may be considered as a lexicographic distance of
depth k. In what follows we give a precise de�nition of such distances.

The shortest distances and their geodesics may be computed with classi-
cal shortest paths algorithms. Propagating the labels of the minima along the



geodesics during their construction constructs the zones of in�uence of the min-
ima, i.e a partition into catchment basins. The solution is not necessarily unique.
However the number of solutions decreases with the depth of the lexicographic
distance which is considered.

Comparing NAPs with the lexicographic order. Let S be the set of
sequences of edge or node weights, i.e. elements of T . Let Sk be the set of
sequences with a maximal number k of elements. For a sequence s ∈ Sk, we
de�ne the lexicographic weight wk(s) : it is equal to ∞ if s is not a NAP and
equal to s itself otherwise.

We de�ne an operator firstk which keeps the k �rst edges and nodes of any
NAP, or the NAP completely if its length is smaller than k. The operator firstk
maps any sequence of S into Sk.

We de�ne on the NAPs of Sk the usual lexicographic order relation, which
we will note ≺, such that: (λ1, λ2, . . . , λk) ≺ (µ1, µ2, . . . , µk) if either λ1 < µ1 or
λi = µi until rank s and λs+1 < µs+1. We de�ne a � b as a ≺ b or a = b.

Like that, it is possible to compare any two sequences s1 and s2 of Sk by
comparing their weights:

� if s1 and s2 are not NAPs, then wk(s1) = wk(s2) =∞ and we consider that
s1 ≡ s2 (they are equivalent)

� if one of them, say s1, is a NAP and not the other, then wk(s1) ≺ wk(s2) =∞
and s1 ≺ s2

� if both of them are NAP, then they compare as their weights: s1 ≺ s2 ⇔
{wk(s1) ≺ wk(s2)} and s1 ≡ s2 ⇔ {wk(s1) = wk(s2)}

If s1 and s2 are NAPs belonging to S, we compare them with: s1 ≺ s2 ⇔
wk [firstk(s1)] ≺ wk [firstk(s2)]

De�ning an "addition" operator, comparing sequences For NAPs of S
we de�ne the operator �k called �addition�, which operates as a minimum:

a�k b =
a if a � b
b if b � a ∀a, b ∈ S

The �k operation is associative, commutative and has a neutral element∞ called
the zero element: a�k∞ =∞�k a = a

De�ning a "multiply" operator, by concatenating sequences The op-
erator �k, called �multiplication�, permits to compute the lexicographic length
Λ(A) of a sequence, obtained by the concatenation of two sequences. Let a =
(λ1, λ2, . . . , λk) and b = (µ1, µ2, . . . , µk) we will de�ne a�k b by:

� if a or b is not a NAP then a�k b =∞
� if a and b are NAPs and λk < µ1 then a�k b =∞
� if a and b are NAPs and λk ≥ µ1 then a�k b = wk [firstk(aB b)] , where aBb
is the concatenation of both sequences.

In particular a�k∞ =∞�k a =∞. so that the zero element is an absorbing
element for �k.



24.3 Algebraic shortest paths algorithms

A path algebra on a dioïd structure The operator �k is associative and
has a neutral element 0 called unit element: a �k 0 = a. The multiplication is
distributive with respect to the addition both to the left and to the right.

The structure (S,�k,�k) forms a dioïd, on which Gondran and Minoux
de�ned a path algebra [19], where shortest paths algorithms are expressed as
solutions of linear systems.

Transposing the dioïd to square matrices Addition and multiplication
of square matrices of size n derives from the laws � and �k : for A = (aij),
B = (bij), i, j ∈ [1, n] :

C = A�B = (cij)⇔ cij = aij � bij ∀i, j

C = A�k B = (cij)⇔ cij =
�∑

1≤k≤n
aik �k bkj ∀i, j

where
�∑

is the sum relative to �.

As there is no ambiguity, for
�∑

1≤k≤n
aik �k bkj , we simply write

∑
1≤k≤n

aikbkj

Unity and zero matrices With these two laws, the square matrices also be-
come a dioïd with

zero matrix ε̂ =


ε...........ε
.............
.............
.............
.............
ε...........ε



and unity matrix E =


e...........ε
..e..........
....e........
......e.......
.........e....
ε...........e


We write A0 = E

24.4 An algebraic approach to shortest paths

Lexicographic length of paths in a graph If G = [X,U ] is a weighted graph
with

� a set X of nodes, numbered i = 1, ......, N .
� a set U of edges u = (i, j) with weights sij ∈ S.



The incidence matrix A = (aij) of the graph is given by:

aij =

{
sij si (i, j) ∈ U

ε sinon

}
To each path µ = (i1, i2, ....ik) of the graph, one associated its k-lexicographic

weight w(µ) = si1i2 �k si2i3 �k .... �k sik−1ik , which is di�erent from ∞ only if
the path is a NAP.

If π is a never increasing sequence, then wk [firstk(π)] = firstk(π)

Shortest paths in the graph The shortest paths for the lexicographic distance
between any couple of nodes may be computed thanks to An or A(n) = E�A1�
A2 � .........An .

Lemma 12. Anij =
�∑

µ∈Cn
ij

w(µ) and A
(n)
ij =

�∑
µ∈C(n)

ij

w(µ)

where:

� Cnij is the family of paths between i and j, containing n + 1 nodes (not
necessarily distinct). Anij is then the shortest path of length n between the
nodes i and j.

� C
(n)
ij is the family of paths between i and j, containing at most n+ 1 nodes

(not necessarily distinct). Anij is then the shortest path of any length smaller
than n or equal to n between the nodes i and j.

De�ning A′ = E �A, as � est idempotent (a� a = a ∀a ∈ S), we have:
A′n = A(n)

In a graph with N nodes, an elementary path has at most N nodes, separated
by N − 1 edges. Hence, necessarily A(N) = A(N−1) and A∗, the limit of A(n)

for increasing n, is also equal to A(N−1). A∗ij is the shortest path of any length
between i and j.

Thanks to A∗, the computation of the catchment basins is immediate. If m1

is a regional minimum, then a node i belongs to its catchment basin if and only

if A∗im1
≤

�∑
mj 6=m1

A∗imj

A∗ may be obtained by the successive multiplications :
A, A2 = A�k A, A4 = A2 �k A2, ...A2i = A2i−1

�k A2i−1

until 2i ≥ N − 1�
i.e. i ≥ log (N − 1)

A∗ veri�es A∗ = E �A�k A∗.
Multiplying by a matrix B: A∗B = B�A�kA∗B. De�ning Y = A∗B shows

that A∗B is solution of the equation Y = B � A �k Y. Furthermore, it is the
smallest solution.

