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ABSTRACT

The tethered satellite system is characterized by weak nonlinearities but
it practically works in conditions of internal resonance which produces unsta-
ble oscillations. The effect of a longitudinal control force is investigated. Since
the displacement component in the orbit plane is always present in the motion
due to the nonlinear coupling, the control force is assumed depending only on this
component and also when a prevailing out-of-plane oscillation is considered. The
harmonic balance method and numerical solutions of amplitude modulated equa-
tions are used to obtain stationary and nonstationary oscillations, respectively;
the Floquet theory is followed in the stability analysis. The assumed control force
is shown to be effective in reducing the primary and secondary instability regions
of oscillations perturbed by internally resonant disturbance components.

1. INTRODUCTION

Research on the behavior of the Tethered Satellite System (T'SS) has
received considerable impulse from the scheduled missions that envisage
its use. The papers that have appeared in dedicated meetings and journals
deal with various research objectives, mainly in the field of linear dynamics



and using simple models [1-5]. A number of studies have been devoted to
the control of the system’s stability and dynamics in the station-keeping
configuration and during deployment and retrieval of the satellite from the
orbiter [6-8].

Previous studies have revealed weak nonlinearities in the string-satellite
system [9, 10]. However, the presence of quadratic nonlinearities and the
sequence of the flexible mode frequencies are such that multiple simulta-
neous internal resonance conditions occur. For these peculiar characteris-
tics, the T'SS exhibits some nonlinear aspects similar to those of strings,
cables, and cylindrical shells [11-14]. Due to the internal resonance phe-
nomena, transversal oscillations are found to be unstable, precisely because
modes that are initially absent in the base oscillation can grow, irrespective
of the smallness of perturbation, with a typical exchange of energy among
the modes excited in the motion [15, 16].

The present paper studies the effects of longitudinal control force on
the stability of motion in internal resonance condition. The control force
is assumed to depend on transversal displacements of the string end. For
the planar transversal oscillations perturbed out-of-plane of the orbit, the
evolution of the motion for stable and unstable solutions is studied and
compared with the results obtained for the uncontrolled case.

2. EQUATIONS OF MOTION

A suitable model to study the tethered satellite system is based on the
following hypotheses: the shuttle describes an equatorial undisturbed cir-
cular orbit with constant angular velocity n and radius a; the tether is
an elastic continuum with mass density u and elastic stiffness EA; the
orbiter and the satellite are modeled with two point masses (M) and
(m), respectively. In particular, the mass of the shuttle is much larger
than those of the satellite and the tether and, consequently, the center of
mass of the system can be consider to coincide with the orbiter center of
mass.

Let consider two coordinate systems: the first (OXYZ) is a fixed refer-
ence frame with its origin in the centroid of the earth, the second (ozyz)
is a rotating reference frame with the origin at the shuttle center of mass
as in Figure 1. The z axis is aligned with the local vertical, the y axis
with the tangent to the trajectory, and the 2z axis with the orbital velocity
vector. The motion can be described by the displacements u(s,t), v(s,t),
w(s,t) in the z, y, and z directions, respectively, measured with respect
to the static straight configuration zq(s), where s is a curvilinear abscissa
along the tether.
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F1G. 1. Tethered satellite system and reference frames.

According to these assumptions, the equations of motion have been
derived in {9] by means of a Lagrangian approach. They are here modified
to introduce a longitudinal control force which is assumed proportional to
the in-plane transversal velocity ¥, of the satellite tether end (s = £). This
force F,(t) = —K_ (¢, t) appears in the longitudinal equation.

