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ABSTRACT 1 

The induction of non-targeted stressful effects in cell populations exposed to low 2 

fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the 3 

health risks of space radiation. We investigated the upregulation of stress markers in 4 

confluent normal human fibroblast cultures exposed to 1000 MeV/u iron ions (linear 5 

energy transfer (LET) ~151 keV/μm) or 600 MeV/u silicon ions (LET ~50 keV/μm) at 6 

mean absorbed doses as low as 0.2 cGy, wherein 1-3 % of the cells were targeted through 7 

the nucleus by a primary particle. Within 24 h post-irradiation, significant increases in the 8 

levels of phospho-TP53 (serine 15), p21Waf1 (CDKN1A), HDM2, phospho-ERK1/2, 9 

protein carbonylation and lipid peroxidation were detected, which suggested participation 10 

in the stress response of cells not targeted by primary particles. This was supported by in 11 

situ studies that indicated greater increases in 53BP1 foci formation, a marker of DNA 12 

damage, than expected from the number of primary particle traversals. The effect was 13 

expressed as early as 15 min after exposure, peaked at 1 h, and decreased by 24 h. A 14 

similar tendency occurred after exposure of the cell cultures to 0.2 cGy of 3.7 MeV 15 

α particles (LET ~109 keV/μm) that targets ~1.6 % of nuclei, but not after 0.2 cGy from 16 

290 MeV/u carbon ions (LET ~13 keV/μm) by which, on average, ~13 % of the nuclei 17 

were hit, which highlights the importance of radiation quality in the induced effect. 18 

Simulations with the FLUKA multi-particle transport code revealed that fragmentation 19 

products, other than electrons, in cell cultures exposed to HZE particles comprise <1 % of 20 

the absorbed dose. Further, the radial spread of dose due to secondary heavy ion 21 

fragments is confined to approximately 10-20 µm. Thus, the latter are unlikely to 22 

significantly contribute to stressful effects in cells not targeted by primary HZE particles. 23 

24 
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INTRODUCTION 1 

The ionizing radiation-induced bystander effect has been broadly defined as the 2 

induction of biological changes in in cells not directly targeted by radiation (1). Stressful 3 

bystander effects have been extensively observed in cell populations where only a small 4 

fraction of the cells is targeted by high linear energy transfer (LET) α particles. Induction 5 

of genetic alterations, including sister chromatid exchanges (2), mutations (3, 4), 6 

chromosomal aberrations (5) and micronuclei (6), changes in gene expression (7, 8), 7 

lethality (9) and neoplastic transformation (10, 11) have been observed in bystander cells 8 

of various lineages after exposure of other cells to α particles. On the other hand, the 9 

characterization of bystander effects in cell cultures exposed to very low fluences of high 10 

charge (Z) and high energy (E) (HZE) particles, another type of high LET radiation, are 11 

only emerging, and conflicting data have been reported. In initial experiments with 12 

microbeam, stressful effects were shown to be transmitted from HZE-particle-irradiated 13 

cells to contiguous cells that were not targeted by the primary particle (12-14). In 14 

subsequent experiments whereby HZE-particle-irradiated cells were co-cultured with 15 

bystander cells in a manner that they only shared growth medium, stressful responses 16 

were also induced in the bystander cells and were similar in nature to those generated in 17 

the targeted cells (15-17). Furthermore, oxidative stress and DNA damage persisted in 18 

distant progeny of bystander cells that had been in contiguous co-culture with HZE-19 

particle-irradiated cells (18, 19). However, other experiments involving the transfer of 20 

growth medium from irradiated cultures to recipient bystander cells present in a separate 21 

dish (9, 20), or the targeting of an exact number of cells in a population with energetic 22 

heavy ions from a microbeam (21) did not detect an effect with a variety of endpoints and 23 
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cell types. Several factors may underlie the absence of observable effects in these cases, 1 

including timing of endpoint measurement, dilution of the inducing factor and the 2 

metabolic state/redox environment of the recipient cells.  3 

Providing clear evidence for HZE-particle-induced bystander effects is pertinent 4 

to space exploration during which astronauts are likely to be exposed to low fluences of 5 

energetic particles (22). To gain greater knowledge of HZE-particle-induced bystander 6 

effects, we investigated the expression of stress markers in density-inhibited normal 7 

human diploid fibroblast cultures exposed to low fluences of iron, silicon or carbon ions, 8 

and compared the results with those obtained in cultures exposed to low fluences of 9 

α particles. The data showed clear evidence for modulation of p53/p21Waf1 and ERK1/2 10 

signaling in cultures exposed to doses as low as 0.2 cGy wherein only 1-3 % of nuclei are 11 

traversed by a primary particle track. An increase in protein carbonylation and lipid 12 

peroxidation was also detected at 24 h after exposure, suggesting that perturbations in 13 

oxidative metabolism contribute to the greater than expected stressful effects, based on 14 

microdosimetric considerations of the fraction of cells traversed by a primary particle. In 15 

situ immune-detection studies of 53BP1 foci formation, a marker that has been associated 16 

with DNA double strand breaks (23), together with the use of culture dishes where a 17 

solid-state nuclear track detector was fused to the glass bottom on which the cells grow, 18 

supported the involvement of cells not targeted by primary HZE particles in the response 19 

of cell cultures to radiation. 20 

 The microscopic structure of the primary HZE-particle-track is characterized by a 21 

high frequency of interactions with the target, which result in highly localized energy 22 

depositions (24, 25). Secondary radiations arise from interactions with atomic electrons 23 
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in target atoms and from fragmentation of the incident HZE particle and target nuclei. 1 

These secondaries are produced along the primary particle track and include energetic 2 

electrons (δ rays), photons, protons, neutrons, α particles and other heavier ions with 3 

different LET values. In contrast to δ rays with a maximum range of ~0.1 µm that are 4 

produced in biological matter when traversed by the 2-10 MeV high-LET α particles that 5 

are emitted during α decay of radionuclides (26), the range of δ rays produced following 6 

HZE particle-traversals can extend up to several cell diameters (27, 28), thereby 7 

potentially irradiating and contributing to biochemical changes in cells that are near those 8 

targeted by the primary particle track. In particular, protective mechanisms induced by 9 

low LET secondary radiations may mitigate stressful effects propagated from cells 10 

traversed by the primary particle (29). Alternatively, cells that were thought to be 11 

bystanders may be significantly irradiated by secondaries. To investigate whether 12 

secondary particles are a factor in apparent HZE-particle-induced bystander effects, the 13 

tracks of the secondaries were simulated with the multi-particle transport code FLUKA 14 

and absorbed doses received by the monolayer of cells adjacent to the targeted cells were 15 

assessed (30-32). 16 

MATERIALS AND METHODS 17 

Cell culture 18 

AG1522 normal human diploid skin fibroblasts were obtained from the Genetic 19 

Cell Repository at the Coriell Institute for Medical Research. Cells at passage 10-12 were 20 

grown in Eagles’ Minimum Essential Medium (MEM) (CellGro) containing 12.5 % 21 

(vol/vol) heat inactivated (30 min at 56 ºC) fetal bovine serum (FBS) (Sigma), 22 

supplemented with 4 mM L-alanyl-L-glutamine (CellGro), 100 U/mL penicillin and 23 
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100 µg/mL streptomycin (CellGro). They were maintained in 37 ºC humidified 1 

incubators in an atmosphere of 5 % CO2 (vol/vol) in air. For experiments, cells were 2 

seeded at numbers that allowed them to reach the density-inhibited state within 5 days. 3 

They were then fed twice on alternate days, and experiments were initiated 48 h after the 4 

last feeding. Under these conditions, 95-98 % of cells were in G0/G1 phase of the cell 5 

cycle. The synchronization of cells in G0/G1 phase, by density-inhibition of growth, 6 

eliminates complications in interpretation of results that arise from changes in responses 7 

to ionizing radiation at different phases of the cell cycle (33). 8 

For HZE-particle-irradiation, the cells were either grown in 25 cm2 polystyrene 9 

flasks (Greiner) for Western blot analyses or in glass-bottomed flaskettes (Nalge Nunc 10 

International) for in situ detection of 53BP1 foci. Cells destined for α-particle-irradiation 11 

were seeded in stainless steel dishes with a circular 36-mm-diameter growing surface that 12 

consists of 1.5 µm-thick replaceable polyethylene terephthalate (PET). To facilitate cell 13 

attachment, the PET surface was precoated with FNC solution comprising fibronectin and 14 

collagen (AthenaES™), overlaid with 2 mL of MEM and incubated at 37 ºC. After 15 

30 min, the medium was aspirated and the cells were seeded. 16 

Culture dishes with nuclear track detector bottom and etching 17 

To identify cells irradiated by a primary particle, a 100 μm-thick polyallyl 18 

diglycol carbonate (PADC) plastic polymer (Tastrak™ from Track Analysis Systems 19 

Ltd., commonly known as Columbia Resin #39 or CR-39™ plastic) was grafted to the 20 

glass bottom of tissue culture dishes (Ibidi®) as shown in Supplementary Figure 1, 21 

Panel B. Upon cell fixation, the PADC was etched in 10 mol/L KOH at 37 ºC for 3.5 h 22 

and the pits were visualized by light microscopy. In situ analyses of 53BP1 foci were 23 
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performed following etching. Images were obtained by switching from fluorescent to 1 

optical imaging and changing the focal plane. Monitoring of confluent cultures during a 2 

3 h period by confocal microscopy using a fixed high magnification field did not reveal 3 

any movement of the cells following exposure to mean absorbed doses of 0.1-0.3 cGy of 4 

α particles (34). 5 

Irradiation and dosimetry 6 

Irradiation with 1000 MeV/u 56Fe26+, 600 MeV/u 28Si14+ or 290 MeV/u 12C6+ with 7 

LET in liquid water of ~151 keV/μm, ~50 keV/μm and ~13 keV/μm, respectively, were 8 

performed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National 9 

Laboratory (Upton, NY) during 2008-2011. The monolayers were positioned 10 

perpendicularly to the beam in the plateau region of the Bragg curve, but were not 11 

stacked (profiles of the ions’ Bragg curves can be accessed at http://www.bnl.gov/ 12 

medical/NASA/CAD/Bragg_Curves.asp). The flasks were filled to capacity, 3 h prior to 13 

irradiation, with pH and temperature-equilibrated growth medium containing 20 % 14 

(vol/vol) conditioned medium that was harvested from confluent AG1522 cell cultures 15 

grown for 48 h. This ensured that, during the irradiation, deviation from 37 °C was 16 

attenuated and the cells were immersed in medium, which alleviates changes in 17 

osmolarity and partial oxygen tension. The latter parameters greatly affect the cellular 18 

responses to radiation (35, 36). The foam sample-holder produces minimal scatter or 19 

fragmentation of the incoming heavy ion beam (www.bnl.gov/medical/NASA/CAD/ 20 

Sample_Holder_Layout.asp). Exposures to 0.2 or 1 cGy occurred at dose rates of 0.2 and 21 