With varying B it is possible to solve all types of shortest distances:

� The smallest solution of Y = E �A�k Y yields A∗E = A∗



� with B =



ε
...
0
...
ε

 , one gets A
∗B, the i-th column of the matrix A∗, that is the

distance of all nodes to the node i.

24.5 Solving linear systems

Gondran and Minoux have shown that most of the classical algorithms solving
systems of linear equations (Gauss, Gauss-Seidel, etc.) are still valid in this
context and correspond often to known shortest paths algorithms de�ned on
graphs. We now give a few examples.

The Jacobi algorithm Setting B =



0
ε
...
...
ε

 and Y (0) =



ε
...
ε
...
ε

, the iteration

Y (k) = A ∗ Y (k−1) �B converges to Y (N) = A∗ ∗B

The Gauss Seidel algorithm A is decomposed as A = L�E�U , where L is
an inferior triangular matrix, E the unity matrix E, and U an upper triangular
matrix. The upper part of L and lower part of U have the value ε.

The solution of Y = A∗Y �B is obtained by the iteration : Y (k) = LY (k−1)�
UY (k) �B

This algorithm is faster as Jacobi's algorithm, as the product UY (k) already
uses intermediate results, freshly computed during the current iteration Y (k).

The Jordan algorithm The Jordan algorithm is used in classical linear algebra
for inverting matrices, by successive pivoting. In our case, where the shortest
paths are elementary path the algorithms is:

For k from 1 to N :
For each i and j from i to N , do: aij = aij � aik ∗ akj

The greedy algorithm of Moore-Dijkstra Gondran established the alge-
braic counterpart of the famous shortest path algorithm by Moore-Dijkstra.

Theorem (Gondran): Let Y = A∗B be the solution of Y = AY �B, for an

arbitrary matrix B. There exists then an index i0 such that yi0 =
�∑
bi.

The smallest b is such solution : yi0 = bi0



Each element of Y = AY � B is computed by yk =
�∑
j 6=k

akj ∗ yj � bk =

�∑
j 6=k,i0

akj ∗ yj � aki0yi0 � bk

Suppressing the line and column of rank i0 and taking for b the vector b
(1)
k =

aki0yi0 � bk, one gets a new system of size N − 1 to solve.
The Moore Dijkstra algorithm can also directly be computed on a �ooding

graph G, as presented below.

Remark 10. We only presented a few of the classical algorithms for solving linear
systems in the framework of dioïds. More of them may be found in [19]

25 Shortest paths algorithms on the graph

The algebraic approach to shortest paths algorithms due to Gondran et Minoux
[19] is extremely elegant and powerful due to its wide applicability. In order to
establish a junction with more classical shortest paths algorithms we now present
shortest paths algorithms applied directly on the graph.

We start with the shortest path algorithm of Dijkstra [44], whose algebraic
greedy formulation has been presented in the previous section. We

show that for a lexicographic distance of depth 1, it becomes algorithm for
constructing the minimum spanning forest of Prim.

We then introduce "core expanding algorithms" which take advantage of
the particular structure of the lexicographic distances. They are faster than the
Dijkstra algorithm and better suited to hardware implementations. For a lexi-
cographic distance of depth 2, the core expanding algorithm is rigorously iden-
tical with the classical watershed algorithm based on the topographic distance
[47],[39].

25.1 Architecture of shortest path algorithms.

Algorithms for constructing the catchment basins which expand the regional
minima have been introduced in the literature as �ooding algorithms according
the well known scenario : a topographic surface is �ooded, the minima acting as
sources of the �ooding and dams are erected in order to prevent lakes originating
from distinct minima to merge. All points �ooded from the same minimum
belong to the catchment basin of this minimum. We keep here this image of
�ooding, considering increasing distances from the minima as the altitude of the
�ood. This �ooding is the usual �ooding in the case of lexicographic distances
of depth 1, as these distances are identical with the ultrametric distances (when
applied to non increasing paths).

The shortest path or "�ooding" algorithms below are applied on a quasi
�ooding graph, invariant by the opening γe (the regional minima may ad libitum
be contracted beforehand). A domainD is used and expanded, containing at each
stage of the algorithms the nodes for which the shortest distance to the minima is



known ; D contains the nodes which already have been �ooded, that is, all nodes
for which the shortest distance to the minima has been correctly estimated. .
Initially the minima are labeled and put in D. We say that a �ooding pair (j, l)
is on the boundary of the domain D, if j is inside D and l outside D. In this
case we say that "j �oods l”, or ”l is �ooded by j”. We say that j belongs to
the inside boundary ∂−D of D and l to the outside boundary ∂+D of D.

The domain D is progressively expanded by progressive incorporations of
nodes belonging to �ooding pairs on the boundary of D.

We consider two types of algorithms. The �rst one is the classical algorithm
by Moore and Dijkstra. At each moment, it estimates the shortest distance of the
nodes belonging to ∂+D and introduces the node with the smallest estimated
distance into D. The second is of a di�erent type. It considers the node with the
smallest distance belonging to ∂−D, and �oods all its neighbors in ∂+D. The
second is faster, as it is able to �ood several nodes at once from a unique node
in ∂−D. This computation is made only once and the corresponding nodes are
put into D. The algorithm of Moore-Dijkstra on the contrary needs to compute
a new estimation of nodes in ∂+D each time a node is introduced into D ; for
this reason the distance of a given node may need to be estimated several times.

25.2 The Moore Dijkstra algorithm

Labeling the nodes The shortest path algorithm by Moore-Dijkstra constructs
the distances of all nodes to the minima in a greedy manner. It uses a domain D
which contains at each stage of the algorithm the nodes i for which the shortest
distance δ∗k(i) and label λ(i) is known. For all nodes in ∂+D, this distance can
only be estimated and is written δk(i)

Initialisation:
The nodes of the regional minima are labeled and put in the domain D.
Repeat until the domain D contains all nodes:
For each �ooding pair (j, l) on the boundary of D, estimate the shortest path

as δk(l) = elj �k δ∗k(j) = νl �k δ∗k(j)
The node with the lowest estimate is correctly estimated. If the corresponding

�ooding pair is (j, l) do:

� D = D ∪ {l}
� δ∗k(l) = δk(l)
� λ(l) = λ(j)

Constructing a minimum spanning forest The Moore Dijkstra may also
construct the minimum spanning forest spanning the catchment basins. Let F
be the forest to be constructed.