The nonlinear governing equations are expanded in Taylor series up
to the third order. It has been observed [15] that in correspondence
with prevailing transversal oscillations, which occur in the lower range
of the natural spectrum of the system, some terms in the longitudinal
equations can be neglected and an integrodifferential relation among u, v,
and w is obtained. This relation makes it possible to describe the motion
by only two integrodifferential equations in the transversal displacements
v(s,t) and w(s,t). The same occurs when a linear control force depend-
ing on tranversal displacements is introduced. The equations of motion
then read

!

o — [f(8)v'] — 3€xov — / (v'? 4+ w'?)*ds — [%izev’ — / 21‘;ds]
0 1
+kvev” =0 (1)
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with relevant boundary conditions
v(0,t) =w(0,t) =0
1
Be +yf(L)vL — 3€x0(1)ve — / (v + w'?)*ds
0
+ 200, — YhkcUev, = 0 (2)
We + ¥F(D)wl + we(l — 3€xo(1)) + 20wl — Yhetew, = 0,

having introduced the dimensionless parameters
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where £ is the tether length and f(s) = 1/a?(z' —1)/z’ is the adimensional
variable tether tension. Furthermore, the variables have been adimension-
alized with respect to ¢ and n in space and time, respectively, and ()’
denotes derivation with respect to s and ()® with respect to ¢.

It has to be pointed out that even if the control force is linear in the
displacement variables, its effect in the transversal motion is nonlinear ac-
cording to the fact that it results in an additional longitudinal component.
In particular, it produces new quadratic terms which are similar to those
of gyroscopic forces.

It is useful to introduce a more compact expression of the equations of
motion and boundary conditions which can be written as:

[M(9) + Ly (v) + B(v,0) + C{w,w) + R(v,0)] x v = 0 (4a)
[M{w) + Ly(w) + D(w,0) + R(w, )] X éw = 0,  (4b)

where M and L are linear integro-differential operators of s and B, C, D,
R are bilinear integro-differential operators, whose explicit expressions can
be obtained from comparisons of (1) and (2) with (4) after some manipu-
lations [15].

The large amplitude oscillations are coupled and all the displacement
components are involved in the motion. The nonlinear terms are such that
the motion occurs in the orbit plane if zero initial conditions on the w
displacements are given; the dual situation is not true, as the out-of-plane
motion will always force the transversal in-plane oscillations.



3. STATIONARY OSCILLATIONS

It has been observed in [16] that both in-plane and out-of-plane non-
linear vibrations with a prevailing component can be satisfactorily studied
by means of a truncated two-modes model. The control force does not
change this peculiarity. Indeed, when an oscillation with a prevailing in-
plane mode with frequency wy, is considered, the nonlinear terms B(v, 0) +
R(v,?.) in (4a) forces other modes among which the only important one
to be retained is that with frequency w; close to 2wg. On the other side,
if an out-of-plane mode with frequency wy is the prevailing component,
the nonlinear term C(w, W) in (4a) forces the arising of in-plane modes, of
which, similarly to the in-plane oscillation, the most important one is that
with frequency w; close to 2wy.

When the stationary solutions are sought, the harmonic balance method
can be conveniently used since it remains valid in conditions of internal
resonance.

3.1. In-plane oscillations

As pointed out, a periodic solution with only two components with
nonlinear frequencies ) and 21 is suitable to study the steady-state in-
plane oscillations:

v(s,t) = ©r(s) [Ax cos Qxt + By sin 2t
+ (s) [Aj cos 20t + Bjsin 2th] , (5)

where @i and ¢; are the linear modes with frequency wy, close to £ for
small amplitudes, and w; which differs from 2wy, for a small quantity oy.

By substituting the approximate expression (5) of v(s,t) in (4), per-
forming all integrations and equating terms with the same harmonics, the
following equations are obtained:

(wi — Q2 )mi Ak + Qe (brks + Tks — 37kik) (AeB; — AjBk) = 0 (6a)
(wg — Qz)kak — Q% (bkkj + Tkkj — %Tkjk)(AkAj + BkBj) = 0 (6b)
(wjz' - 4Qi)mjAj + %Qk(bjkk + Tjkk)AkBk =0 (GC)

(w? - 497)m;B; + 3 (bjkk + Tixe) (BE — AZ) = 0, (6d)

where coefficients of these equations and those following are given in
Appendix B.