1 cGy/min, respectively. The dose of 0.2 cGy was delivered in 3 or 4 spills at a 22 

minimum. Uniformity of the beam across the irradiated flasks was between 1 % and 5 %. 23 
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The dose just out of the beam (i.e. the beam-related background) is proportional to the 1 

beam dose and is on the order of 0.01 % of the dose in the beam. The background 2 

radiation due to activation depended on the preceding irradiation; in case our experiment 3 

was preceded by a 1 h exposure to the maximum rate of protons delivered at the NSRL, 4 

the γ ray dose that cells would receive would be at the rate of ~10-5 cGy/min. Sham-5 

irradiated cell cultures served as control and were handled similarly as the test cultures.  6 

Alpha-particle-irradiations were conducted with a 7.4 MBq 241Am collimated 7 

source housed in a helium-filled Plexiglas box located in a chamber at 37 ºC with an 8 

atmosphere of 5 % CO2 (vol/vol) in air. To optimize uniformity of the beam, the source 9 

was mounted on a rotating platform (88 rpm) and the exit window was equipped with a 10 

beam delimiter. The uniformity was confirmed by etching PADC plastic exposed to the 11 

beam for 4 seconds. Cells were irradiated at a mean absorbed dose rate of 2 cGy/min, and 12 

irradiation of samples occurred from below through the PET growing surface. At the 13 

latter surface, α particles had a measured mean energy of 3.7 MeV (0.92 MeV/u) with 14 

Full Width at Half Maximum (FWHM) of 0.5 MeV. The LET corresponding to a mean 15 

energy of 3.7 MeV is ~109 keV/μm in liquid water. The irradiator box was fitted with a 16 

photographic shutter to allow accurate delivery of the desired mean absorbed dose (37). 17 

The fluence φ of HZE particles was determined by PMT/Scintillator-based 18 

dosimetry; it was then used to calculate the mean dose to the cell population according 19 

to the relation φ (particles/cm2) = [D (cGy) ρ (g/cm3)] / [1.602×10-7 LET (keV/µm)], 20 

where D is the mean dose and ρ is the density. In case of α-particle-irradiation, the 21 

fluence φ for a fixed dose was estimated based on previous measurements (37). The 22 

average number of nuclear and cellular particle traversals was calculated by multiplying 23 
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the fluence with the average cross-section of an AG1522 cell nucleus (i.e. 140 µm2 (7)) 1 

or with the average cross-sectional area of an AG1522 whole cell (i.e. 800 µm2 (34) 2 

measured in confluent cultures grown under similar conditions as in this study). The 3 

calculations of fluence were confirmed after etching of PADC. Estimates of the 4 

fractions of whole cells or nuclei traversed by a primary particle were calculated 5 

assuming Poisson statistics and are given in Table 1. These values were determined 6 

according to the method of Charlton and Sephton (38), where the probability P that a 7 

given target area is traversed by N particles is given by P(N) = e-x xN/N! with x being 8 

the product of the fluence and the target cross-sectional area (nucleus or whole cell). 9 

Secondary radiations 10 

In this work, for studies of in situ detection of 53BP1 foci, the HZE particles 11 

traversed first the soda-lime glass bottom of the flaskettes before reaching the cells and 12 

growth medium. Some of the HZE interactions with these target materials may result in 13 

fragmentation of the incident (i.e. primary) particle and/or of the target material. 14 

Fragmentation of the incident HZE particle may produce lower-atomic number (Z) 15 

fragments. The primary-particle fragments have a high probability of proceeding with the 16 

same velocity as the primary particle, whereas target fragments generally have lower 17 

velocity and can be scattered with respect to the incident-ion-trajectory (25). Photons and 18 

secondary electrons (δ rays), generated as a result of these interactions, can travel, 19 

depending on their energy, significant distances away from the primary particle track 20 

(39). 21 

To determine whether secondary particles impart a significant absorbed dose to 22 

either directly targeted cells, or cells in the vicinity, when a mean absorbed dose of 23 



 - 10 - 

0.2 cGy is delivered with either 1000 MeV/u 56Fe ions, 600 MeV/u 28Si ions or 1 

290 MeV/u 12C ions, calculations were undertaken, using FLUKA code version 2 

2011.2.15 (31, 32, 40) with the default configuration ‘HADROTHErapy’. FLUKA is a 3 

multi-purpose Monte Carlo particle transport code that considers all particle interactions 4 

including electromagnetic interactions, nuclear interactions of the primary or incident 5 

particles and the generated secondary particles, energy loss fluctuations and Coulomb 6 

scattering.  7 

Several parameters were considered in our simulations with FLUKA. They 8 

included transport threshold for particles, delta ray production threshold, and restricted 9 

ionization fluctuations. The RQMD model was used, since its interface was developed for 10 

the processing of ion-ion interactions from 0.1 GeV/u to 5 GeV/u. The event generators 11 

RQMD and DPMJET were linked to ensure ion-ion interactions above 125 MeV/u. The 12 

FLUKA evaporation/fission/fragmentation module performed the fragmentation of the 13 

primary heavy ions and the de-excitation of the excited fragments. Simulations were 14 

undertaken with the transport cut-offs for heavy ions (primary and fragments), photons, 15 

protons and α particles set at 1 keV. The transport cut-off for electrons was set at 1 keV 16 

when the production threshold for δ rays was 10, 100, and 1000 keV; it was set at 150 eV 17 

when the production threshold for δ rays was 1 keV. Production thresholds for δ rays 18 

were set at equal value in the cover slip, cell monolayer and medium to ensure that the 19 

electronic equilibrium is established (i.e. that the flux of secondary electrons leaving a 20 

surface is independent of the surface thickness). This would be a sensitive parameter for a 21 

very thin surface like the cell monolayer. Upon reaching the cut-off energy, the particles 22 
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were assumed to deposit this cut-off energy locally and their tracks were no longer 1 

followed. 2 

The contribution of neutrons to the absorbed was calculated but is not shown due 3 

to inconsistent results, especially in the cell monolayer. Since the HADROTHErapy 4 

option was used, neutrons with energy below 20 MeV cannot be followed with dedicated 5 

multi-group library for neutrons with that energy. Benchmarking the FLUKA code with 6 

the MCNP code could generate more consistent results for the neutron dose. 7 

Using FLUKA, the radial dose distribution to the AG1522 cell monolayer around 8 

the track of a narrow beam of 1000 MeV/u 56Fe ions was calculated for both the primary 9 

particle and its secondaries (HADRONTHErapy configuration with delta rays’ 10 

production thresholds set at 1, 10, 100, and 1000 keV). Every run was performed with 11 

105 ions, and the absorbed doses to concentric annuli (thickness 1 µm, depth 1 µm) 12 

extending to a radius of 100 µm were calculated. The radial distance of 100 µm covers 13 

the diameter of an AG1522 cell and extends to adjacent cells.  14 

To recreate experimental conditions, the geometry and the constitutive materials 15 

of the flaskettes were introduced into the FLUKA input file. The beam spot at the NSRL 16 

has a uniform center of 20 cm x 20 cm. Within this area, the flaskette containing the cell 17 

monolayer was recreated (Supplementary Figure 1, Panel A). The cell monolayer was 18 

characterized by an area of 10 cm2 and thickness of 1 µm (i.e. height up to the center of 19 

the nucleus) (41)1. The 1 mm-thick soda-lime glass was 19.152 cm2 in area. The 20 

corresponding volumes were 0.001 and 1.92 cm3, respectively, and the volume of the 21 

culture medium was 18.8 cm3. The elemental mole percentages of the soda-lime glass 22 

                                                 
1 The thickness of ~1 µm of an AG1522 cell (41) was estimated from studies in fixed/dehydrated cells 
grown on Mylar. The actual dimension of a live AG1522 cell grown on glass may be different.  



 - 12 - 

(ρ ~2.33 g/cm3) were O (60 %), Si (25 %), Na (10 %), Ca (3 %), Mg (1 %) and Al (1 %). 1 

The 1 mm-thick polystyrene (C8H8) walls of the flaskettes have a density of 1.06 g/cm3. 2 

The cell monolayer was assumed to be composed of human skin equivalent (W&W type 3 

3 (42)) with elemental mass composition of H (10.1 %), C (15.8 %), N (3.7 %), O 4 

(69.5 %), S (0.2 %), Cl (0.3 %), Na (0.2 %) and K (0.1 %) and with a density of 5 

1.09 ± 0.05 g/cm3. For simplicity, the growth medium was considered to be water with a 6 

thickness of 1.87 cm (flaskette is filled to capacity with culture medium). The flaskette, 7 

thus modeled, was oriented vertically and its growth surface was orthogonal to the 8 

incident beam. The doses calculated by FLUKA were provided as GeV/g cm3/primary 9 

ion. Radiation absorbed doses in cGy (Table 2 and Supplementary Tables 2-4) were 10 

obtained from the FLUKA output by correcting the values for target volume and the 11 

fluence. The fluence of 8323 56Fe-ions/cm2 was experimentally determined at BNL by 12 

scintillator-based dosimetry, which relies on counting the tracks in the beam. When a 13 

certain preset number of tracks with high LET characteristic was reached, the beam was 14 

cut-off. This approach was also used in the FLUKA simulations for determining the mean 15 

absorbed dose to the various targets from the primary and secondary radiations.  16 

Western blot analyses 17 

Following irradiation, the cells were harvested by trypsinization, pelleted, rinsed 18 

in PBS, repelleted, and lysed in chilled radio-immune precipitation assay (RIPA) buffer 19 

[50 mM Tris-CI (pH 7.5), 150 mM NaCI, 50 mM NaF, 5 mM EDTA, 1 % (vol/vol) 20 

NP40, 0.5 % (wt/vol) sodium deoxycholate, 0.1 % SDS] supplemented with sodium 21 

orthovanadate (1 mM), and protease (1:1000, vol/vol) and phosphatase (1:1000, vol/vol) 22 
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inhibitor cocktails (Sigma). The extracted proteins were fractionated by SDS-PAGE and 1 

immunoblotted. 2 

Protein levels: Stress responsive proteins were quantified with antibodies against 3 

p21Waf1 (05-345, Millipore), p-TP53ser15 (9284, Cell Signaling), p-ERK1/2 (9101, Cell 4 

Signaling) and HDM2 (M4308, Sigma).  5 

Protein oxidation: When proteins are oxidized by reactive oxygen species (ROS), 6 

some amino acids are modified generating carbonyl groups. These carbonyl groups, 7 

specifically of aldehydes or ketones, can react with 2,4-dinitrophenyl hydrazine (DNPH), 8 

which may be recognized by anti-2,4 dinitrophenol (DNP) antibodies on immunoblots 9 

(43). For experiments, the OxyBlot Protein Oxidation Detection Kit (Millipore) was used. 10 

Protein samples were denaturated with 6 % (wt/vol) SDS and derivatized with DNPH. 11 