Initialisation:
F is initialised with a minimum spanning tree spanning each or the subgraphs

of the regional minima
Repeat until the forest F contains all nodes:



For each �ooding pair (j, l) on the boundary of D, estimate the shortest path
as δk(l) = elj �k δ∗k(j) = νl �k δ∗k(j)

The node with the lowest estimate is correctly estimated. If the corresponding
�ooding pair is (j, l) do:

� add the node l and the edge (j, l) to the forest F
� δ∗k(l) = δk(l)

Remark 11. If needed, one may add the propagation of the labels for easily
recognizing the catchment basins, thus combining both versions of the Moore
Dijkstra algorithm.

Correctness of the Moore Dijkstra algorithm The node with the lowest
estimate is correctly estimated and is introduced in the domain D. It is the
extremity of a shortest path whose all other nodes belong to D ; it is necessarily
the shortest path, as any other path would have to leave D through another
boundary �ooding pair with a higher estimate.

Controlling the Moore Dijkstra algorithm The Moore algorithm presented
above correctly computes the shortest distances to the minima. However if sev-
eral nodes with the lowest estimate coexist, the algorithm choses one at random.
Such a random choice is problematic in the presence of plateaus, as they may
be quite arbitrarily divided between neighboring catchment basins.

The Moore Dijkstra may be advantageously controlled by a hierarchical queue
structure (see [36] for the description of a hierarchical queue). Each node, as
it gets is estimate is put into the HQ. As long as the HQ is not empty, the
extracted node is among the nodes with the lowest estimate, the one which has
been introduced in the HQ �rst.

The HQ has thus the advantage to correctly sequence the treatment in the
presence of plateaus: it treats the nodes in the plateaus from their lower boundary
inwards. The processing order is proportional to the distance of each node to
the lower boundary of the plateau.

The Moore Dijkstra algorithm : case where k = 1 The algorithms remains
the same but the computations are simpli�ed as δ1(j) = νj is simply the weight of
the node j, which is the �rst node of a �ooding path leading from j to a regional
minimum. In other terms, the domain D (resp. the forest F ) is expanded by
introducing into D (resp. F ) the �ooding pair on its boundary with the lowest
weight. In the case of F, this algorithm corresponds exactly to the algorithm of
PRIM for constructing minimum spanning forests. The same algorithm has been
used in [33] for constructing the waterfall hierarchy.

This is not surprising, as for k = 1, the lexicographic weight of a NAP simply
is the weight of the �rst edge. The distance is in this case the ultrametric �ooding
distance.



Remark: There is a complete freedom in the choice of the �ooding pairs
which are introduced at any time into D. A huge number of solutions are com-
patible with this distance, some of them quite unexpected as illustrated by an
example illustrated in Fig.22.

25.3 The core expanding shortest distance algorithm

The lexicographic distance of depth k of a node t is equal to the list of weights
of the k �rst nodes of the steepest �ooding path with t as origin. We de�ne
an operator extracting from a list λn of n elements the k �rst elements: λk =
firstk (λn). If n ≤ k, then λk = λn.

Let us �rst construct the lexicographic distance of in�nite depth. If the second
node of the steepest �ooding path of origin t is s, then d(t) = νt � δ(s). The
node s is then the neighboring node of t for which δ(s) is minimal. The "core
expanding shortest distance algorithms" take advantage from this remark. We
�rst present the algorithm and then prove its correctness.

The core expanding algorithm of in�nite depth The core expanding short-
est path algorithm constructs the distances of all nodes to the minima in a greedy
manner. It uses a domain D which contains at each stage of the algorithm the
nodes i for which the shortest distance δ(i) and label λ(i) is known.

Initialisation:
The nodes of the regional minima are labeled and put in the domain D.
Repeat until the domain D contains all nodes:
Among all nodes of ∂−D already �ooded, take the one, say s, for which the

distance δ is the smallest. For each neighboring node t of s inside ∂+D do:

� δ(t) = νt � δ(s).
� D = D ∪ {t}
� λ(t) = λ(s)

The core expanding algorithm of depth k The preceding algorithm is easily
adapted for lexicographic distance of depth k. One has to keep only the k �rst
elements of the distances. This is easily achieved with the help of the operator
firstk . Keeping only the k �rst elements has an advantage, manipulating shorter
distances and a disadvantage, it is less precise.

Initialisation:
The nodes of the regional minima are labeled and put in the domain D.
Repeat until the domain D contains all nodes:
Among all nodes of ∂−D already �ooded, take the one, say s, for which the

distance firstk−1 [δk(s)] is the smallest. For each neighboring node t of s inside
∂+D do:

� δ∗k(t) = νt � firstk−1 [δk(s)]
� D = D ∪ {t}



� λ(t) = λ(s)

Proof of the correctness of the algorithm
We �rst remark that the distances of the nodes t which are expanded by the

core expanding algorithm are never decreasing. At each moment, one expands
the node s with the smallest distance. And the nodes which are introduced have
a distance which is higher than s, as their distance is equal to the concatenation
of their weight and of the distance of s.

Consider a node t whose steepest �ooding path is π = (x1 = t, x2, ...xn), the
last node xn belonging to a regional minimum. We suppose �rst that t has only
one steepest path and examine later what happens if its has several of them.
Let us show that the preceding algorithm correctly estimates the lexicographic
distance of the node t.We will show by induction that the distances of all nodes
xi in the path π are corrrectly estimated.

The distance of xn belonging to a regional minimum is correctly estimated
at initialisation. Suppose that the distance of xl is correctly estimated ; what
about xl+1 ? The node xl is put in the domain D at the moment its distance is
estimated. As the algorithm proceeds, comes a moment when xl has the smallest
distance of all nodes in D. At this moment, the node xl+1 is still outside D ;
otherwise it would have been introduced into D by expanding a node with a
smaller weight than xl. Expanding xl assigns to xl+1 its correct weight.

By induction, we show that the weights of all nodes of π are correctly esti-
mated.

Case where π is not unique : in the case where the node x1 is the �rst node of
several steepest �ooding paths, these paths have the same series of weights. And
at each iteration of the algorithm there are several nodes with the same minimal
weight. The algorithm choses arbitrarily one of them. This has no incidence on
the computation of the distance but on the propagation of the labels.

Controlling the core expanding shortest distance algorithm The core
expanding shortest distance algorithm may also be advantageously controlled
by a hierarchical queue structure. The hierarchical queue is advantageous, as
it permits to introduce the nodes with varying weights and at the same time
always extracts the one with the smallest weight, in order to expand it.