Having assumed a velocity dependent linear control force, these equa-
tions have the same structure of those without control and only the coef-



ficients are affected by this force. The solution can be expressed, in any
case, by only two amplitudes; the case with A; = By = 0 is presented.
From (6a) the frequency-amplitude relationship is determined:

bkkj + Tkkj — 1/27‘kjkB )1/2
¥ )

Qr >~ wi <1 +
WeMg

(")

while (6d), together with (7) and o} = 2wy — wj, gives the Ax — B; re-
lationship, which describes the modification of the shape with oscillation
amplitudes:

bikj + Tkkj — 1/2Tkjk
mg

brkj + Thkj 4o
—_— A = (. 8
Ik g (8

B} + oxB; +

8.2.  Qut-of-plane oscillations

The monofrequent out-of-plane oscillation of nonlinear frequency €
near to the linear frequency wy, as in the uncontrolled problem, is charac-
terized by a prevailing out-of-plane component and a forced in-plane one
with frequency 2§ close to w;:

v(s,t) = ¢;(s) [A; cos 20t + B sin 2Qt] o)
9
w(s,t) = Yx(s) [Ax cos Qgt + By sin Q] ,

where 1, is the out-of-plane linear mode with frequency wg.

Following the harmonic balance procedure, a system of four equations
similar to (6) is obtained whose solution gives the frequency-amplitude
relation

dick; = 1/2re o\ ?
(n:wk0+-“f+”“ /””BJ (10)
WEmy.
and the amplitude relationship B; — A
dikj + Tkkj — 1/2Tkjk 1o Ckkj 52
B; B;+ —A; =0. 11
mg 7Ok 8m; ¥ 0 (11)

Even for out-of-plane oscillations, the control force does not change the kind
of solution with respect to the uncontrolled case [15], but it only modifies
the coefficients.



4. STABILITY OF STATIONARY OSCILLATIONS

A stability analysis of the stationary solutions is performed by intro-
ducing in (4) a perturbed steady-state solution

v(s,t) = vs(s,t) + n(s,t) w(s,t) = wy(s,t) + ((s,1). (12)

Linearizing the motion equations with respect to # and ¢ and describing
each component of the disturbance by one suitably selected mode

n(s,t) = gi(s)n(t)  {(s,t) = u(s)C(E), (13)

the use of the Galerkin technique leads to the variational equations
AN EEIRERIY
;oo + !
[0 mz]{é} —g12 0 ez1 0 ¢
k1 0] [fll f12] {011 0]){77} {0}
+ + + = :
<[ 0 ko 0 fa 0 c22 ¢ 0

(14a,b)

For in-plane oscillations, (14) are uncoupled and, consequently, in-plane
and out-of-plane disturbances can be separately applied, while coupled
perturbations must be introduced for analysing stability of out-of-plane
oscillations.

In the following the stability of planar oscillations for out-of-plane dis-
turbances is investigated. In this case, the stability is governed by the only
(14b), which, after explicit calculation of the coefficients and introducing a
new time variable 7 = (Q/2)t + 7/4, becomes

{(T) + (6% + €1 cos 27 + ez cos 4T) ((1) = 0, (15)
where
20.11 Ak B;
5 = % T Ymon (duk +ruk) ez = —8—2—(dy; +ru;). (16)

mlﬂk

Equation (15) has periodic coefficients of frequency 2 and, according to
the Floquet theory, boundaries of the first instability region are associated
with periodic solutions of frequency 1. Expanding {(7) in series of sinT,
cos T, sin 37, cos 37, substituting in (15) and vanishing the terms with same
harmonics, two uncoupled eigenvalues problems are obtained, which give