Negative controls were derivatized with a Derivatization-Control solution. After 15 min 12 

incubation at room temperature, neutralization solution (2 M Tris/30 % glycerol; vol/vol) 13 

was added and samples were immunoblotted. The DNPH-bound proteins were detected 14 

with rabbit anti-2,4-dinitrophenyl IgG (Millipore). 15 

Accumulation of 4-hydroxynonenal adducts: Hydroxyalkenals, such as 4-16 

hydroxynonenal (4-HNE), are among the major products of lipid peroxidation (44). 17 

Proteins with 4-HNE adducts were identified with goat anti-4-HNE antibody (Millipore).  18 

After incubation of the nitrocellulose membranes with a specific secondary 19 

antibody conjugated with horseradish peroxidase, protein bands were detected by 20 

enhanced chemiluminescence system from GE Healthcare (Amersham). Luminescence 21 

was determined by exposure to X ray film, and densitometry analysis was performed with 22 
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an EPSON scanner and National Institutes of Health Image J software (NIH Research 1 

Services Branch).  2 

Staining of the nitrocellulose membranes with Ponceau S Red (Sigma) was used 3 

to verify equal loading of samples (loading control) (45). Experiments were repeated 2 to 4 

7 times, with separate experiments performed to evaluate changes in protein levels, 5 

protein oxidation and accumulation of 4-hydroxynonenal adducts. Representative data of 6 

immunoblots are shown in Results. Fold changes in the levels of stress responsive 7 

proteins in individual experiments together with mean ± standard error (SE) are reported 8 

in Supplementary Table 1. These changes include the responses of cells targeted by 9 

primary ions and those that are not. Treated samples were compared with the control of 10 

the respective time point.  11 

In situ immune-detection of 53BP1 12 

53BP1 is a marker of DNA double-strand breaks (DSB) (46). At different times 13 

after irradiation, confluent cells were rinsed twice in PBS, fixed with freshly prepared 14 

3.2 % (vol/vol) paraformaldehyde in PBS for 10 min, and rinsed 5 times with PBS. 15 

Subsequently, the cells were permeabilized with Triton-X buffer (0.25 % Triton-X in 16 

water / 0.1 % saponin in Tris-buffered saline (TBS) [25 mM Tris, pH 7.5, 150 mM NaCl, 17 

2 mM KCl in water] for 10 min. The fixed and permeabilized cell monolayers were then 18 

blocked for 1 h in blocking buffer [2 % (vol/vol) normal goat serum, 2 % (vol/vol) BSA, 19 

0.1 % Triton X-100 (in TBS)] and reacted with rabbit anti-53BP1 antibody (A300-272A, 20 

Bethyl) diluted 1:500 (vol/vol) in blocking buffer and incubated for 2 h at room 21 

temperature. After incubation with Alexa Fluor 594 goat anti-rabbit secondary antibody 22 

(Invitrogen), the cells were washed 3 times (5 min/wash) in buffer consisting of 0.2 % 23 
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normal goat serum, 0.2 % BSA, 0.1 % Triton X-100 in TBS. SlowFade® Gold antifade 1 

reagent with DAPI (Invitrogen) was used in mounting the samples.  2 

Cells with at least one 53BP1 focus were scored using a UV microscope (Leica 3 

DM IL). All the images within the same data set were captured with a ProgRes® camera 4 

(Jenoptik) with the same optics and exposure time and were saved for subsequent 5 

evaluation. As such, bleaching of the signal was avoided. Identical criteria were followed 6 

in defining foci characteristics. Nuclei with atypical size or morphology, and those with 7 

very high foci counts (presumably due to replication stress), were not scored (47). The 8 

data described in Results represent the excess percent increase of cells with 53BP1 foci in 9 

irradiated populations relative to respective control. They were calculated as follows:  10 

ΔF = 100 (Firradiated – Fcontrol) where F is the ratio of the number of cells with 11 

53BP1 foci over the total number of cells counted. 12 

The results of three independent experiments for energetic iron and silicon ions 13 

and α particles are reported in Results. For each experiment, 2 irradiated and 2 control 14 

dishes were analyzed. For each dish, more than 3000 cells were scored by eye in 40 15 

different fields. Poisson statistics was used to calculate the standard error associated with 16 

the percentage of cells with foci over the total number of cells scored. The Pearson’s χ2 17 

test was used to compare treatment groups versus respective controls. A value of p ≤0.05 18 

between groups was considered significant.  19 

 A significant number of cells in control samples harbored foci, which fluctuated 20 

between experiments and assay times. When the control samples of all experiments were 21 

pooled, the mean ± SD of the fraction of cells harboring at least one 53BP1 focus was 22 

0.26 ± 0.12 with a range of 0.05 to 0.50. The mean ± SD of spontaneous 53BP1 foci per 23 
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cell nucleus was 0.35 ± 0.12 with a range of 0.06 to 0.68 foci/cell. The mean ± SD of 1 

spontaneous 53BP1 foci per cell nucleus in foci-positive cells was 1.29 ± 0.11 foci/cell 2 

with a range from 1.04 to 1.35 foci/cell. These results are consistent with those of 3 

Ugenskiene et al. who estimated the background level of 53BP1 foci in AG1522 cells to 4 

be 1.1 foci/cell (48). A high background level of nuclear foci indicative of DNA damage 5 

was also observed in various cell strains, with inter and intra-individual differences being 6 

detected (47). 7 

RESULTS 8 

Significant biological changes are rapidly induced in normal human cell cultures 9 

exposed to low fluences of HZE particles 10 

We investigated stress responses in normal human cell populations exposed to 11 

HZE particles under conditions where only a very small fraction of cells is traversed 12 

through the nucleus by a primary particle track. To this end, confluent AG1522 cell 13 

cultures were exposed to mean absorbed doses of 0.2 or 1 cGy of energetic iron or silicon 14 

ions. They were also exposed, in parallel, to α particles that have been shown to induce 15 

significant bystander effects (2, 4, 6, 7). We examined the phosphorylation of serine 15 in 16 

TP53 (p-TP53ser15), a marker of DNA damage (49), and of the stress-responsive 17 

extracellular signal-related kinases, ERK1 and ERK2 (p-ERK1/2) (50), at different times 18 

after irradiation. The observed changes were compared to those in respective controls. 19 

At 15 min after exposure to mean absorbed doses of 0.2 or 1 cGy from 20 

1000 MeV/u 56Fe ions (LET ~151 keV/µm) or 600 MeV/u 28Si (LET ~50 keV/µm), an 21 

increase in p-TP53ser15 and p-ERK1/2 levels was consistently observed (Figure 1, 22 

Panel A). Fold-increases of 1.7 ± 0.4 (n=3) and 2.3 ± 0.5 (n=3) in p-TP53ser15 levels, 23 
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and of 1.4 ± 0.1 (n=3) and 1.4 ± 0.1 (n=3) in p-ERK1/2 levels, were detected in cell 1 

cultures exposed to 0.2 cGy of 56Fe or 28Si ions, respectively (representative data shown 2 

in Figure 1, Panel A). At a mean absorbed dose of 0.2 cGy, only ~1.2 and 3.5 % of nuclei 3 

are traversed by either ion, respectively. Similarly, at 1 cGy, wherein ~6 % of nuclei are 4 

traversed by an iron ion and 17.5 % by a silicon ion, respective fold-increases of 3.2 ± 1 5 

(n=6) and 2.9 ± 0.5 (n=4) in p-TP53ser15 levels, and of 2.7 ± 0.3 (n=5) and 2.4 ± 0.3 6 

(n=4) in p-ERK1/2 levels, were observed (representative data shown in Figure 1, 7 

Panel A). Therefore, these data indicate that p-ERK1/2 and p-TP53ser15 are sensitive 8 

markers that are rapidly modulated after exposure of normal human cell cultures to very 9 

low mean absorbed doses of high-LET HZE radiations. The levels of p-TP53ser15 and p-10 

ERK1/2 were similarly increased at 15 min after exposure of confluent AG1522 cell 11 

cultures to 0.2 cGy (1.5 ± 0.0 (n=4) and 1.2 ± 0.1 (n=3), respectively) or 1 cGy (2.1 ± 0.3 12 

(n=7), and 2.2 ± 0.2 (n=6), respectively) of 3.7 MeV α particles (LET ~109 keV/µm) 13 

(representative data shown in Figure 1, Panel A). The increase in p-TP53ser15 level, 14 

correlated with increases in the levels of HDM2 and p21Waf1 at 1 h (Figure 1, Panel B) 15 

and 3 h (Figure 1, Panel C) after irradiation, suggesting activation of TP53, a central 16 

protein involved in maintenance of genomic integrity. Similar increases in TP53 17 

signaling were also observed at 6 and 24 h after irradiation (Figure 1, Panel D). For all 18 

treatments, the results of individual experiments are described in supplementary Table 1.  19 

Likewise, 3.3 ± 1.4 (n=3) and 6.5 ± 1.8 (n=3)-fold increases in overall protein 20 

carbonylation were detected in extracts of cell cultures harvested 24 h after exposure to 21 

0.2 and 1 cGy of 1000 MeV/u iron ions, respectively (representative data in Figure 2, 22 

Panel A). The accumulation of 4-hydroxynonenal (HNE) adducts in proteins from the 23 
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same cultures indicates that increased lipid peroxidation was involved (representative 1 

data in Figure 2, Panel B). A 1.8 ± 0.2 (n=3) and 3.8 ± 1.4 (n=3) fold increases in 2 

proteins with 4-HNE adducts were detected at 24 h after exposure to 0.2 and 1 cGy of 3 

1000 MeV/u iron ions, respectively.  4 

The induction of stressful effects and their persistence, in low fluence-irradiated 5 

cell cultures, was further revealed when confluent cultures exposed to 1 cGy from 6 

1000 MeV/u 56Fe ions were subcultured to lower density (1:3) in fresh medium within 7 

15 min after irradiation. Relative to control, increases in the levels of p-TP53ser15, 8 

p21Waf1 and HDM2 occurred at 8 and 24 h after subculture (Figure 3). Together, the 9 

magnitude of the various changes, in confluent and growing cell populations, suggests 10 

participation of a greater proportion of cells in the stress response than the 1.2-3.5 % 11 

fraction traversed by a primary particle track through the nucleus at a mean dose of 12 

0.2 cGy. For example, for the 3.2 ± 1.0 (n=6)-fold-increases in p-TP53ser15 detected at 13 

15 min, and 2.5 ± 0.3 fold (n=5)-increases in p21Waf1 levels detected at 3 h after exposure 14 

of cell cultures to 1 cGy of 56Fe ions, to be solely due to effects in cells targeted through 15 

the nucleus by a primary ion, the cells would have to increase the level of these stress-16 

responsive proteins by ~50-folds. 17 

53BP1 foci formation in AG1522 cell cultures exposed to low fluences of HZE particles 18 

To evaluate stressful effects in confluent cultures exposed to low fluences of 19 

HZE-particles on a cell by cell basis, we examined 53BP1 foci formation in situ at 20 

15 min, 1 h, 3 h and 24 h after exposure to 0.2 cGy of either 1000 MeV/u 56Fe ions, 21 