Each node, as it is introduced in D is put into the HQ. As long the HQ is
not empty, the extracted node is among the nodes with the lowest estimate, the
one which has been introduced in the HQ �rst. This node gives its label and the
correct distances to all its neighbors outside D by which it is �ooded.

A node introduced in the HQ earlier is closer to the lower border of the
plateau than nodes introduced later.

In the case of lexicographic distances with in�nite depth, one does not have
to care for plateaus, as the lexicographic distance becomes higher as one enters
deeper inside the plateaus, starting from the lower boundary.

The algorithm is particularly suitable for a hardware implementation: each
node is entered in the HQ only once. On the contrary, with the Moore-Dijkstra



algorithm a node may be introduced several times in the HQ, as its estimate
may vary before it gets its de�nitive value.

The core expanding algorithms for the construction of minimum span-
ning forests Each of the preceding algorithms puts the accent on the propa-
gation of labels. The catchment basins are identi�ed by their labels. One may
in addition or alternatively put the accent on the minimum spanning forests
spanning the catchment basins. The modi�ed algorith is straightforward. Let us
take for instance the case of in�nite depth, the others being quite similar.

Initialisation:
A spanning forest F is constructed containing a minimumum spanning tree

of each regional minimum subgraph.
Repeat until the domain D contains all nodes:
Among all nodes of F having neighboring nodes outside F , take the one,

say s, for which the distance δ is the smallest. For each neighboring node t of s
outside F do:

� δ(t) = νt � δ(s).
� Add the node t and the edge (s, t) to the tree F.

Remark 12. If needed, one may combine both versions of the algorithm con-
structing the forest and labeling the regional minima.

The core expanding shortest distance algorithm: case where k = 1 For
k = 1, δ∗1(s) = νs.

Initialisation:
The nodes of the regional minima are labeled and put in the domain D.
Repeat until the domain D contains all nodes:
Among all nodes of ∂−D already �ooded, take the one, say s, for which the

distance first0 [δ1(s)] =∞ is the smallest. This means that we are able to expand
all nodes of ∂−D whatever their value. However, as we have no order relation
between them, we have to check for each node s of ∂−D which is expanded,
whether the node t which is considered forms with s a �ooding track, that is
νt ≥ νs.

For each neighboring node t of s inside ∂+D and verifying νt ≥ νs do:

� δ1(t) = νt � first0(s) = νt
� D = D ∪ {t}
� λ(t) = λ(s)

This means that any node i in D can be expanded and may introduce in
D each of the outside nodes, say j such that i ≤ j. The node j and the edge
(i, j) form a �ooding pair. We have seen earlier, that the �ooding couples form
a minimum spanning forest of a graph in which all regional minima have been
contracted ; as the lexicographic distance is the shortest possible, the minimum
spanning forest has a steepness equal to 0. Fig.22 shows that such minimum



spanning forests with 0 steepness may take unexpected shapes, as there is max-
imum freedom for constructing them. This lexicographic distance of depth 1 is
identical with the ultrametric �ooding distance applied to lists of non increasing
weights.

The core expanding shortest distance algorithm: case where k = 2 If
k = 2, then δ∗2(s) is the valuation of the node s and of its lowest neighboring
node. And δ∗1(s) is the valuation of the node s itself. The algorithm introduces
more constraints as the previous one for k = 1. It becomes:

Initialisation : Introduce all regional minima in the domain D and label
them.

Repeat until all nodes get a label:
Among all nodes of D �ooded by a node outside D, take the one with the

smallest weight. Let t be this node, inside D and s its �ooding neighbor outside
D.

Do :

� D = D ∪ {s}
� λ(s) = λ(t)

If in addition, one uses a HQ for controlling the process, we get the classical
algorithm for constructing catchment basins [36].

Initialisation: Label the minima and introduce their nodes into a HQ, each
with a priority equal to its weight.

Repeat until all nodes get a label: As long as the HQ is not empty,
extract the node j with the highest priority from the HQ:

For each unlabeled neighboring (on the �ooding graph) node i of j :
* label(i) = label(j)
* put i in the queue with priority νi

As a matter of fact, this algorithm has appeared in another context, de�ning
the catchment basins as the zones of in�uence of the minima for the topographic
distance [39].

Reminder on the topographic distance Consider an arbitrary path π =
(x1, x2, ..., xp) between two nodes x1 and xn. The weight νp at node xp can be
written:

νp = νp − νp−1 + νp−1 − νp−2 + νp−2 − νp−3 + ....+ ν2 − ν1 + ν1
The node k−1 is not necessarily the lowest node of node k, therefore νk−1 ≥

εnνk and νk − νk−1 ≤ νk − εnνk.
Replacing each increment νk − νk−1 by νk − εnνk will produce a sum νp −

εnνp+νp−1−εnνp−1 + ....+ν2−εnν2 +ν1 which is larger than νp. It is called the
topographic length of the path π = (x1, x2, ..., xp). The path with the shortest
topographic length between two nodes is called the topographic distance between
these nodes [47],[39]. It will only be equal to νp in the case where the path
(x1, x2, ..., xp) precisely is a path of steepest descent, from each node to its lowest



neighbor. In other terms the topographic distance and the distance lexdist2 have
the same geodesics.

If we de�ne the toll to pay along a path π = (x1, x2, ..., xp) as ν1 for the �rst
node and νi − εnνi for the others, then the lowest toll distance for a node xp
to a regional minimum will be νp if there exists a path of steepest descent from
xp to x1. In other terms, xp and x1 belong to the same catchment basins if one
considers the topographic distance. But they also belong to the same catchment
basin if one considers the depth 2 lexicographic distance, as, by construction, xk
is the lowest neighbor of xk−1.

As a matter of fact, the preceding algorithm may now be reformulated as a
cheapest path algorithm, expressed on the nodes of the graph. The weights are
assigned to the nodes and not to the edges. Each node may be considered as a
town where a toll has to be paid. The cost of a path is equal to the sum of the
tolls to be paid in all towns encountered along the path (including or not one or
both ends).

Initialisation: Label the minima and introduce their nodes into a HQ, each
with a priority equal to its weight.

Repeat until all nodes get a label: As long as the HQ is not empty,
extract the node j with the highest priority from the HQ, that is with the lowest
cost νi:

For each unlabeled neighboring (on the �ooding graph) node i of j :
* label(i) = label(j)
* put i in the queue with priority νj + νi − εnνi. But, since j is the

�rst neighbor of i coming out of the queue, hence it is the lowest neighbor, that
means that εnνi = νj and νj + νi − εnνi = νi.