TABLE 1
LINEAR FREQUENCIES OF TRANSVERSAL MODES (PENDULUM
TYPE k = 0, FLEXIBLE MODES k > 0)

k=0 k=1 k=2 k=3 k=4
wy 1.736 23.022 45.845 68.712 91.590
wy 2.004 23.044 45.856 68.719 91.595
Pk 0.238 3.160 6.292 9.341 12.571

the boundaries of the unstable region

62=1i%—§—;—2(61i62). (17)
The primary instability region emanates from Qx = 2w;. For a sample
system, Table 1 shows that it can easily occur for each in-plane mode, as
there is always a lower out-of-plane mode with almost half frequency, apart
from the first one.
It is worthwhile to consider the region of secondary instability, for which
¢(7) is expanded in series of sin 27, cos2r, sin4r, cos4r, plus a constant
term. The boundaries of the unstable region are

€ 5 € 1
62=4+52+4—8ef 52=4+52—Eef (18)
and emanate from Q; = w;. This condition is verified, for example, for
the basic case of the first in-plane mode perturbed by the first out-of-
plane mode.

Numerical results have been obtained for a sample string-satellite sys-
tem whose parameters are given in Appendix B. Figure 2 shows the primary
instability regions of steady in-plane oscillations and a prevailing second
in-plane mode (k = 2, j = 4) perturbed by the resonant first out-of-plane
mode (I = 1), either with or without control. It can be observed that
the control force narrows the instability region and, even if the frequency-
amplitude curve is more bent, the critical amplitude is higher; little mod-
ification results in the amplitude relationship Ax — B; (Figure 2a). As
the value of the control gain k. raises, the region becomes narrower and
the critical amplitude greater, while the corresponding nonlinear frequency
Q) becomes closer to the linear one. For a prevailing first in-plane mode
(k = 1, j = 2) perturbed by the first out-of-plane resonant mode (I = 1),
Figure 3 shows the secondary instability region; the control force narrows
the unstable region but, on the other side, the curve is more bent. In this



A, = | TTTTT T T3 FTTT =TT ™
0.20 — - — —
015 — J - —
0.10 — — — —

- — = -
0.05 — — — —
I~ uncontrolled n ~ -
~ -e--- controlled - r -1
0.00 Cle v by UV Oy L
-0.10 -0.05 -0.00

B,

{a

Fic. 2. Primary instability of the second in-plane mode: (a) amplitudes; (b)
frequency-amplitude curve and instability region.

case, the two opposite effects result in a smaller improvement of the critical
condition but, nevertheless, are effective, since the length of the unstable
branch of the curve is reduced.

5. IN-PLANE PERIODICALLY MODULATED
AMPLITUDE OSCILLATIONS

A three-mode model is used to study the in-plane motion, without lim-
iting the analysis to the case of constant amplitude, and the evolution of the
spatial motion when the unstable in-plane oscillations are perturbed out-
of-plane. To this scope the amplitude modulations equations are obtained
from the second-order perturbation equations.

By introducing new time scale t, = €*t (n =0,1,...) [17] and expand-
ing displacements v(s,t) and w(s,t) in two-term series of the perturba-
tion parameter ¢, the two linear system at order ¢ and €? are obtained,
respectively,

[M (d%ov0) + Ly(v)] x v =0

[M(dgowo) + Lw(wo)] x dw =0 (19)
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F1G. 3. Secondary instability of the first in-plane mode: (a) amplitudes; (b)
frequency-amplitude curve and instability region.

[M(dgovl) + Lv(vl)] X bv = — [2M(d81v0) + B(vo, dOUO)
+ C(wo, dowo) + R(vo, doveo)] X v
[M (dBow1) + Lu(wn)] x 6w = —[2M (dg wo) + D(wo, dovo)
+ R(’U)O,d()veo)] X (511],
(20)
where d,, = 8/0t,, and dy,y, = 0%/0t,,0ty.