600 MeV/u 28Si ions or 3.7 MeV α particles. Separate cell cultures that received no 22 

radiation, but were sham-treated, were included for each time point and were considered 23 
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as respective controls (Figure 4). Whereas, only ~1.2-3.5 % of the cell nuclei are 1 

traversed by a primary HZE particle (Table 1), relative to respective control, the percent 2 

of cells with 53BP1 foci was increased at 15 min, 1 h and 3 h by 6.8 % (p <0.001), 15 % 3 

(p <0.001) and 10.6 % (p <0.001), respectively for 56Fe ions (Figure 4, Panel A, 4 

experiment #1), and by 1.9 %, 7.7 % (p <0.001), and 5.3 % (p <0.001), respectively, for 5 

3.7 MeV α particles (Figure 4, Panel B, experiment #1). Increases of 8.2 % (p <0.001), 6 

11.4 % (p <0.001) and 2.8 % (p <0.05), at 15 min, 1 h and 3 h, respectively, were also 7 

observed after exposure to 0.2 cGy of 28Si ions (Figure 4, Panel C, experiment #1). By 8 

24 h, the percent increase of cells with 53BP1 foci was null for 56Fe ions, was increased 9 

by 3.1 % (p <0.01) for 28Si ions, and by 2 % for α particles (p <0.05). The significant 10 

increases in the excess percent of cells with foci (1.9–15 %) over what would be expected 11 

based on the percentage of cells irradiated through the nucleus (1.2-3.5 %) strongly 12 

support the participation of cells that were not targeted by the primary particle in the 13 

overall response of the cell population to irradiation by low fluences of high LET 14 

particles. Although the magnitude of the response varied between experiments, the trend 15 

was similar. At 1 h following irradiation by a mean absorbed dose of 0.2 cGy from iron 16 

ions, the increases in 53BP1 foci observed in experiments 2 and 3 were 10.3 % 17 

(p <0.001) and 7.3 % (p <0.001), respectively, compared to 15 % (p <0.001) in 18 

experiment 1 (Figure 4). 19 

The fraction of cells with foci was shown to decrease by 2 h after exposure to 20 

DNA damaging agents (23). Thus, the increases observed at 1-3 h over those detected at 21 

15 min in cultures exposed to 56Fe ions or α particles could be due to recruitment of 22 

additional cells in the response. Presumably, these are bystander cells wherein signaling 23 
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molecules propagated from irradiated cells had time to exert effects that result in DNA 1 

damage. Whereas the attenuation of the percent increase of cells with 53BP1 foci at 24 h 2 

in iron ion- and α-particle-irradiated cells and at 3-24 h in silicon ion-irradiated cells may 3 

reflect repair of DNA damage in bystander cells, the persistent foci detected at these later 4 

times presumably reside in cells that were directly targeted by densely ionizing particles.  5 

In contrast to 56Fe ions (LET ~151 keV/µm), 28Si ions (LET ~50 keV/µm) and 6 

α particles (LET ~109 keV/µm), exposure of confluent cultures to 0.2 cGy from 7 

290 MeV/u 12C ions (LET ~13 keV/um) did not result in significant increase in the 8 

percentage of cells with 53BP1 foci (not shown). This suggests that low mean absorbed 9 

doses of HZE particles with lower LET may be less efficient at inducing stressful effects 10 

(i.e. 53BP1 foci) under the conditions used in this study. 11 

Cell culture system to identify cells irradiated with an HZE particle 12 

Solid-state track detectors fused to cell culture dishes can be used to identify the 13 

position of primary HZE particle traversals. Experiments performed with such dishes 14 

suggested that the induction of stress in the form of 53BP1 foci is also observed in cells 15 

not traversed by primary HZE particles. We bonded a 100 µm-thick PADC solid state 16 

nuclear track detector (SSNTD) to the bottom edges of the cell culture surface 17 

(Supplementary Figure 1, Panel B). After etching of PADC plastic, cells that were likely 18 

traversed by a particle track could be identified, and induced biological effects may be 19 

assessed by suitable markers. The data in Figure 5 show 53BP1 foci in a confluent cell 20 

culture exposed to 0.2 cGy of 1000 MeV/u 56Fe ions followed by 15 min incubation. 21 

Following cell fixation and etching of PADC, the iron ion tracks were visible as black 22 

dots (Figure 5, Panel A). Exposure to 0.2 cGy generally resulted in ~1.5 % of cells’ 23 
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nuclei being superimposed on pits. The formation of 53BP1 foci (Figure 5, Panel B) in 1 

nuclei (revealed by DAPI staining, Figure 5, Panel C) that superimpose the black dots 2 

(inverted in white for better visualization, Figure 5, Panel D) indicates that these cells 3 

sustained DNA damage as would be expected from nuclear traversal by a high LET 4 

particle. The two cells with foci adjacent to the traversed cell are likely affected cells that 5 

were not targeted by the primary particle (Figure 5, Panel D). They may be bystander 6 

cells or cells subject to secondary radiations. The absence of SSNTD pits below these 7 

adjacent cells indicates lack of hot-spots; it suggests that the strategy of incorporating 8 

solid state nuclear track detector would be suitable for investigating the kinetics of 9 

biologic responses in situ in targeted and non-targeted cells.  10 

The significance of secondary radiations in biological responses of cell cultures exposed 11 

to low fluence HZE particles 12 

Secondary radiations resulting from the interaction of primary HZE particles with 13 

the target materials may have had a role in the apparent bystander effects. To shed 14 

additional light on this possibility, the contribution of secondary particles to the mean 15 

absorbed dose was calculated by simulations using the FLUKA multi-particle transport 16 

code (Table 2 and supplementary Tables 2-4). Estimates of the doses from heavy ions 17 

(primary and fragments), electrons, photons, protons and α particles to the AG1522 cell 18 

monolayer following exposure to a mean absorbed dose of 0.2 cGy from 1000 MeV/u 19 

56Fe ions, 600 MeV/u 28Si ions or 290 MeV/u 12C ions are described in Table 2. When 20 

exposed to any of the primary ions, secondary radiations consisting of HZE fragments, 21 

photons, protons and α particles, with a production threshold and a transport cut-off set at 22 

1 keV, constituted <1 % of the total absorbed dose (Table 2). In contrast, electrons with a 23 
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production threshold set at 1 keV and transport cut-off set at 150 eV contributed ~37-1 

40 % of the total dose. The mean absorbed dose deposited in the cell monolayer by 2 

HZE fragments was very small (0.0007 cGy, 0.0004 cGy and 0.0005 cGy following 3 

exposure to 56Fe ions, 28Si ions or 12C ions, respectively) (Table 2). The dose contributed 4 

by photons, protons and α particles was minimal in all cases (Table 2). 5 

Estimates of the mean absorbed doses to the glass cover-slip, cell monolayer and 6 

growth medium due to secondary radiations when the production threshold of δ rays was 7 

set at 1, 10 100 or 1000 keV and the transport cut off was set at 1 keV are described in 8 

Supplementary Tables 2-4. As the production threshold of the δ rays increased, the 9 

contribution of secondary electrons to the total mean absorbed dose delivered to the cell 10 

monolayers decreased and that of primary ions increased. Specifically, when the δ rays’ 11 

production threshold was set at 1000 keV, the contribution of primary ions to the total 12 

mean absorbed dose to a cell monolayer exposed to 1000 MeV/u 56Fe ions increased to 13 

~97 % and that of electrons decreased to ~2 % (supplementary Table 2). In case of 14 

600 MeV/u 28Si ions and 290 MeV/u 12C ions, the secondary electrons represented, 15 

respectively, 0.96 % and almost nil of the total mean absorbed dose to the cell monolayer 16 

(Supplementary Tables 3 and 4).  17 

Quantifying the radial distribution of the secondary particles is essential before 18 

attributing stressful effects, observed in cells that surround directly targeted cells to a 19 

bystander effect. The data in Figure 6 represent the radial dose distributions (heavy ions, 20 

electrons and the total dose) in a 1 µm-thick cell culture layer exposed to an orthogonal 21 

narrow beam of 1000 MeV/u 56Fe ions. Panel A shows that the heavy ions deposit their 22 

energy mainly in the first 10 µm, while the electron dose extends out to ~100 µm radius 23 
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around the track of the primary ion. Panel B describes the radial distribution of dose from 1 

δ rays with 1-, 10-, 100 or 1000 keV-production-thresholds. Panels C and D permit 2 

visualization of the radial dose deposited by heavy ions or electrons, respectively, around 3 

the primary track pit revealed by etching of PADC and staining nuclei with DAPI as 4 

described in Figure 5 (Panel D). It is noteworthy that the magnitude of the total radial 5 

dose distribution, calculated in our studies, is in accord with previous results (51). 6 

In the FLUKA code, the ionization energy losses are processed as continuous 7 

energy loss or as discrete ionization events. Above the pre-set threshold, the ionization is 8 

modeled as production of δ rays, based on scattering of the projectile with a free electron. 9 

This threshold of δ ray production is an important parameter in this type of simulation. At 10 

radial distances less than 20 µm from the track, the calculated absorbed dose depends 11 

strongly on the threshold value (1, 10 or 100 keV) (Figure 6, Panel B). As expected, low 12 

thresholds should be used to accurately simulate radial dose distributions around the track 13 

core with µm and sub-µm spatial resolution (52). 14 

The data in Figure 6 therefore imply that, in our experiments, the chance for 15 

heavy fragments to hit neighboring cells is negligible. However, this is not the case for 16 

secondary electrons which can travel significant distances from the track. Energy 17 

deposition by δ rays is a stochastic process, and the possibility exists that some cells in 18 

the vicinity of cells targeted by a primary ion may receive a biologically relevant dose. 19 

DISCUSSION 20 

The lack of clear knowledge about non-targeted responses has been singled out by 21 

the US National Academies (53) as one of the important factors limiting the prediction of 22 

radiation health risks associated with space exploration. During deep space missions, 23 
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every cell nucleus in an astronaut’s body would be hit by a proton or secondary electron 1 

every few days and by an HZE ion about once a month (54); the rest would be 2 

bystanders. Human epidemiological studies would be ideal to predict the health risks of 3 

exposure to low fluences of space particulate radiations; however, given the relatively 4 

insignificant number of humans exposed to such radiations, mechanistic studies in cell 5 

culture systems and animals are critical to help estimate corresponding risks to humans.  6 

Using molecular, biochemical, physical and computational approaches, here we 7 

provide evidence for the amplification of HZE-particle-induced stressful effects in 8 

normal human fibroblast cultures following exposure to doses as low as 0.2 cGy of 9 

1000 MeV/u iron ions or 600 MeV/u silicon ions (Figures 1-5). Consistent with previous 10 

results in cell cultures exposed to low fluences of α particles, another type of radiation 11 

with similar quality (i.e. high LET character), increases in the levels of proteins that 12 

participate in TP53 and ERK1/2 signaling pathways (55) were observed. These increases 13 

were detected as early as 15 min after irradiation and persisted for at least 24 h. Relative 14 

to control, higher levels of p-TP53ser15, a marker of DNA damage, was detected in 15 

confluent AG1522 fibroblasts exposed to a mean absorbed dose of 0.2 cGy that targets, 16 

on average, only 1-3 % of the cells through the nucleus. This was associated 1-3 h later 17 