Finally, any image f may be considered as the global toll of its pixel graph
if one takes:

� as reference nodes the regional minima of the image. Each of them has as
toll its altitude.

� as local toll for all other nodes, the di�erence between their altitude and the
altitude or their lowest neighbor: g = f − εf

If in addition, we give a di�erent label to each regional minimum, we may
as previously propagate this label along each smallest toll path. We obtain like
that a tessellation: to each minimum is ascribed a catchment basin: the set of
all nodes which are closer to this minimum then to any other minimum. Fig.55
presents a graph where each node has two weights, the left value representing
the lower gradient of the right value, that is the di�erence between the right
value and the right value of the lowest neighbor.

Fig.56 illustrates how the cheapest path algorithm reconstructs the values of
the initial grey tones and at the same time propagates the labels of the minima.

As a conclusion the catchment basins of a node weighted graph are the SKIZ
of the minima, both for the topographic distance and for the depth 2 lexico-
graphic distance. Each node is the extremity of a geodesic line, which is the
same both for the toll distance and for the lexicographic distance of depth 2.
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Fig. 57. Lexicographic distance of depth 1.

Fig. 58. Lexicographic distance of depth 2.

25.4 Top down or bottom up : the in�uence of the depth k

For increasing values of k, the k-lexicographic distance becomes more and more
selective. At each step of the core expanding algorithm the number of nodes
which are expandable also gets smaller and smaller. For this reason, the number
of equivalent catchment basins compatible with a given lexicographic depth is
reduced as the value of k becomes bigger.

This is in accordance with the fact that with increasing values of k, the
pruning ↓k becomes more and more severe. After applying the operator ↓k on a
�ooding graph G, there remain only �ooding tracks with k steepness. The same
is true if we apply the operator ζk in order to prune edges of G and subsequently
restore the initial weights of the edges onto the remaining edges.

We compare and illustrate on one hand the bottom up approach, applying a
shortest path algorithm for lexicographic distances of increasing depth, on the
other hand the top-down approach by pruning.

Bottom up : shortest lexicographic distances Figures 57, 58, 59 show respectively
the shortest lexicographic distances of depth 1, 2 and 3. In each �gure, the left
one presents the distances and the right one presents a particular pruning χ,
yielding a particular partition. The pruning of �g.59 is the only one applicable
to the lexicographic distance of depth 3 but is also applicable to the lexicographic
distances of depths 1 and 2. Similarly he pruning of �g.58 is also applicable to
the lexicographic distance of depth 1. And the pruning of �g.57 is only applicable
to distance 1. The number of solutions decreases with the lexicographic depth.

Top-down : successive prunings of a graph Repeating the operator ζG = ↓ εG
produces a decreasing series of partial graphs ζ(n)G = ζζ(n−1)G, which are



Fig. 59. Lexicographic distance of depth 3.

Fig. 60. Successive prunings of a graph when one applies the series ζ(n)G

steeper and steeper. In �g.60, we present in red the edge which is not the lowest
edge of one of its extremities. After pruning this edge, the operator is applied
again. Applying ζ a number n of times is equivalent to constructing the partitions
compatible with a SKIZ for a lexicographic distance of depth n+ 1. In our case,
ζ(3)G produces a graph with the same edges as the pruning χ applied to the
graph where each edge has been weighted by its lexicographic distance of depth
4 to the nearest minimum, illustrated in the previous �gure.

Remark 13. If the only NAPs remaining in the graph have a k steepness, any
shortest path algorithm with a lower steepness will extract them In particular
the most simple algorithms for the distances d1 or d2 will extract catchment
basins of steepness k.

25.5 Contrasts between �ooding and pruning algorithms, illustrated
by the watershed of a digital elevation map

Fig. 61.1.1 presents a digital elevation map of an existing landscape : each gray
tone represents an altitude. Due to sensing errors, there are spurious regional
minima in the topographic surface. As the rivers live the image in the direction
of the see, the only minima which make sense are those on the boundary of the



Fig. 61. The gray tone image represents a digital elevation map. The central image
shows all regional minima touching the boundary of the image. The right image presents
the catchment basins.

image. A marker image is produced, equal to the relief on the boundary of the
image and to∞ elsewhere. The highest �ooding of the relief under this mask has
all its minima touching the boundary (see �g. 61.1.2 ); all other spurious minima
due to sensing errors have been suppressed. lexicographic watershed produces
the partition in catchment basins illustrated by �g. 61.1.3. Its catchments are
the real catchment basins of the topographic surface, containing each a river,
appearing as a thalweg line.

As announced earlier, the labels are propagated along lines of steepest descent
; at each iteration they progress by one step further. When they reach the top
of a drainage path, they stop. This may be clearly seen in �g. 62 showing the
extension of the catchment basins after 20, 40, 60, 80, 100 and 120 iterations of
the elementary step of the algorithm (adaptive erosion of gray tones, dilation of
labels and pruning of arrows). The construction of the catchment basins touching
the lower boundary is achieved after a low number of iterations as they are
small. They stop growing, independently of the adjacent catchment basins. The
adjacent catchment basin, associated to the largest river reaches them after many
more iterations.

This is in absolute contrast with the �ooding algorithms which construct
the catchment basins as attraction zones of the regional minima. For such al-
gorithms, a catchment basin stops growing only when it arrives in contact with
another catchment basin. Such algorithms are shortest distance algorithms and
we presented earlier various implementation, either as the Moore Dijkstra al-
gorithm or as the core expanding algorithms. In both cases, the propagation
proceeds by increasing distances to the minima, which in the present context
may be interpreted as increasing levels of �ooding. The propagation of a �ood
front is only stopped when it meets another �ood front.

The grows of catchment basins for both algorithms may now be compared.
Fig. 62 shows the extension of the catchment basins after 20, 40, 60, 80, 100
and 120 iterations of the combined adaptive erosion of gray tones, pruning and
dilation of labels. One remarks a striking di�erence with the classical algorithm
for constructing the watershed which is based on the simulation of a �ooding,



Fig. 62. Extension of the catchment basins after 20, 40, 60, 80, 100 and 120 iterations
of the combined adaptive erosion of gray tones, pruning and dilation of labels.