In this problem the two in-plane components kth and jth are in primary
resonance conditions (2wy = w; + €og), while the out-of-plane mode Ith
can be taken in primary (2w; = wi + €0;) or in secondary (2w; = w; + €oy)
resonance conditions. In both cases the generating solution is described by
three components:

vo(s,t) = Ak(t1)pr(s)e™ ™ + A;(t1)pj(s)e™i* + c.c. 21)
wo(s, t) = Ai(t1)i(s)e™® + c.c.,

where c.c. stands for complex conjugate. Equations (21) are used in (20)
where §v = ¢, dv = p;, and dw = 1); are taken successively. By zero-
ing secular terms, making use of the polar form to represent the complex



amplitudes, Ap = 1/2ap(t;)e?®*®1), and separating real and imaginary
parts, six equations in the three amplitudes a; and the three phases ¥j
are obtained.

The introduction of suitable new variables v and 7; makes it possible
to reduce previous system to an autonomous system of five equations. For
an out-of-plane mode in primary resonance condition they read:

aj, = —(bg + ri)aka; cos vk + ca? cosy (22a)
a; = —(b;+ rj)aﬁ COS Yk (22b)
a; = (d+ s)aka; cos (22¢)
ara;v, = [b ak —2(bx + rk)aka ] sin v + cajal2 siny + oxaga;  (22d)

ajapy], = [ 2(d + s)aa? — cal] sin-y; — (bx + rx)araka; sin v, + oraiax,
(22e)

where

Y =29, — 9 + oxty v =29 — O + ot (23)

Similar equations are obtained for secondary resonant out-of-plane mode.
The fixed points of (22) include all the steady-state oscillations obtained
by harmonic balance method in the previous section. However, the three-
mode model is not able to describe accurately the evolution of disturbed,
steady or periodic solutions with a prevailing out-of-plane mode /th and
a companion kth. Indeed, as pointed out before, the disturbance must be
described at least by two modes. Thus, in the following, the attention is
focused on the planar motion described by the three equations (22a), (22b),
(22d) with a; = 0.

In both resonant cases, a first integral of motion of the kind a} +
(bx/ bj)a? = E = const can be easily deduced from the first two equa-
tions. This implies that the trajectories of motion run on a cylinder in
the ak, a;, v space; in Figure 4, for two different in-plane oscillations, the
curved surface is extended onto a plane where the angle 8 = arctan(ax/a;)
is introduced and the cyclic variable i is represented in [—=, w]. Three dif-
ferent stationary solutions are found: a one-component So(ax = 0,a; # 0,
i.e. B = 0) and the two two-components S; and S2, the former with the
prevailing a; and the latter a;. However, the attention is restricted to
the motions around S; with most of initial energy in ax. The amplitude
periodic solutions are described by closed and open trajectories; notable
amplitude and phase modulations occur on most of them, except the closed
trajectories just in a small region around Sj.

Since (22) cannot be put in normal form when a; = 0, they cannot be
used for the stability analysis. A suitable transformation of variables has



Fi1G. 4. Trajectories of nonstationary two-modes motion: (a) & = 2, j = 4; (b)
k=1,j=2
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been proposed in [16] which makes it possible to reconduct the stability
investigation to the solution of classical variational equations with periodic
coefficients. The results are summarized in Figure 5 which represents a
section of the cylinder at vx = —n /2 crossing S; for a primary (a) and sec-
ondary (b) resonant conditions both for uncontrolled and controlled cases.
The stationary solutions, whose behavior is the same as discussed in Sec-
tion 3, are the first to become unstable. For increasing levels of energy the
instability propagates toward external trajectories and the unstable region
becomes wider in the primary resonance. In the secondary resonance the
picture is more complex since the stationary solutions lose and regain sta-
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bility. Thus, at a certain level of energy a small region of periodic orbits
are unstable and all the others are stable, while at higher level orbits close
to the steady solution are stable, then a region of unstable orbits is found
and further trajectories are stable again. The effect of the control force on
the stability of stationary oscillations has been already discussed in Section
4; its effect on the stability of periodic trajectories is evident in Figure 5
from comparison with the uncontrolled case.