(Figure 1, Panels B and C) with increased level of p21Waf1, a p53 effector and key 18 

component of the DNA damage induced G1 checkpoint. The induction of these stress 19 

markers persisted for at least 24 h (Figure 1, Panel D) and was associated with an 20 

increase in protein carbonylation and in accumulation of 4-HNE protein adducts 21 

(Figure 2, Panels A and B). Interestingly, 4-HNE reactive aldehydes originate from 22 

peroxidation of membrane lipids where key proteins that mediate stress-induced 23 
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bystander effects, including connexins, cyclooxygenase-2 and NAD(P)H oxidase, reside 1 

(56). The accumulation of such protein adducts may modulate transport properties of the 2 

plasma membrane, gene expression, including signal transduction pathways affecting 3 

DNA damage sensing and repair, cell survival and cell proliferation (57). The occurrence 4 

of such appreciable oxidative effects, long after exposure, is consistent with excess ROS 5 

generation due to perturbations in oxidative metabolism and/or persistent activation of 6 

oxidases (58, 59). It suggests the involvement of a greater fraction of cells than those 7 

targeted by a primary particle in the overall response leading to oxidative stress. Whereas 8 

the persistence of stress may be due to sustained changes in the targeted and non-targeted 9 

cells that were affected early after exposure, it could also result from induction of stress 10 

in additionally recruited cells that were not-targeted by a primary particle. This does not 11 

preclude, however, the restitution of damage and return to the basal state in certain 12 

affected non-targeted and targeted cells. 13 

The DNA DSB is a serious threat to the integrity of eukaryotic genomes (60). 14 

Following exposure to DNA damaging agents, a battery of damage sensing and repair 15 

proteins localize at the site of DNA breaks. Among these proteins, 53BP1 forms discrete 16 

foci within minutes after exposure (23, 46, 61). Here, we used the formation of 53BP1 17 

foci as a biomarker to investigate the evolution of α- and HZE-particle-induced 18 

propagation of signaling events leading to DNA damage in cells that were not targeted by 19 

a primary particle. We used the same microscope optics and exposure time, and scored by 20 

eye to accurately differentiate foci; we also used separate controls for each time point. 21 

Utilizing these criteria, the results from cultures exposed to a dose by which only 1-3 % 22 

of cells are traversed through the nucleus by a primary energetic ion strongly supported 23 
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the participation of cells other than those targeted by the primary particles in the 1 

response. At 15 min after exposure to 0.2 cGy from α particles, 56Fe ions or 28Si ions, the 2 

fraction of cells with 53BP1 foci was higher than predicted based on the percentage of 3 

nuclei directly targeted by primary ions (Figure 4). Whereas secondary radiation may 4 

have contributed to the effects observed in the HZE-particle irradiated cell cultures, this 5 

cannot be the case in the studies using our α particle irradiator. The ranges of δ rays 6 

produced by the interaction of these α particles (3.7 MeV, 0.5 MeV FWHM) with the 7 

cells are very small compared with the nuclear diameter. Hence, the effects observed in 8 

α-particle-irradiated cell cultures (Figure 4) clearly support the spread of stressful effects 9 

to unirradiated bystander cells.  10 

In general, it is thought that 53BP1 foci formation is transient. Following uniform 11 

exposure of cell cultures to an absorbed dose of 1 Gy from 137Cs γ rays, the fraction of 12 

cells with foci peaked at 20 min and remained elevated for 2 h after irradiation; it 13 

decreased exponentially and returned to basal level 16 h later (23). In our study with cell 14 

cultures where only 1.2-3.5 % of nuclei were irradiated with α particles, iron ions or 15 

silicon ions, the maximum increase in the fraction of cells with 53BP1 foci was detected 16 

at 1 h. The persistent elevation in foci formation at 3 h may be due to the induction of 17 

DNA damage in non-directly targeted cells. At 3 h after exposure, foci formation in iron 18 

ion- and α-particle-irradiated cultures was increased not only over control but also 19 

compared to cultures examined at 15 min after irradiation (p <0.001). Whereas, the 20 

increases in the fraction of cells with foci at 1 and 3 h may reflect the spread of stressful 21 

effects to additional cells than those targeted by radiation, they may also reflect 22 



 - 27 - 

development of foci in affected cells (irradiated and bystander) that required time to 1 

become visible by microscopy. 2 

In contrast to 56Fe ions, 28Si ions and α particles, no excess 53BP1 foci formation 3 

has been detected after exposure of cell cultures to 0.2 cGy from 290 MeV/u carbon ions 4 

(LET ~13 keV/µm) at any time between 15 min and 24 h after irradiation. This may be 5 

due to less complex DNA damage being induced in the targeted cells, which may affect 6 

the nature of the propagated signaling events. At a mean absorbed dose of 0.2 cGy to the 7 

exposed cultures from 290 MeV/u carbon ions, ~0.015 cGy are deposited in the nucleus 8 

from a single particle traversal; in comparison, ~17.25 cGy, 5.7 cGy and 12.45 cGy are 9 

deposited by single traversals of 1000 MeV/u Fe, 600 MeV/u silicon and 3.7 MeV 10 

α particles2, respectively. Thus, the dose absorbed by the targeted nuclei likely plays an 11 

important role in the induction of stressful effects leading to DNA damage. Different 12 

targeted and non-targeted effects may however occur following cellular hits with multiple 13 

carbon ions. The use of microbeams would greatly facilitate such experiments and would 14 

be informative of the effects of absorbed dose and radiation quality. 15 

Culture dishes that incorporate nuclear track etch detectors were developed in 16 

order to identify cells and cell nuclei traversed by primary HZE particles. Our 17 

preliminary experiments suggest that the induction of stress in the form of 53BP1 foci is 18 

also observed in cells that were not traversed by a primary 56Fe ion. The strategy of using 19 

culture dishes with nuclear track detector to examine biological changes in HZE-particle-20 

irradiated cultures expanded our previous studies with α particles (34), and permitted 21 

irradiation of cell cultures grown in dishes with sealable-lid in presence of pH- 22 
                                                 
2 The absorbed dose (d) per traversal to the thin disk-shaped cell nucleus of the AG1522 cell was calculated 
according to the relation d = (0.16 LET)/(A ρ), where A is the cross-sectional area of the cell nucleus (i.e. 
an average of ~140 µm2), and ρ is the density of the cell. 



 - 28 - 

equilibrated culture medium with a horizontal broadbeam. Time-course experiments 1 

using these dishes, together with determination of the metrology of distance propagation 2 

as we have previously done with low fluence α-particle-irradiated cell cultures (34), 3 

would be highly informative of the kinetics of induction and decay of biological changes 4 

in cell cultures exposed to low fluences of HZE particle. In such studies careful 5 

characterization of the positional accuracy of the primary track is essential. A typical 6 

10 µm spatial deviation may have to be considered due to scattering of the incident ion as 7 

it crosses the polymer material of the nuclear track etch detector. 8 

To evaluate the possibility of whether the stressful effects expressed in presumed 9 

bystander cells in low fluence HZE-particle-irradiated cultures may be due to secondary 10 

particles generated from fragmentation of the incident beam in the target material 11 

(Table 2, Supplementary Tables 2-4), we performed computational simulations using the 12 

FLUKA multi-particle transport code. The capabilities of this code have been 13 

demonstrated in simulations for microdosimetric purposes and tissue equivalent 14 

proportional counters (51, 62). Our simulations showed that, using glass-bottomed 15 

flaskettes, the total dose to the monolayer due to HZE fragments is negligible. 16 

Importantly, the radial dose due to these fragments is confined to ~10 μm around the 17 

primary track. In contrast, the dose due to δ rays may be substantial. Depending on 18 

energy, the range of the δ rays can be extensive (e.g., ~130 µm for 100 keV δ rays) (63, 19 

64), thus likely targeting all cells in the exposed culture (Figure 6). Whereas, the 20 

biological effects induced by δ rays may be stressful, they can also attenuate damaging 21 

effects propagated from cells targeted with primary and HZE fragments. In case of cells 22 

exposed to 3.7 MeV α particles, the complications in interpreting the apparent bystander 23 
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effects (Figures 1 and 4) are diminished, as these particles do not produce secondary 1 

radiation that cross-irradiate neighboring cells (26). 2 

Experimental systems that allow deciphering the nature of biological effects due 3 

to δ rays and to the primary HZE fragments would be highly informative towards 4 

understanding the spectrum of biological changes induced following exposure to low 5 

fluences of HZE particles. In this context, co-culture systems that allow investigation of 6 

HZE-particle-induced non-targeted effects in the absence of secondary fragmentation 7 

products, or δ rays, generated strong evidence for the propagation from irradiated cells of 8 

signaling events leading to oxidative stress and DNA damage in bystander cells, an effect 9 

that persisted in their progeny (18). Importantly, the expansion of HZE-particle-induced 10 

non-targeted effects to in vivo systems (65), together with characterization of the 11 

magnitude of effects due to fragmentation products, the modulating effect of δ rays, and 12 

of the underlying mechanisms, is of importance to human space exploration and hadron 13 

therapy (66). In particular, exposure of biological specimens at very low dose-rate to 14 

simulate more closely the doses received during space travel (54) would be essential. 15 

During a 24 h period, these doses are significantly lower than the lowest dose of 0.2 cGy 16 

used in our studies. 17 

CONCLUSION 18 

The data reported here highlight the manifestation of stressful effects in confluent 19 

normal human cell cultures exposed to low fluences of HZE particles by several 20 

endpoints. The results show that propagation of the signaling events leading to stressful 21 

effects in cells not targeted by a primary particle is rapid, but the reaction to the 22 

propagated signal(s) may require time to be expressed depending on the endpoint 23 
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investigated. The phenotype (e.g. redox environment) of both, the signal emitting cells 1 

and the recipient cells may greatly affect the kinetics of expression of biological changes. 2 

Indeed, studies have shown that the DNA repair capacity of non-targeted cells (67, 68), 3 

their anti-oxidant potential (69), and their genotype (70) modulate bystander effects. The 4 

results with 53BP1 foci formation showed that by 24 h after exposure to 1000 MeV/u 5 

56Fe ions, the excess formation of foci was greatly reduced. This may suggest that the 6 

induction of DNA damage in presumed bystander cells is transient; however, 7 

accumulating data from experiments involving co-cultures of HZE-particle-irradiated 8 

cells with unirradiated bystander cells show that the latter experience genomic instability 9 

that manifests in perturbations in oxidative metabolism (18) and excess chromosomal 10 

damage in their progeny (11, 19).  11 

Additional FLUKA calculations to determine both the fraction of cells that were 12 

not targeted by fragmentation products and the fraction of cells that were hit by these 13 

products together with the doses received are necessary to enhance our understanding of 14 

low fluences HZE particle- induced bystander effects. This approach will require a 15 

different model, with individual cells being considered under the same experimental 16 

conditions. Depending on cell culture conditions (e.g. glass versus polystyrene platform 17 

for cell growth, thickness of platform, cell thickness etc.) the yield and nature of 18 

fragmentation products may vary, which may impact the signaling pathways leading to 19 

enhancement or attenuation of stressful effects expressed in the exposed cell cultures. 20 