Fig. 63. Construction of the catchment basins with an algorithm based on uniform
�ooding

where a �ood starting from the regional minima grows with a uniform altitude
and progressively invades the topographic surface. Fig. 63 precisely shows the
progressive construction of the catchment basin based on the �ooding distance;
the un�ooded part appears in dark blue, the �ooded parts appears as colored
labels. The successive levels of �ooding represented are 75, 105, 135, 170, 205 and
240 (gray-tones on a scale [0, 255]). The �ooding algorithm is a greedy shortest
distance algorithm based on the topographic distance. Each catchment basin
stops growing everywhere it meets another catchment basin. With the steepest
path algorithm on the contrary, the catchment basins are dilated at each iteration
by a dilation of size one and they stop growing when they have reached their full
extension, have they reached another catchment basin or not. As a consequence,
if we suppress the label of a minimum at initialization, the catchment basin of
this minimum will remain empty.

26 Chosing one watershed partition among how many ?

26.1 The choice of a particular watershed partition

The algorithms published in the literature start with a topographical surface
or a weighted graph and associate to is a watershed partition. They all end up
with a unique solution. In contrast, all along the present study we separated the



de�nition and characterization of a family of watershed partitions and the choice
of a particular watershed partition within this family. As a matter of fact, as
a catchment basin is the set of nodes linked with a regional minimum through
a non ascending path, we associated families of watershed partitions with the
steepness of the paths for constructing them. Increasing the steepness reduces
the number of minima which is possible to reach from each node, and hence
reduces the number of equivalent catchment basins.

The pruning and scissor algorithms This mechanism is clearly visible in
the �rst part of the document, where the operators ↓k and ζk prune the graph,
leaving only paths with a given steepness. As for k > l, the operator ↓k prunes
more than the operator ↓l, we indeed obtain a decreasing family of steepest paths
and hence of associated catchment basins.

We then introduced an additional operator, the scissor operator χ, which
randomly leaves only one �ooding edge for each node. Alternatively, we de�ned
a dilation which expands the regional minima step by step along the edges of the
pruned graph ; there again, two distinct labels may meet in the central point,
and the algorithm choses one at random.

The shortest distance algorithms, and the embedded choices. In the
second part of the study, we select �ooding paths as geodesics of lexicographic
distance functions. As the lexicographic depth increases, there exist less and
less geodesics. We proposed two families of algorithms producing as outcome
a particular watershed partition. This means that the choice of a particular
solution is embedded in the algorithm itself as analysed below.

If one considers the distance of a node to the nearest regional minimum as an
altitude, one may consider the shortest paths algorithms as �ooding algorithms,
applied to a quasi �ooding graph, invariant by the opening γe. A domain D
is used and expanded, containing at each stage of the algorithms the nodes for
which the shortest distance to the minima is known ; D contains the nodes which
already have been �ooded, that is, all nodes for which the shortest distance to
the minima has been correctly estimated. . Initially the minima are labeled and
put in D. We say that a �ooding pair (j, l) is on the boundary of the domain
D, if j is inside D and l outside D. In this case we say that "j �oods l”, or ”l is
�ooded by j”. We say that j belongs to the inside boundary ∂−D of D and l to
the outside boundary ∂+D of D.

The domain D is progressively expanded by progressive incorporations of
nodes belonging to �ooding pairs on the boundary of D.

We consider two types of algorithms. The �rst one is the classical algorithm
by Moore and Dijkstra. At each moment, it estimates the shortest distance of
the nodes belonging to ∂+D and introduces one of the nodes with the smallest
estimated distance into D. The second is of a di�erent type. It considers one
of the nodes with the smallest distance belonging to ∂−D, and �oods all its
neighbors in ∂+D.



Each algorithm proceeds node by node ; at each step, one has to consider
a family F of nodes whose value or estimated value is minimal ; for the Moore
Dijkstra algorithm they are the nodes of ∂+D with the smallest estimated dis-
tance. For the core expanding algorithm, they are the nodes with the smallest
computed distance in ∂−D. As long the domainD does not contain all nodes, the
family F contains one or several equivalent nodes. If F contains several nodes,
one of them has to be chosen by the algorithm : this is the place where a choice
takes place.

If the choice is random, that is all possible choices may be considered, then
the algorithms are able to construct all watershed partitions compatible with a
given distance function. If on the contrary, not all choices are considered at each
stage of the algorithm, then only a subset of all possible watershed partitions
may be produced by the algorithm.

This may be of disadvantage, if the algorithm introduces a systematic bias
in the choice of the solutions. It may be, on the contrary, an advantage, if the
choices permit to select a watershed partition of quality. This will be the case if
one uses for ordering the treatment of the nodes some particular data structure.

A number of algorithms have been published producing watershed partitions
of quality. As there is no analysis on the respective role of the distance function
and of the data structure, the reader attributes the merits of the algorithm to
the clever de�nition of a distance function, whereas all the merits have to be
ascribed to the data structure which has been used.

This discrete and obscure work of the data structures controling shortest
distance algorithms is particularly spectacular when considering the hierarchical
queue algorithms. Hierarchical queue algorithms have been introduced in order
to gracefully treat the problem of the plateaus. But as we will see below, they
do much more...

26.2 The problem of the plateaus in the shortest distance
algorithms

The presence of plateaus of uniform altitude causes an obvious problem for the
watershed algorithms. A drop of water falling inside a plateau has no means to
orient itself ; in which direction should it �ood ? This was not a problem for
the �rst algorithms based on geodesic SKIZ of the minima inside the successive
thresholds. Francis Maisonneuve [30] proposed to represent the slope of a to-
pographic surface in terms of arrows from a node to its lower neighbors. For a
drop of water falling on a plateau, he supposes that it isotropically extends itself
until reaching a lower border, and that it will glide down the surface from this
point. In other terms, a drop of water falling on a topographic surface will follow
a line of steepest descent on the geodesic distance function of the plateaus to
their lower border. Francis Maisonneuve proposed a propagation mechanisms to
introduce additional arrows inside the plateau which provides the correct arrow-
ing. Later F.Lemonnier explicitely constructed this geodesic distance function in
order to be able to produce arrows in the direction of �ooding everywhere [29].



As a matter of fact, the presence of plateaus introduces a 2-lexicographic
order relation between nodes : a node p is higher than a node q if its altitude νp
is higher than its altitude νq ; or if they both belong to a plateau, if p is farther
then q from the lower border of the plateau.

A decisive progress was made by controlling the �ooding with hierarchical
queues [36]. This data structure is a series of prioritized FIFOs. It permits to
enqueue each node p in the FIFO with the priority νp. The dequeue on the con-
trary consists in extracting the node which entered �rst into the FIFO with the
highest priority. As the nodes close to the lower border of the plateau enter the
queue before the inside nodes, the nodes inside the plateaus are indeed �ooded
in the 2-lexicographic order de�ned above. The algorithms based on hierarchical
queues became the fastest algorithms for the construction of catchment basins.