The evolution of unstable in-plane orbits perturbed out-of-plane is ob-
tained by numerically solving the system (22). The qualitative behavior of
the controlled and uncontrolled cases is practically the same, maintaining
the general consideration that the stable region of controlled system is by
far wider. The response of unstable stationary solutions for increasing ini-
tial amplitude is illustrated in Figure 6a; the motion becomes periodic with
an energy transfer from planar modes to the out-of-plane mode, which is
faster as the energy of the steady oscillation is higher. In Figure 6b and
6¢ the evolution of two orbits around Sy (Figure 4a) with the same energy
of the steady solution denoted by number 4 (Figure 6a) are reported. For
small orbits close to steady solutions (b) the mean values of the amplitude
have a trend very similar to that of steady solution, while for larger or-
bits (c) which are close to the stable region the mean values tend to be
constant. Substantially, in the first case a little fast modulation of am-
plitude is associated to large slow energy transfer, while in the other case
large fast modulation occurs with lower energy transfer among in-plane and
out-of-plane modes.

6. CONCLUSIONS

The nonlinear dynamics of a tethered satellite system in the deployed
configuration offers interesting points to be investigated, notwithstanding it
is characterized by weak nonlinearities. This is due to the fact that the sys-
tem exhibits quadratic nonlinearities and the frequencies of flexible modes
are almost in integer ratio. Accordingly, the system practically works in
conditions of internal resonance which produce instability of the motion.

The stabilizing effect of a longitudinal control force has been investi-
gated in this paper. The structure of nonlinear terms is such that the
transversal displacement component in the orbit plane is always present,
either as a prevailing component in the planar motion or as a companion
component when the prevailing one is an out-of-plane mode. This makes
it possible to use a control force which is a function of in-plane compo-
nent only.

It is shown that the assumed control force, with a realistic value of the



gain constant, is effective in reducing the instability region of stationary
and periodically modulated amplitude oscillations perturbed by primary
and secondary internally resonant components.

APPENDIX A
The coefficients introduced in (6) and (10), (11) are defined as follows:

me = M(hg) X hy Tijk = R(hj,<pk) x h; with h =,
bijk = B(wj,0x) X @i cijie = C(5,9%k) X @i dijr = D(¢5, 0k) X ;.

In (14) are introduced the following positions:

m1 = M(p;) X s mo = M (1) x ¥
ki = Ly(pi) X i ko = Ly (Y1) x oy
g11 = B(vg,p3) X 5 g12 = C(ws, 1) X @
g21 = D(ws, @) X ¥ = —g12
J11 = B(pi, Us) X @; fi2 = C(d,ws) X 5
faz = D(y,05) X
e11 = R(vs, @ie) X @i ea1 = R(ws, pie) X @
c11 = R(pq, Use) X @i ca2 = R(j,05e) X ;.

The coefficients in (22) are

1 Wi 1 wg
b = —— | brjk — —Lbre; bj = — —bjkk
BT ame T T dmyw;
1 ( wj 1 wy
Tk = T\ Tkjk — — Tkkj T = ——Tjkk
dmy Wk dm; wj
1 wy 1wy 1 wg
C = ————Ckll d=——du § = ———Tik-
4dmy wi a4my wy dmy wy

APPENDIX B

The following values of the parameters are assumed for the sample
system:

n? =135x 107872 ¢ =6657 km f=5km
M =105 kg m = 500 kg p=5.76 x 10~% kgm ™2
E =7%x10Nm™? A=4x10"%m? K,=29.894 Nm ls.



The corresponding nondimensional parameters (3) are: a® = 6.94 x 1077,
v = 0.0576, £ = 7.51 x 1074, and k. = 10.

The first five in-plane and out-of-plane time frequencies w} and w}’ are

given in Table 1 together with the spatial frequencies py of the associated
modal shapes, ¢x(s) = ¥k (s) ~ sinpgs [5].

This research is partially supported by Italian Ministry of University
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