The physical and physico-chemical events resulting from irradiation with primary or 21 

secondary fragments (71-73), including yield, lifetime and spatial distribution of the 22 

generated radiolytic species may induce prominent biochemical and genetic changes that 23 
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affect intercellular communication between irradiated and bystander cells, which may 1 

modulate the magnitude of the induced stress response and determine long-term 2 

biological effects. Together, these studies may greatly contribute to the efforts by NASA 3 

to develop risk based radiation exposure guidelines that minimize adverse health effects 4 

in astronauts.  5 
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FIGURE LEGENDS 1 

Figure 1. Western blot analyses of p-TP53ser15, p-ERK1/2, p21Waf1 and HDM2 in 2 

AG1522 cell populations at [A] 15 min, [B] 1 h, [C] 3 h, [D] 6 and 24 h after exposure to 3 

an absorbed dose of 0, 0.2 or 1 cGy from 1000 MeV/u 56Fe ions, 600 MeV/u 28Si ions or 4 

3.7 MeV α particles. Staining with Ponceau S Red was used as loading control. Each 5 

immunoblot is representative of 2-7 experiments. Fold change represents relative change 6 

compared to the control (i.e. 0 cGy). 7 

Figure 2. Oxidative stress in confluent AG1522 cells harvested 24 h after exposure to 8 

low mean absorbed doses of 1000 MeV/u 56Fe ion. Immunoblot analyses of [A] protein 9 

carbonylation, and [B] lipid peroxidation (measured by 4-HNE protein adduct 10 

accumulation). In the case of protein carbonylation, the relative intensity (i.e. fold-11 

change) in oxidation of the overall spectrum of proteins (~30-130 kDa) in irradiated cells 12 

was compared to that in control cells. For 4-HNE protein adduct accumulation, the 13 

relative intensity refers to the level of the band with arrow relative to control. Staining 14 

with Ponceau S Red was used as loading control. Each immunoblot is representative of 15 

3 experiments. 16 

Figure 3. Western blot analyses of p21Waf1, p-TP53ser15 and HDM2 in AG1522 cell 17 

populations exposed to 1000 MeV/u 56Fe ions. Confluent cells were exposed to a mean 18 

absorbed dose of 1 cGy and subcultured in fresh medium (1:3). Samples were harvested 19 

for analyses 8 and 24 h after irradiation. Staining with Ponceau S Red was used as 20 

loading control. Each immunoblot is representative of 3-5 experiments. Fold change 21 

represents relative change compared to the control. 22 

 23 
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Figure 4. Kinetics of 53BP1 foci formation in confluent AG1522 cell cultures exposed to 1 

0.2 cGy from 1000 MeV/u 56Fe ions (Panel A), 3.7 MeV α particles (Panel B) or 2 

600 MeV/u 28Si ions (Panel C). The data represent the excess percent increase (ΔF) of 3 

cells with 53BP1 foci in irradiated cell populations relative to the respective control 4 

calculated as ΔF = 100 (Firradiated - Fcontrol) where F is the ratio of the number of cells with 5 

53BP1 foci over the total number of cells counted. Each graph is representative of 6 

3 different experiments. χ2 test was performed on the total number of cells compared with 7 

respective control in irradiated populations . (*: p <0.05 ; **: p <0.01 ; ***: p <0.001). 8 

Figure 5. Representative images of etched tracks and 53BP1 foci in AG1522 cell cultures 9 

grown on dishes with CR-39-nuclear track detector bottom. The cultures were fixed for 10 

analyses at 15 min after exposure to 0.2 cGy of 1000 MeV/u 56Fe ions: (A) visualization 11 

of etched tracks; (B) 53BP1 immuno-detection (red); (C) stained with DAPI; (D) images 12 

in A-C are super-imposed with the black dots representing etched tracks in (A) converted 13 

to white for better visualization. 14 

Figure 6. FLUKA simulation of radial distribution of dose, per primary irradiating 15 

particle, in 1 µm-thick cell culture layer exposed to 0.2 cGy of 1000 MeV/u 56Fe ions. 16 

[A] Radial distribution of dose of 56Fe ions, heavy ions, 1 keV-threshold electrons and the 17 

total dose. [B] Radial distribution of dose of electrons with various δ ray-thresholds (1, 18 

10 and 100 keV and 1 MeV). Panels [C] and [D] illustrate radial distribution of dose from 19 

heavy ions (primary and secondary) and electrons, respectively, by superimposing the 20 

radial dose area over Panel D in Figure 5, where cells traversed by a primary 56Fe ion-21 

track were identified.  22 
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Supplementary Figure 1. Schematics of tissue culture systems used in experiments. [A] 1 

Glass-bottomed flaskette (Nalge Nunc International). [B] Tissue culture dish with 2 

polyallyl diglycol carbonate (PADC, commonly known as Columbia Resin #39) plastic 3 

polymer bottom for HZE-particle-irradiation. Incorporation of a 100 µm-thick PADC 4 

film below the glass bottom of the sealable-dish permits visualization of HZE-particle-5 

tracks without interfering with microscopic examination of biological changes. The 6 

dishes filled to capacity with pH- and temperature-equilibrated growth medium can be 7 

positioned perpendicularly to the incident beam. 8 

9 
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FOOTNOTES 1 

1 The thickness of ~1 µm of an AG1522 cell (41) was estimated from studies in 2 

fixed/dehydrated cells grown on Mylar. The actual dimension of a live AG1522 cell 3 

grown on glass may be different. 4 

2 The absorbed dose (d) per traversal to the thin disk-shaped cell nucleus of the AG1522 5 

cell was calculated according to the relation d = (0.16 LET)/(A ρ), where A is the cross-6 

sectional area of the cell nucleus (i.e. an average of ~140 µm2), and ρ is the density of the 7 

cell. 8 

 9 
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Table 1: Estimatesa of particle traversals when confluent AG1522 normal human 

fibroblasts are exposed to mean absorbed dose of 0.2 cGy from radiations that differ in 

their energy and linear energy transfer (LET) 

Ionb Energy 
(MeV/u) 

LET 
(keV/µm) 

Dose 
(cGy) 

Fluence 
(particles/cm2)

Average number of 
traversals 

Fraction of cell nuclei 
traversed by 0, 1 or more 

than 1 particles 
Cell Nucleus P(0) P(1) P(≥2) 

56Fe26+ 1000 151 0.2 8.27 × 103 0.066 0.012 0.988 0.011 0.001 
1.0 4.13 × 104 0.331 0.058 0.944 0.055 0.001 

28Si14+ 600 50 0.2 2.50 × 104 0.200 0.035 0.966 0.033 0.001 
1.0 1.25 × 105 0.999 0.175 0.840 0.147 0.013 

12C6+ 290 13 0.2 9.60 × 104 0.768 0.134 0.874 0.118 0.008 
1.0 4.80 × 105 3.841 0.672 0.511 0.343 0.146 

4He2+ 
(α) 0.92 109 0.2 1.15 × 104 0.092 0.016 0.984 0.016 0.000 

1.0 5.72 × 104 0.458 0.080 0.923 0.074 0.003 
a These estimates do not take into account secondary radiations. 
b Note that the primary ions are stripped of electrons. The charge is implied, but not designated, elsewhere 
in this publication. 
 



Table 2: Contribution of primary and secondary particles to the mean absorbed 

dose in the cell monolayer (0.001 cm3) when 1000 MeV/u 56Fe, 600 MeV/u 28Si, or 

290 MeV/u 12C ions are used to deliver 0.2 cGy to the AG1522 cell culture. 

 
 56Fe 28Si 12C 

Particlesa Absorbed 
Doseb 
(cGy) 

Contribution 
to total dose

(%) 

Absorbed 
Doseb 
(cGy) 

Contribution 
to total dose

(%) 

Absorbed 
Doseb 
(cGy) 

Contribution 
to total dose 

(%) 
       

HZE 
primary 0.1221 59.87 0.1232 60.96 0.1268 62.06 

HZE 
fragments 0.0007 0.35 0.0004 0.20 0.0002 0.09 

Electrons 0.0807 39.57 0.0777 38.44 0.0755 36.94 
Photons 2.2013 x 10-6 0.00 1.1169 x 10-6 0.00 8.7095 x 10-7 0.00 
Protons 2.3514 x 10-4 0.12 4.7413 x 10-4 0.23 1.0729 x 10-3 0.53 
Alpha 5.1070 x 10-5 0.03 1.4144 x 10-4 0.07 3.5004 x 10-4 0.17 

Total 0.2039 100.00 0.2021 100.00 0.2043 100 
a Production thresholds for δ rays were set at 1 keV. Transport cut-offs were set at 150 eV for 
electrons and 1 keV for HZE particles, protons, photons and α particles. 
b Errors in the absorbed doses are detailed in Supplementary Tables 2-4. 



Supplementary Table 1: Results of Western Blot analyses of p-TP53ser15, p-ERK1/2, 

p21Waf1, HDM2, protein carbonylation and lipid peroxidation related to the data in [A] 

Figure 1, [B] Figure 2 and [C] Figure 3, after exposure of AG1522 cells to an absorbed 

dose of 0, 0.2 or 1 cGy from 1000 MeV/u 56Fe ions, 600 MeV/u 28Si ions or 3.7 MeV 

α particles.  

The number of individual experiment, averaged data and associated errors are noted. 