As we have seen, many algorithms for the construction of watersheds are
shortest path algorithms for various types of distances. Among them we high-
lighted the Dijkstra shortest path algorithm and presented the core expanding
shortest paths algorithms which both are advantageously controlled by a hier-
archical queue. In both cases, a domain D is used and expanded, containing at
each stage of the algorithms the nodes for which the shortest distance to the
minima is known ; D contains the nodes which already have been �ooded, that
is, all nodes for which the shortest distance to the minima has been correctly es-
timated. The domain D is progressively expanded by progressive incorporations
of nodes belonging to �ooding pairs on the boundary of D.

We consider two types of algorithms. The �rst one is the classical algorithm
by Moore and Dijkstra. At each moment, it estimates the shortest distance of
the nodes belonging to ∂+D and introduces a node with the smallest estimated
distance into D ; if there are several nodes with equivalent distances, any one of
them may be chosen, yielding the same �nal result.

The second is of a di�erent type. It considers the node with the smallest
distance belonging to ∂−D, and �oods all its neighbors in ∂+D. Here again
if there are several nodes with equivalent distances, any one of them may be
chosen, yielding the same �nal result.

For both types of algorithms, one may use a "bucket" containing all nodes
which could equivalently be chosen the algorithm at any time. The choice of
the element to extract from the bucket being arbitrary or random. Doing that
would produce correct distances, but being not further constrained, the water-
shed partitions possibly produced would be extremely numerous, and some of
them would be odd looking (as for instance the �gure &&&). Ordering the nodes
to be processed with a hierarchical queue produces a unique solution. This means
that among all solutions compatible with a given distance, the hierarchical queue
favors one.

One may wonder, to which extend the family of resulting watershed partitions
is reduced if one uses a hierarchical queue. Furthermore, is there not a risk that,
due to the scanning order, the resulting watershed partition is systematically
biased ? If this is the case how severely is it biased ?



In order to get a more clear idea on the subject we investigated more precisely
how the hierarchical queue orders the treatment of the nodes.

The core expanding algorithm of depth 2 controlled by a hierarchical
queue Consider the simple core expanding algorithm of depth 2 [36] presented
earlier. It is described in algorithm 1.

Algorithm 1: The simple core expanding algorithm of depth 2

Input: A quasi �ooding graph
A hierarchical queue

Result: The labeled nodes of the catchment basins

1 Initialisation: Label the minima and introduce their boundary nodes into a
HQ, each with a priority equal to its weight.

2 while HQ not empty do

3 extract the node j with the highest priority from the HQ
for each unlabeled neighboring node i of j do

4 label(i) = label(j)
5 put i in the queue with priority νi

We will rephrase this algorithm and introduce tags into the queues as pre-
sented in algorithm 2. We will see that the nodes between two tags are equivalent
and have the same lexicographic distance of in�nite depth.

Illustration of the algorithm The preceding algorithm is better understood by
contemplating �g.64 continued in �g.65, where a node weighted graph with three
regional minima is progressively �ooded. The hierarchical queue is a series of
FIFO queues (h0, h1, h2, ...). The queue h0 has the highest priority. Each time
that a node i in the HQ is dequeued and expanded, each of its unlabeled neigh-
bors is put in the queue and the edge linking both nodes gets a red color in
�g.64. Alternatively, an arc could be created between each �ooded node towards
the node by which it has been �ooded.

� A: the regional minima are labeled and their boundary nodes are put onto
the hierarchical queue : each node is put in the queue with a priority equal
to its weight. A tag is put in each non empty queue equal to the weight of
the nodes in the queue. Each such tag represents the lexicographic distance
to the closest regional minimum of the nodes below the tag, as these nodes
belong to the regional minimum itself.

� B: the node b belongs to the queue with the highest priority 0 and is the
only node below its tag equal to 0. This node is expanded (it takes the color
blue in the queue) and its neighbor e with weight 1 is put in the queue h1



Algorithm 2: The core expanding algorithm of depth 2 with tags

Input: A quasi �ooding graph
A hierarchical queue

Result: The labeled nodes of the catchment basins

1 Initialisation: Label the minima and introduce their boundary nodes into a
HQ, each with a priority equal to its weight. Introduce a tag on top of the non
empty hierarchical queues with the value equal to the weight of the nodes in the
queue. Like that, the tag indeed indicates the lexicographic distance of the node
to the regional minimum, as they belong to this minimum.

2 while HQ not empty do

3 while the next tag has not been reached in the highest priority queue do

4 extract the node j with the highest priority from the HQ
for each unlabeled neighboring node i of j do

5 label(i) = label(j)
6 put i in the queue Hνi with priority νi
7 set Hνi as active

8 extract the tag in the highest priority queue; let τ be the value of this tag
9 for each active queue Hλ do

10 Introduce a tag equal to λB τ into the queue
11 Set the queue as inactive



with a red color. A tag equal to νe . tag(b) = 1 . 0 = (10).
Similarly, the node a in h1 is expanded and its neighbor d is put into h2. A
tag equal to νd . tag(a) = 2 . 1 = (21) is put into h2.

� C: The node e in h1 is expanded and its three neighbors put in the hierar-
chical queue. Two of its neighbors, h and i, with weight 3 are put into h3.
A tag equal to νh . tag(e) = 3 . (10) = (310) is put into h3.
The third neighbor, j with weight 4 is put into h4. A tag equal to νj.tag(e) =
4 . (10) = (410) is put into h4.

� D: The node c in h2 is expanded and its neighbor f is put into h4, followed
by a tag equal to νf . tag(c) = 4 . 2 = (42) is put into h4.

� E: The node d in h2 is expanded and its neighbor g is put into h3, followed
by a tag equal to νg . tag(d) = 3 . (21) = (321) is put into h3.

� F: the next package to expand contains the two nodes h and i, which are fol-
lowed by the tag (310) in h3. The node i in h3 is expanded and its neighbors
m and n are put into h3. The node h has no unlabeled neighbor to expand.
Finally a tag equal to νm . tag(i) = 3 . (310) = (3310) is put into h3.

� G: The node g in h3 is expanded and its neighbor l is put into h3, followed
by a tag equal to νl . tag(g) = 3 . (321) = (3321) is put into h3.

� H: The nores m,n, l and j are dequeued ; they have no unlabeled neighbor.
Finally, the node f in h4 is expanded and its neighbor h is put into h4,
followed by a tag equal to νk . tag(f) = 4 . (42) = (442) is put into h4.
The next two nodes o and k may then be dequeued ; they have no unlabeled
neighbors.

Analysis of the algorithm The tags present in the queue of priority λ all have as
�rst element the weight λ, as they have been formed by the concatenation of λ
and of a smaller tag. The tags are increasing from bottom to top in each queue
and from lower priority queues to higher priority queues.

The plateaus are indeed treated correctly : the nodes g, h and i, at a distance
0 of the lower border, enter before the nodes n,m and l into the queue, at a
distance 1 from a lower border. On the other hand the nodes h and i, with a
lower lexicographic distance to a minimum, enter before g, l,m and n with a
higher lexicographic distance to a minimum.

Each group of nodes between two tags has the same lexicographic distance
to the closest regional minimum ; this distance is equal to the tag above them.

Obviously, the tags play no role in the ordering of the nodes in the HQ. The
simple algorithm without tags and the algorithm with tags order the nodes in
the same way.

Creation of the graph ↓∞ G Suppressing all edges through which does not
pass a path of in�nite steepness produces the graph ↓∞ G. This same graph may
be produced by a hierarchical queue �ooding modi�ed as follows.

We use the same graph as in �g.64. The outcome of the algorithm is the same
up to the �g.64E, as at each iteration the input bucket has only one element. The
modi�cation is presented in �g.66. The input bucket to be expanded in �g.66E



Fig. 64. Flooding from the minima of a node weighted graph controlled by a hierarchi-
cal queue. The nodes in the queue have two colors : the already expanded nodes are in
dark blue and the nodes still to expand are in red. The lexicographic distance of each
package of nodes is placed above the package.



Fig. 65. Flooding from the minima of a node weighted graph controlled by a hierarchi-
cal queue. The nodes in the queue have two colors : the already expanded nodes are in
dark blue and the nodes still to expand are in red. The lexicographic distance of each
package of nodes is placed above the package.



Algorithm 3: The core expanding algorithm of depth 2 with tags and
complete arrowing

Input: A quasi �ooding graph
A hierarchical queue

Result: The labeled nodes of the catchment basins

1 Initialisation: Label the minima and introduce their boundary nodes into a
HQ, each with a priority equal to its weight. Introduce a tag on top of the non
empty hierarchical queues with the value equal to the weight of the nodes in the
queue. Like that, the tag indeed indicates the lexicographic distance of the node
to the regional minimum, as they belong to this minimum.

2 while HQ not empty do

3 Create an empty "input bucket"
4 Create an empty "output bucket"
5 while the next tag has not been reached in the highest priority queue do

6 extract the node j with the highest priority from the HQ
7 put j in the "input bucket"

for each unlabeled neighboring node i of j do
8 label(i) = label(j)
9 put i in the queue Hνi with priority νi

10 put i in the "output bucket"
11 set Hνi as active

12 extract the tag in the highest priority queue; let τ be the value of this tag
13 for each active queue Hλ do

14 Introduce a tag equal to λB τ into the queue
15 Set the queue as inactive

16 for each pair of neighboring nodes (i, j), j in the "input bucket" and i in the
"output bucket" do

17 Create an arrow from i to j indicating that j is one of the nodes �ooding i



Fig. 66. Arcs are created between each �ooded node and its smallest �ooding nodes,
in the sense of the lexicographic distance of depth ∞.

contains the nodes i and h. Expanding the node i introduces the nodes n and
m. The next node to be expanded is h : having no neighboring node without
label nothing happens. In our case, the input bucket contains the ndes i and h
and the output bucket the nodes n and m. An arc is then created from each
node in the output bucket towards each of its neighbors in the input bucket. In
our cases arcs from m to h and i, and from n to i.

In practice for obtaining an optimal and simple watershed algorithm...
For a node weighted graph, use the algorithm above.

For an edge weighted graph, produce the quasi-�ooding graph by εne ↓ G
and apply the preceding algorithm

The hierarchical queue ordering the Moore Dijkstra algorithm The
Moore-Dijkstra algorithm also may be advantageously controled by a hierarchical
queue. The algorithm is classically initialized by introducing the neighboring
pixels of the minima in the queue. If we take care to order the minima according
the values of their nodes, and follow this order for introducing their neighboring
pixels in the queue, the algorithm 4 behaves in fact as a core expanding algorithm
of depth 2, that is with the help of the hierarchical queue it works as with a
lexicographic distance function of depth ∞.



Algorithm 4: Catchment basins with the Moore-Dijkstra algorithm

Input: A quasi �ooding graph
A hierarchical queue HQ
A domain D

Result: The labeled nodes of the catchment basins

1 Initialisation:
2 for each regional minimum, in the order of increasing node weights do
3 Label the minimum and introduce its nodes into D
4 Introduce each of its neighboring nodes i in the queue with priority νi

5 while HQ not empty do

6 extract the node j with the highest priority from the HQ and introduce it
into D
for each unlabeled neighboring node i of j do

7 label(i) = label(j)
8 put i in the queue with priority νi

"Much ado about nothing" or the silent e�ciency of hierarchical
queues We already suspected that in a number of publications on the water-
shed, the focus is put on the core of the algorithm and the role of the ordering of
the nodes to be treated remains in the shadow. This disproportion is particularly
spectacular for the hierarchical queues. We have just seen that by implementing
the core expanding algorithm for a lexicographic distance of depth 2 (or equiva-
lently the Voronoi tesselation based on the topographic distance) but controling
its progression with a hierarchical queue, we obtain a Voronoi tesselation for
a lexicographic distance of in�nite depth. This means that since the paper of
1991 [36] we produced, without knowing it, the best constrained watershed pos-
sible on images and graphs (on an image, we always can do better, by enriching
the neighborhood relations of each node and introducing additional directions ;
in [39] we introduced chamfer neighborhoods for constructing the topographic
distance).

Should we title this document "much ado about nothing", since we developed
a number of techniques for constructing the best constrained watershed possible
and at the same time we had for the last 20 years an optimal algorithm available
? I dont think so, as the study has given much more than just an algorithm for
constructing the watershed but has given an in depth insight of the topography
of node or edge weighted graphs.

27 Conclusion

Beside its theoretical interest, the paper opens also new perspectives for the
watershed implementation. Local pruning operators are easily be performed by



a graphics processor. After pruning single CB may be extracted permitting local
segmentations, in contrast to the �ooding approach, where two competing �oods
have to �nd the divide line between them.

Acknowledgements: We thank Francis Maisonneuve for his valuable com-
ments and suggestions for improvements of the paper.
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