 

[A] In confluent cell cultures 

Particles Dose Time Protein Fold increase relative 
to control n Mean Standard 

Error (SE)

3.7 MeV 
α particles 

0.2 cGy 15 min p-TP53ser15 1.5/1.4/1.4/1.5 4 1.5 0.0 
0.2 cGy 15 min p-ERK1/2 1.3/1.2/1.1 3 1.2 0.1 
0.2 cGy 3 h p21Waf1 1.4/2/1.6 3 1.7 0.2 
1 cGy 15 min p-TP53ser15 3.3/1.8/2/1.5/2.8/1.7/1.6 7 2.1 0.3 
1 cGy 15 min p-ERK1/2 1.6/2/2.2/1.8/2.9/2.4 6 2.2 0.2 
1 cGy 3 h p21Waf1 3/1.6/3.6/2.6/2.4/3 6 2.7 0.3 

1000 
MeV/u 

56Fe ions 

0.2 cGy 15 min p-TP53ser15 1.2/1.3/2.5 3 1.7 0.4 
0.2 cGy 15 min p-ERK1/2 1.6/1.2/1.3 3 1.4 0.1 
0.2 cGy 1 h HDM2 2.4/1.5/2.2 3 2.0 0.3 
0.2 cGy 1 h p21Waf1 3/3.2/1.5 3 2.6 0.5 
0.2 cGy 1 h p-TP53ser15 1.6/1.5/1.4 3 1.5 0.1 
0.2 cGy 3 h p21Waf1 2.8/1.7/1.2/1.6/1.3 5 1.7 0.3
0.2 cGy 6 h p-TP53ser15 1.8/1.2 2 1.5 0.3 
0.2 cGy 6 h p21Waf1 2.2/1.2/1.7 3 1.7 0.3 
0.2 cGy 24 h p21Waf1 1.6/1.2/1.4 3 1.4 0.1 
0.2 cGy 24 h p-TP53ser15 1.3/1.4/1.4 3 1.4 0.0 
1 cGy 15 min p-TP53ser15 1.8/2.4/1.8/7.9/2.8/2.6 6 3.2 1.0 
1 cGy 15 min p-ERK1/2 2.5/2.9/2.2/4/2.1 5 2.7 0.3 
1 cGy 1 h HDM2 3.5/2.3/2.2/2.5/2.5/1.4 6 2.4 0.3
1 cGy 1 h p21Waf1 5.6/1.8/1.6 3 3.0 1.3 
1 cGy 1 h p-TP53ser15 1.8/1.6/2.6 3 2 0.3 
1 cGy 3 h p21Waf1 3.7/2/2.5/1.7/2.4 5 2.5 0.3 
1 cGy 6 h p-TP53ser15 2/2.3 2 2.2 0.2 
1 cGy 6 h p21Waf1 3.2/2.4/1.3 3 2.3 0.6 
1 cGy 24 h p21Waf1 6/3.7/5 3 4.9 0.7 
1 cGy 24 h p-TP53ser15 2.3/5.1/2.2 3 3.2 1.0 

600 
MeV/u 

28Si ions 

0.2 cGy 15 min p-TP53ser15 2.5/3.1/1.3 3 2.3 0.5 
0.2 cGy 15 min p-ERK1/2 1.4/1.5/1.2 3 1.4 0.1 
0.2 cGy 3 h p21Waf1 1.8/1.2/1.1 3 1.4 0.2 
1 cGy 15 min p-TP53ser15 3.4/2.4/1.6/4 4 2.9 0.5 
1 cGy 15 min p-ERK1/2 3.1/2.1/2.8/1.6 4 2.4 0.3 
1 cGy 3 h p21Waf1 2.5/2.3/2.2 3 2.3 0.1 

 

 



[B] In confluent cell cultures 

Particles Dose Time Protein Fold increase 
relative to control n Mean Standard 

Error (SE) 

1000 
MeV/u 

56Fe ions 

0.2 cGy 24 h Protein 
Carbonylation 2.3/6/1.5 3 3.3 1.4 

0.2 cGy 24 h Lipid 
peroxydation 1.7/1.4/2.2 3 1.8 0.2 

1 cGy 24 h Protein 
Carbonylation 4.1/10/5.5 3 6.5 1.8 

1 cGy 24 h Lipid 
peroxydation 6.6/2.1/2.8 3 3.8 1.4 

 

[C] In proliferating cells 

Particles Dose Time Protein Fold increase 
relative to control n Mean 

Standard 
Error 
(SE) 

1000 
MeV/u 

56Fe ions 

1 cGy 8 h p-TP53ser15 1.4/1.2/1.5/1.9 4 1.5 0.1 
1 cGy 8 h p21Waf1 2.4/1.3/1.4/1.8/1.8 5 1.7 0.2 
1 cGy 8 h HDM2 1.8/1.7/1.6 3 1.7 0.1 
1 cGy 24 h p-TP53ser15 1.5/1.2/2.3/1.3 4 1.6 0.2 
1 cGy 24 h p21Waf1 1.8/2.1/1.5/1.1 4 1.6 0.2 
1 cGy 24 h HDM2 1.5/2.5/1.1/2.7/1.3 5 1.8 0.3 

 



Supplementary Table 2: Contribution of primary and secondary particles to the 

mean absorbed dose in the glass coverslip, cell culture and medium when 

1000 MeV/u 56Fe ions were used to deliver 0.2 cGy to the AG1522 cell culture. The 

production thresholds of δ rays were set at [A] 1 keV, [B] 10 keV, [C] 100 keV, [D] 

1 MeV. The transport cut-off was set at 1 keV for HZE particles, protons, photons, 

and α particles. For electrons, it was set at 150 eV (Panel A) or 1 keV (Panels B, C 

and D). 

[A] 

1 keV Glass coverslip 
(1.9152 cm3) 

Cell Monolayer
(0.001 cm3)

Medium (water)
(18.799 cm3)

Particles Absorbed Dose  
(cGy) 

Absorbed Dose  
(cGy) 

Contribution 
to total dose

%

Absorbed Dose  
(cGy) 

Total 
heavy ions 0.1000 ± 0.0007 0.1228 ± 0.0022 60.22 

0.35 0.1185 ± 0.0022 
56Fe ions 0.0997 ± 0.0007 0.1221 ± 0.0022 59.87 0.1114 ± 0.0022 
Electrons 0.0623 ± 0.0004 0.0807 ± 0.0014 39.57 0.0756 ± 0.0014 
Photons 3.2609 x 10-6 ± 0.69 % 2.2013 x 10-6 ± 82.22 % 0.00 2.3844 x 10-6 ± 1.11 %
Protons 1.2438 x 10-4 ± 8.72 % 2.3514 x 10-4 ± 21.97 % 0.12 5.1421 x 10-4 ± 2.57 %
Alpha 4.3250 x 10-5 ± 16.40 % 5.1070 x 10-5 ± 102.92 % 0.03 1.5104 x 10-4 ± 3.47 %
Total 0.1626 ± 0.0012 0.2039 ± 0.0036 100 0.1950 ± 0.0036 

 
[B] 

10 keV Glass coverslip 
(1.9152 cm3) 

Cell Monolayer
(0.001 cm3)

Medium (water)
(18.799 cm3)

Particles Absorbed Dose  
(cGy) 

Absorbed Dose  
(cGy) 

Contribution 
to total dose

%

Absorbed Dose  
(cGy) 

Total 
heavy ions 0.1206 ± 0.0011 0.1452 ± 0.0020 71.67 

0.44 0.1404 ± 0.0019 
56Fe ions 0.1202 ± 0.0011 0.1443 ± 0.0020 71.23 0.1320 ± 0.0018 
Electrons 0.0412 ± 0.0004 0.0569 ± 0.0009 28.08 0.0529 ± 0.0007 
Photons 2.7719 x 10-6 ± 0.92 % 1.9991 x 10-6 ± 14.62 % 0.00 2.1064 x 10-6 ± 1.35 %
Protons 1.6855 x 10-4 ± 7.96 % 2.8335 x 10-4 ± 16.52 % 0.14 6.1175 x 10-4 ± 3.49 %
Alpha 5.7126 x 10-5 ± 16.36 % 9.6370 x 10-5 ± 57.56 % 0.05 1.7112 x 10-4 ± 4.38 %
Total 0.1622 ± 0.0015 0.2025 ± 0.0029 100 0.1943 ± 0.0026 

 
 



[C] 

100 keV Glass coverslip 
(1.9152 cm3) 

Cell Monolayer
(0.001 cm3)

Medium (water)
(18.799 cm3)

Particles Absorbed Dose  
(cGy) 

Absorbed Dose  
(cGy) 

Contribution 
to total dose

%

Absorbed Dose  
(cGy) 

Total 
heavy ions 0.1420 ± 0.0008 0.1698 ± 0.0018 84.94 

0.48 0.1642 ± 0.0018 
56Fe ions 0.1416 ± 0.0008 0.1688 ± 0.0018 84.46 0.1546 ± 0.0016 
Electrons 0.0198 ± 0.0.001 0.0294 ± 0.0004 14.72 0.0301 ± 0.0003 
Photons 1.5099 x 10-6 ± 0.79 % 1.0620 x 10-6 ± 74.71 % 0.00 1.3329 x 10-6 ± 2.33 %
Protons 1.8447 x 10-4 ± 8.36 % 3.5205 x 10-4 ± 12.33 % 0.18 7.0077 x 10-4 ± 2.84 %
Alpha 5.6496 x 10-5 ± 13.10 % 1.5287 x 10-4 ± 98.28 % 0.08 1.9140 x 10-4 ± 4.40 %
Total 0.1622 ± 0.0009 0.1999 ± 0.0021 100 0.1954 ± 0.0021 

 
[D] 

1 MeV Glass coverslip 
(1.9152 cm3) 

Cell Monolayer
(0.001 cm3) 

Medium (water)
(18.799 cm3) 

Particles Absorbed Dose  
(cGy) 

Absorbed Dose  
(cGy) 

Contribution 
to total dose

%

Absorbed Dose  
(cGy) 

Total 
heavy ions 0.1633 ± 0.0008 0.1922 ± 0.0027 97.66 

0.61 0.1858 ± 0.0016 
56Fe ions 0.1628 ± 0.0008 0.1910 ± 0.0028 97.05 0.1751 ± 0.0016 
Electrons 0.0016 ± 0.72 % 0.0040 ± 0.0001 2.03 0.0069 ± 0.0001 
Photons 3.0758 x 10-7 ± 2.36 % 4.9817 x 10-8 ± 75.16 % 0.00003 1.7904 x 10-7 ± 14.80 %
Protons 2.0372 x 10-4 ± 7.36 % 3.4352 x 10-4 ± 8.05 % 0.17 7.4120 x 10-4 ± 3.54 %
Alpha 6.1595 x 10-5 ± 12.03 % 1.1259 x 10-4 ± 78.06 % 0.05 2.0916 x 10-4 ± 4.68 %
Total 0.1653 ± 0.0008 0.1968 ± 0.0029 100 0.1939 ± 0.0016 

 
Errors represent standard deviations of the mean. When the standard deviation 
is < 0.0001 cGy, it is expressed and noted in % as it can represent a high deviation.  
The term “total heavy ion” refers to the primary 1000 MeV/u 56Fe ions and the fragments. 



Supplementary Table 3: Contribution of primary and secondary particles to the 

mean absorbed dose in the glass coverslip, cell culture and medium when 

600 MeV/u 28Si ions were used to deliver 0.2 cGy to the AG1522 cell culture. The 

production thresholds of δ rays were set at [A] 1 keV, [B] 10 keV, [C] 100 keV, [D] 

1 MeV. The transport cut-off was set at 1 keV for HZE particles, protons, photons, 

and α particles. For electrons, it was set at 150 eV (Panel A) or 1 keV (Panels B, C 

and D). 

[A] 

1 keV Glass coverslip 
(1.9152 cm3) 

Cell Monolayer
(0.001 cm3)

Medium (water)
(18.799 cm3)

Particles Absorbed Dose  
(cGy) 

Absorbed Dose  
(cGy) 

Contribution 
to total dose

%

Absorbed Dose  
(cGy) 

Total 
heavy ions 0.1006 ± 0.0003 0.1236 ± 0.0012 61.16 

0.20 0.1209 ± 0.0004 
28Si ions 0.1003 ± 0.0010 0.1232 ± 0.0012 60.96 0.1170 ± 0.0012 
Electrons 0.0611 ± 0.0006 0.0777 ± 0.0012 38.44 0.0720 ± 0.0007 
Photons 3.1033 x 10-6 ± 1.40 % 1.1169 x 10-6 ± 82.11 % 0.00 2.1527 x 10-6 ± 2.25 %
Protons 2.7759 x 10-4 ± 5.06 % 4.7413 x 10-4 ± 26.76 % 0.23 9.7519 x 10-4 ± 5.20 %
Alpha 1.0644 x 10-4 ± 13.94 % 1.4144 x 10-4 ± 73.98 % 0.07 2.6864 x 10-4 ± 5.03 %
Total 0.1622 ± 0.0016 0.2021 ± 0.0024 100 0.1945 ± 0.0019 

 
[B] 

10 keV Glass coverslip 
(1.9152 cm3) 

Cell Monolayer
(0.001 cm3)

Medium (water)
(18.799 cm3)

Particles Absorbed Dose  
(cGy) 

Absorbed Dose  
(cGy) 

Contribution 
to total dose

%

Absorbed Dose  
(cGy) 

Total 
heavy ions 0.1218 ± 0.0008 0.1467 ± 0.0014 73.11 

0.26 0.1436 ± 0.0016 
28Si ions 0.1215 ± 0.0008 0.1462 ± 0.0014 72.85 0.1389 ± 0.0016 
Electrons 0.0392 ± 0.0003 0.0531 ± 0.0009 26.44 0.0479 ± 0.0005 
Photons 2.5971 x 10-6 ± 0.75 % 1.0276 x 10-6 ± 54.41 % 0.00 1.8470 x 10-6 ± 2.18 %
Protons 3.4229 x 10-4 ± 7.30 % 5.7103 x 10-4 ± 22.19 % 0.28 1.2144 x 10-3 ± 3.40 %
Alpha 1.2456 x 10-4 ± 8.93 % 1.0788 x 10-4 ± 82.28 % 0.05 3.4464 x 10-4 ± 4.14 %
Total 0.1617 ± 0.0010 0.2007 ± 0.0023 100 0.1934 ± 0.0021 

 
 
 



[C] 

100 keV Glass coverslip 
(1.9152 cm3) 

Cell Monolayer
(0.001 cm3)

Medium (water)
(18.799 cm3)

Particles Absorbed Dose  
(cGy) 

Absorbed Dose  
(cGy) 

Contribution 
to total dose

%

Absorbed Dose  
(cGy) 

Total 
heavy ions 0.1434 ± 0.0004 0.1708 ± 0.0011 86.74 

0.31 0.1671 ± 0.0014 
28Si ions 0.1431 ± 0.0012 0.1702 ± 0.0011 86.43 0.1616 ± 0.0013 
Electrons 0.0175 ± 0.0.001 0.0250 ± 0.0003 12.70 0.0241 ± 0.0002 
Photons 1.3178 x 10-6 ± 0.90 % 6.7873 x 10-7 ± 157.79 % 0.00 1.0610 x 10-6 ± 2.89 %
Protons 3.9845 x 10-4 ± 7.79 % 7.0894 x 10-4 ± 14.22 % 0.36 1.3842 x 10-3 ± 1.63 %
Alpha 1.3043 x 10-4 ± 12.69 % 1.8740 x 10-4 ± 67.54 % 0.10 3.4464 x 10-4 ± 4.14 %
Total 0.1616 ± 0.0014 0.1969 ± 0.0013 100 0.1933 ± 0.0016 

 
[D] 

1 MeV Glass coverslip 
(1.9152 cm3) 

Cell Monolayer
(0.001 cm3) 

Medium (water)
(18.799 cm3) 

Particles Absorbed Dose  
(cGy) 

Absorbed Dose  
(cGy) 

Contribution 
to total dose

%

Absorbed Dose  
(cGy) 

Total 
heavy ions 0.1633 ± 0.0012 0.1938 ± 0.0041 98.43 

0.36 0.1887 ± 0.0030 
28Si ions 0.1630 ± 0.0122 0.1931 ± 0.0409 98.07 0.1827 ± 0.0296 
Electrons 0.0007 ± 0.0000 0.0019 ± 0.0001 0.96 0.0027 ± 0.0000 
Photons 1.4358 x 10-7 ± 5.34 % 1.8106 x 10-8

 ± 210.82 % 0.00 6.5495 x 10-8 ± 20.30 %
Protons 3.7917 x 10-4 ± 9.00 % 6.5103 x 10-4 ± 14.40 % 0.48 1.4250 x 10-3 ± 3.29 %
Alpha 1.3149 x 10-4 ± 11.76 % 1.1953 x 10-4 ± 38.38 % 0.06 3.8005 x 10-4 ± 4.26 %
Total 0.1647 ± 0.0012 0.1969 ± 0.0041 100 0.1937 ± 0.0031 

 
Errors represent standard deviations of the mean. When the standard deviation 
is <0.0001 cGy, it is expressed and noted in % as it can represent a high deviation. 
The term “total heavy ion” refers to the primary 600 MeV/u 28Si ions and the fragments. 



Supplementary Table 4: Contribution of primary and secondary particles to the 

mean absorbed dose in the glass coverslip, cell culture and medium when 

290 MeV/u 12C ions are used to deliver 0.2 cGy to the AG1522 cell culture. The 

production thresholds of δ rays were set at [A] 1 keV, [B] 10 keV, [C] 100 keV, [D] 

1 MeV. The transport cut-off was set at 1 keV for HZE particles, protons, photons 

and α particles. For electrons, it was set at 150 eV (Panel A) or 1 keV (Panels B, C 

and D). 

[A] 

1 keV Glass coverslip 
(1.9152 cm3) 

Cell Monolayer
(0.001 cm3)

Medium (water)
(18.799 cm3)

Particles Absorbed Dose  
(cGy) 

Absorbed Dose  
(cGy) 

Contribution 
to total dose

%

Absorbed Dose  
(cGy) 

Total 
heavy ions 0.1024 ± 0.0001 0.1270 ± 0.0013 62.15 

0.09 0.1265 ± 0.0001 
12C ions 0.1023 ± 0.0006 0.1268 ± 0.0013 62.06 0.1249 ± 0.0011 

Electrons 0.0613 ± 0.0004 0.0755 ± 0.0015 36.94 0.0710 ± 0.0006 
Photons 3.0082 x 10-6 ± 0.93 % 8.7095 x 10-7 ± 138.13 % 0.00 1.9454 x 10-6 ± 2.67 %
Protons 6.0239 x 10-4 ± 10.79 % 1.0729 x 10-3 ± 34.90 % 0.53 2.2658 x 10-3 ± 4.59 %
Alpha 2.6778 x 10-4 ± 15.20 % 3.5004 x 10-4 ± 84.32 % 0.17 7.1590 x 10-4 ± 4.49 %
Total 0.1649 ± 0.0011 0.2043 ± 0.0029 100 0.2011 ± 0.0018 

 
[B] 

10 keV Glass coverslip 
(1.9152 cm3) 

Cell Monolayer
(0.001 cm3)

Medium (water)
(18.799 cm3)

Particles Absorbed Dose  
(cGy) 

Absorbed Dose  
(cGy) 

Contribution 
to total dose

%

Absorbed Dose  
(cGy) 

Total 
heavy ions 0.1256 ± 0.0010 0.1525 ± 0.0019 74.89 

0.21 0.1521 ± 0.0019 
12C ions 0.1254 ± 0.0010 0.1521 ± 0.0020 74.68 0.1501 ± 0.0019 

Electrons 0.0378 ± 0.0003 0.0490 ± 0.0009 24.05 0.0443 ± 0.0005 
Photons 2.4343 x 10-6 ± 1.24 % 9.3402 x 10-7 ± 105.77 % 0.00 1.6359 x 10-6 ± 4.67 %
Protons 7.7265 x 10-4 ± 14.18 % 1.3566 x 10-3 ± 36.62 % 0.67 2.7321 x 10-3 ± 4.26% 
Alpha 3.5199 x 10-4 ± 13.32 % 2.3531 x 10-4 ± 98.87 % 0.12 7.0770 x 10-4 ± 5.66 %
Total 0.1648 ± 0.0013 0.2037 ± 0.0030 100 0.2007 ± 0.0024 

 
 
 



[C] 

100 keV Glass coverslip 
(1.9152 cm3) 

Cell Monolayer
(0.001 cm3)

Medium (water)
(18.799 cm3)

Particles Absorbed Dose  
(cGy) 

Absorbed Dose  
(cGy) 

Contribution 
to total dose

%

Absorbed Dose  
(cGy) 

Total 
heavy ions 0.1489 ± 0.0001 0.1787 ± 0.0033 88.92 

0.20 0.1772 ± 0.0015 
12C ions 0.1486 ± 0.0012 0.1783 ± 0.0032 88.72 0.1749 ± 0.0016 

Electrons 0.0148 ± 0.001 0.0198 ± 0.0006 9.86 0.0183 ± 0.0002 
Photons 1.1053 x 10-6 ± 1.82 % 3.7904 x 10-7 ± 170.03 % 0.00 7.8355 x 10-7 ± 5.69 %
Protons 8.5832 x 10-4 ± 14.21 % 1.5021 x 10-3 ± 21.36 % 0.75 3.0876 x 10-3 ± 4.44 %
Alpha 3.4244 x 10-4 ± 15.08 % 4.6763 x 10-4 ± 59.71 % 0.23 9.3214 x 10-4 ± 6.61 %
Total 0.1653 ± 0.0013 0.2009 ± 0.0031 100 0.2004 ± 0.0018 

 
[D] 

1 MeV Glass coverslip 
(1.9152 cm3) 

Cell Monolayer
(0.001 cm3) 

Medium (water)
(18.799 cm3) 

Particles Absorbed Dose  
(cGy) 

Absorbed Dose  
(cGy) 

Contribution 
to total dose

%

Absorbed Dose  
(cGy) 

Total 
heavy ions 0.1654 ± 0.0013 0.1971 ± 0.0038 98.30 

0.15 0.1958 ± 0.0014 
12C ions 0.1652 ± 0.0014 0.1910 ± 0.0038 98.15 0.1934 ± 0.0013 

Electrons 5.0037 x 10-7 ± 73.15 % 7.0334 x 10-7 ± 83.07 % 0.00 1.7944 x 10-6 ± 26.38 % 
Photons 3.2179 x 10-7 ± 101.49 % 0.0000 ± 0.0000 0.00 1.6590 x 10-11 ± 78.71 % 
Protons 7.5727 x 10-5 ± 11.64 % 1.5147 x 10-4 ± 26.84 % 0.08 2.8089 x 10-4 ± 3.62 % 
Alpha 3.4659 x 10-4 ± 16.25 % 6.5669 x 10-4 ± 0.0006 0.33 9.9823 x 10-4 ± 7.15 % 
Total 0.1670 ± 0.0014 0.2005 ± 0.0037 100 0.2010 ± 0.0013 

 
Errors represent standard deviations of the mean. When the standard deviation 
is <0.0001 cGy, it is expressed and noted in % as it can represent a high deviation. 
The term “total heavy ion” refers to the primary 290 MeV/u 12C ions and the fragments. 
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